Merge 141.212.106.238:/home/gblack/m5/newmemmemops
[gem5.git] / src / cpu / o3 / fetch_impl.hh
1 /*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 * Korey Sewell
30 */
31
32 #include "config/use_checker.hh"
33
34 #include "arch/isa_traits.hh"
35 #include "arch/utility.hh"
36 #include "cpu/checker/cpu.hh"
37 #include "cpu/exetrace.hh"
38 #include "cpu/o3/fetch.hh"
39 #include "mem/packet.hh"
40 #include "mem/request.hh"
41 #include "sim/byteswap.hh"
42 #include "sim/host.hh"
43 #include "sim/root.hh"
44
45 #if FULL_SYSTEM
46 #include "arch/tlb.hh"
47 #include "arch/vtophys.hh"
48 #include "sim/system.hh"
49 #endif // FULL_SYSTEM
50
51 #include <algorithm>
52
53 template<class Impl>
54 Tick
55 DefaultFetch<Impl>::IcachePort::recvAtomic(PacketPtr pkt)
56 {
57 panic("DefaultFetch doesn't expect recvAtomic callback!");
58 return curTick;
59 }
60
61 template<class Impl>
62 void
63 DefaultFetch<Impl>::IcachePort::recvFunctional(PacketPtr pkt)
64 {
65 DPRINTF(Fetch, "DefaultFetch doesn't update its state from a "
66 "functional call.");
67 }
68
69 template<class Impl>
70 void
71 DefaultFetch<Impl>::IcachePort::recvStatusChange(Status status)
72 {
73 if (status == RangeChange)
74 return;
75
76 panic("DefaultFetch doesn't expect recvStatusChange callback!");
77 }
78
79 template<class Impl>
80 bool
81 DefaultFetch<Impl>::IcachePort::recvTiming(PacketPtr pkt)
82 {
83 DPRINTF(Fetch, "Received timing\n");
84 if (pkt->isResponse()) {
85 fetch->processCacheCompletion(pkt);
86 }
87 //else Snooped a coherence request, just return
88 return true;
89 }
90
91 template<class Impl>
92 void
93 DefaultFetch<Impl>::IcachePort::recvRetry()
94 {
95 fetch->recvRetry();
96 }
97
98 template<class Impl>
99 DefaultFetch<Impl>::DefaultFetch(Params *params)
100 : branchPred(params),
101 decodeToFetchDelay(params->decodeToFetchDelay),
102 renameToFetchDelay(params->renameToFetchDelay),
103 iewToFetchDelay(params->iewToFetchDelay),
104 commitToFetchDelay(params->commitToFetchDelay),
105 fetchWidth(params->fetchWidth),
106 cacheBlocked(false),
107 retryPkt(NULL),
108 retryTid(-1),
109 numThreads(params->numberOfThreads),
110 numFetchingThreads(params->smtNumFetchingThreads),
111 interruptPending(false),
112 drainPending(false),
113 switchedOut(false)
114 {
115 if (numThreads > Impl::MaxThreads)
116 fatal("numThreads is not a valid value\n");
117
118 // Set fetch stage's status to inactive.
119 _status = Inactive;
120
121 std::string policy = params->smtFetchPolicy;
122
123 // Convert string to lowercase
124 std::transform(policy.begin(), policy.end(), policy.begin(),
125 (int(*)(int)) tolower);
126
127 // Figure out fetch policy
128 if (policy == "singlethread") {
129 fetchPolicy = SingleThread;
130 if (numThreads > 1)
131 panic("Invalid Fetch Policy for a SMT workload.");
132 } else if (policy == "roundrobin") {
133 fetchPolicy = RoundRobin;
134 DPRINTF(Fetch, "Fetch policy set to Round Robin\n");
135 } else if (policy == "branch") {
136 fetchPolicy = Branch;
137 DPRINTF(Fetch, "Fetch policy set to Branch Count\n");
138 } else if (policy == "iqcount") {
139 fetchPolicy = IQ;
140 DPRINTF(Fetch, "Fetch policy set to IQ count\n");
141 } else if (policy == "lsqcount") {
142 fetchPolicy = LSQ;
143 DPRINTF(Fetch, "Fetch policy set to LSQ count\n");
144 } else {
145 fatal("Invalid Fetch Policy. Options Are: {SingleThread,"
146 " RoundRobin,LSQcount,IQcount}\n");
147 }
148
149 // Size of cache block.
150 cacheBlkSize = 64;
151
152 // Create mask to get rid of offset bits.
153 cacheBlkMask = (cacheBlkSize - 1);
154
155 for (int tid=0; tid < numThreads; tid++) {
156
157 fetchStatus[tid] = Running;
158
159 priorityList.push_back(tid);
160
161 memReq[tid] = NULL;
162
163 // Create space to store a cache line.
164 cacheData[tid] = new uint8_t[cacheBlkSize];
165 cacheDataPC[tid] = 0;
166 cacheDataValid[tid] = false;
167
168 delaySlotInfo[tid].branchSeqNum = -1;
169 delaySlotInfo[tid].numInsts = 0;
170 delaySlotInfo[tid].targetAddr = 0;
171 delaySlotInfo[tid].targetReady = false;
172
173 stalls[tid].decode = false;
174 stalls[tid].rename = false;
175 stalls[tid].iew = false;
176 stalls[tid].commit = false;
177 }
178
179 // Get the size of an instruction.
180 instSize = sizeof(TheISA::MachInst);
181 }
182
183 template <class Impl>
184 std::string
185 DefaultFetch<Impl>::name() const
186 {
187 return cpu->name() + ".fetch";
188 }
189
190 template <class Impl>
191 void
192 DefaultFetch<Impl>::regStats()
193 {
194 icacheStallCycles
195 .name(name() + ".icacheStallCycles")
196 .desc("Number of cycles fetch is stalled on an Icache miss")
197 .prereq(icacheStallCycles);
198
199 fetchedInsts
200 .name(name() + ".Insts")
201 .desc("Number of instructions fetch has processed")
202 .prereq(fetchedInsts);
203
204 fetchedBranches
205 .name(name() + ".Branches")
206 .desc("Number of branches that fetch encountered")
207 .prereq(fetchedBranches);
208
209 predictedBranches
210 .name(name() + ".predictedBranches")
211 .desc("Number of branches that fetch has predicted taken")
212 .prereq(predictedBranches);
213
214 fetchCycles
215 .name(name() + ".Cycles")
216 .desc("Number of cycles fetch has run and was not squashing or"
217 " blocked")
218 .prereq(fetchCycles);
219
220 fetchSquashCycles
221 .name(name() + ".SquashCycles")
222 .desc("Number of cycles fetch has spent squashing")
223 .prereq(fetchSquashCycles);
224
225 fetchIdleCycles
226 .name(name() + ".IdleCycles")
227 .desc("Number of cycles fetch was idle")
228 .prereq(fetchIdleCycles);
229
230 fetchBlockedCycles
231 .name(name() + ".BlockedCycles")
232 .desc("Number of cycles fetch has spent blocked")
233 .prereq(fetchBlockedCycles);
234
235 fetchedCacheLines
236 .name(name() + ".CacheLines")
237 .desc("Number of cache lines fetched")
238 .prereq(fetchedCacheLines);
239
240 fetchMiscStallCycles
241 .name(name() + ".MiscStallCycles")
242 .desc("Number of cycles fetch has spent waiting on interrupts, or "
243 "bad addresses, or out of MSHRs")
244 .prereq(fetchMiscStallCycles);
245
246 fetchIcacheSquashes
247 .name(name() + ".IcacheSquashes")
248 .desc("Number of outstanding Icache misses that were squashed")
249 .prereq(fetchIcacheSquashes);
250
251 fetchNisnDist
252 .init(/* base value */ 0,
253 /* last value */ fetchWidth,
254 /* bucket size */ 1)
255 .name(name() + ".rateDist")
256 .desc("Number of instructions fetched each cycle (Total)")
257 .flags(Stats::pdf);
258
259 idleRate
260 .name(name() + ".idleRate")
261 .desc("Percent of cycles fetch was idle")
262 .prereq(idleRate);
263 idleRate = fetchIdleCycles * 100 / cpu->numCycles;
264
265 branchRate
266 .name(name() + ".branchRate")
267 .desc("Number of branch fetches per cycle")
268 .flags(Stats::total);
269 branchRate = fetchedBranches / cpu->numCycles;
270
271 fetchRate
272 .name(name() + ".rate")
273 .desc("Number of inst fetches per cycle")
274 .flags(Stats::total);
275 fetchRate = fetchedInsts / cpu->numCycles;
276
277 branchPred.regStats();
278 }
279
280 template<class Impl>
281 void
282 DefaultFetch<Impl>::setCPU(O3CPU *cpu_ptr)
283 {
284 DPRINTF(Fetch, "Setting the CPU pointer.\n");
285 cpu = cpu_ptr;
286
287 // Name is finally available, so create the port.
288 icachePort = new IcachePort(this);
289
290 #if USE_CHECKER
291 if (cpu->checker) {
292 cpu->checker->setIcachePort(icachePort);
293 }
294 #endif
295
296 // Schedule fetch to get the correct PC from the CPU
297 // scheduleFetchStartupEvent(1);
298
299 // Fetch needs to start fetching instructions at the very beginning,
300 // so it must start up in active state.
301 switchToActive();
302 }
303
304 template<class Impl>
305 void
306 DefaultFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer)
307 {
308 DPRINTF(Fetch, "Setting the time buffer pointer.\n");
309 timeBuffer = time_buffer;
310
311 // Create wires to get information from proper places in time buffer.
312 fromDecode = timeBuffer->getWire(-decodeToFetchDelay);
313 fromRename = timeBuffer->getWire(-renameToFetchDelay);
314 fromIEW = timeBuffer->getWire(-iewToFetchDelay);
315 fromCommit = timeBuffer->getWire(-commitToFetchDelay);
316 }
317
318 template<class Impl>
319 void
320 DefaultFetch<Impl>::setActiveThreads(std::list<unsigned> *at_ptr)
321 {
322 DPRINTF(Fetch, "Setting active threads list pointer.\n");
323 activeThreads = at_ptr;
324 }
325
326 template<class Impl>
327 void
328 DefaultFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
329 {
330 DPRINTF(Fetch, "Setting the fetch queue pointer.\n");
331 fetchQueue = fq_ptr;
332
333 // Create wire to write information to proper place in fetch queue.
334 toDecode = fetchQueue->getWire(0);
335 }
336
337 template<class Impl>
338 void
339 DefaultFetch<Impl>::initStage()
340 {
341 // Setup PC and nextPC with initial state.
342 for (int tid = 0; tid < numThreads; tid++) {
343 PC[tid] = cpu->readPC(tid);
344 nextPC[tid] = cpu->readNextPC(tid);
345 #if ISA_HAS_DELAY_SLOT
346 nextNPC[tid] = cpu->readNextNPC(tid);
347 #endif
348 }
349 }
350
351 template<class Impl>
352 void
353 DefaultFetch<Impl>::processCacheCompletion(PacketPtr pkt)
354 {
355 unsigned tid = pkt->req->getThreadNum();
356
357 DPRINTF(Fetch, "[tid:%u] Waking up from cache miss.\n",tid);
358
359 // Only change the status if it's still waiting on the icache access
360 // to return.
361 if (fetchStatus[tid] != IcacheWaitResponse ||
362 pkt->req != memReq[tid] ||
363 isSwitchedOut()) {
364 ++fetchIcacheSquashes;
365 delete pkt->req;
366 delete pkt;
367 return;
368 }
369
370 memcpy(cacheData[tid], pkt->getPtr<uint8_t *>(), cacheBlkSize);
371 cacheDataValid[tid] = true;
372
373 if (!drainPending) {
374 // Wake up the CPU (if it went to sleep and was waiting on
375 // this completion event).
376 cpu->wakeCPU();
377
378 DPRINTF(Activity, "[tid:%u] Activating fetch due to cache completion\n",
379 tid);
380
381 switchToActive();
382 }
383
384 // Only switch to IcacheAccessComplete if we're not stalled as well.
385 if (checkStall(tid)) {
386 fetchStatus[tid] = Blocked;
387 } else {
388 fetchStatus[tid] = IcacheAccessComplete;
389 }
390
391 // Reset the mem req to NULL.
392 delete pkt->req;
393 delete pkt;
394 memReq[tid] = NULL;
395 }
396
397 template <class Impl>
398 bool
399 DefaultFetch<Impl>::drain()
400 {
401 // Fetch is ready to drain at any time.
402 cpu->signalDrained();
403 drainPending = true;
404 return true;
405 }
406
407 template <class Impl>
408 void
409 DefaultFetch<Impl>::resume()
410 {
411 drainPending = false;
412 }
413
414 template <class Impl>
415 void
416 DefaultFetch<Impl>::switchOut()
417 {
418 switchedOut = true;
419 // Branch predictor needs to have its state cleared.
420 branchPred.switchOut();
421 }
422
423 template <class Impl>
424 void
425 DefaultFetch<Impl>::takeOverFrom()
426 {
427 // Reset all state
428 for (int i = 0; i < Impl::MaxThreads; ++i) {
429 stalls[i].decode = 0;
430 stalls[i].rename = 0;
431 stalls[i].iew = 0;
432 stalls[i].commit = 0;
433 PC[i] = cpu->readPC(i);
434 nextPC[i] = cpu->readNextPC(i);
435 #if ISA_HAS_DELAY_SLOT
436 nextNPC[i] = cpu->readNextNPC(i);
437 delaySlotInfo[i].branchSeqNum = -1;
438 delaySlotInfo[i].numInsts = 0;
439 delaySlotInfo[i].targetAddr = 0;
440 delaySlotInfo[i].targetReady = false;
441 #endif
442 fetchStatus[i] = Running;
443 }
444 numInst = 0;
445 wroteToTimeBuffer = false;
446 _status = Inactive;
447 switchedOut = false;
448 interruptPending = false;
449 branchPred.takeOverFrom();
450 }
451
452 template <class Impl>
453 void
454 DefaultFetch<Impl>::wakeFromQuiesce()
455 {
456 DPRINTF(Fetch, "Waking up from quiesce\n");
457 // Hopefully this is safe
458 // @todo: Allow other threads to wake from quiesce.
459 fetchStatus[0] = Running;
460 }
461
462 template <class Impl>
463 inline void
464 DefaultFetch<Impl>::switchToActive()
465 {
466 if (_status == Inactive) {
467 DPRINTF(Activity, "Activating stage.\n");
468
469 cpu->activateStage(O3CPU::FetchIdx);
470
471 _status = Active;
472 }
473 }
474
475 template <class Impl>
476 inline void
477 DefaultFetch<Impl>::switchToInactive()
478 {
479 if (_status == Active) {
480 DPRINTF(Activity, "Deactivating stage.\n");
481
482 cpu->deactivateStage(O3CPU::FetchIdx);
483
484 _status = Inactive;
485 }
486 }
487
488 template <class Impl>
489 bool
490 DefaultFetch<Impl>::lookupAndUpdateNextPC(DynInstPtr &inst, Addr &next_PC,
491 Addr &next_NPC)
492 {
493 // Do branch prediction check here.
494 // A bit of a misnomer...next_PC is actually the current PC until
495 // this function updates it.
496 bool predict_taken;
497
498 if (!inst->isControl()) {
499 #if ISA_HAS_DELAY_SLOT
500 Addr cur_PC = next_PC;
501 next_PC = cur_PC + instSize; //next_NPC;
502 next_NPC = cur_PC + (2 * instSize);//next_NPC + instSize;
503 inst->setPredTarg(next_NPC);
504 #else
505 next_PC = next_PC + instSize;
506 inst->setPredTarg(next_PC);
507 #endif
508 return false;
509 }
510
511 int tid = inst->threadNumber;
512 #if ISA_HAS_DELAY_SLOT
513 Addr pred_PC = next_PC;
514 predict_taken = branchPred.predict(inst, pred_PC, tid);
515
516 if (predict_taken) {
517 DPRINTF(Fetch, "[tid:%i]: Branch predicted to be true.\n", tid);
518 } else {
519 DPRINTF(Fetch, "[tid:%i]: Branch predicted to be false.\n", tid);
520 }
521
522 if (predict_taken) {
523 next_PC = next_NPC;
524 next_NPC = pred_PC;
525
526 // Update delay slot info
527 ++delaySlotInfo[tid].numInsts;
528 delaySlotInfo[tid].targetAddr = pred_PC;
529 DPRINTF(Fetch, "[tid:%i]: %i delay slot inst(s) to process.\n", tid,
530 delaySlotInfo[tid].numInsts);
531 } else { // !predict_taken
532 if (inst->isCondDelaySlot()) {
533 next_PC = pred_PC;
534 // The delay slot is skipped here if there is on
535 // prediction
536 } else {
537 next_PC = next_NPC;
538 // No need to declare a delay slot here since
539 // there is no for the pred. target to jump
540 }
541
542 next_NPC = next_NPC + instSize;
543 }
544 #else
545 predict_taken = branchPred.predict(inst, next_PC, tid);
546 #endif
547
548 ++fetchedBranches;
549
550 if (predict_taken) {
551 ++predictedBranches;
552 }
553
554 return predict_taken;
555 }
556
557 template <class Impl>
558 bool
559 DefaultFetch<Impl>::fetchCacheLine(Addr fetch_PC, Fault &ret_fault, unsigned tid)
560 {
561 Fault fault = NoFault;
562
563 //AlphaDep
564 if (cacheBlocked) {
565 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, cache blocked\n",
566 tid);
567 return false;
568 } else if (isSwitchedOut()) {
569 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, switched out\n",
570 tid);
571 return false;
572 } else if (interruptPending && !(fetch_PC & 0x3)) {
573 // Hold off fetch from getting new instructions when:
574 // Cache is blocked, or
575 // while an interrupt is pending and we're not in PAL mode, or
576 // fetch is switched out.
577 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, interrupt pending\n",
578 tid);
579 return false;
580 }
581
582 // Align the fetch PC so it's at the start of a cache block.
583 Addr block_PC = icacheBlockAlignPC(fetch_PC);
584
585 // If we've already got the block, no need to try to fetch it again.
586 if (cacheDataValid[tid] && block_PC == cacheDataPC[tid]) {
587 return true;
588 }
589
590 // Setup the memReq to do a read of the first instruction's address.
591 // Set the appropriate read size and flags as well.
592 // Build request here.
593 RequestPtr mem_req = new Request(tid, block_PC, cacheBlkSize, 0,
594 fetch_PC, cpu->readCpuId(), tid);
595
596 memReq[tid] = mem_req;
597
598 // Translate the instruction request.
599 fault = cpu->translateInstReq(mem_req, cpu->thread[tid]);
600
601 // In the case of faults, the fetch stage may need to stall and wait
602 // for the ITB miss to be handled.
603
604 // If translation was successful, attempt to read the first
605 // instruction.
606 if (fault == NoFault) {
607 #if 0
608 if (cpu->system->memctrl->badaddr(memReq[tid]->paddr) ||
609 memReq[tid]->isUncacheable()) {
610 DPRINTF(Fetch, "Fetch: Bad address %#x (hopefully on a "
611 "misspeculating path)!",
612 memReq[tid]->paddr);
613 ret_fault = TheISA::genMachineCheckFault();
614 return false;
615 }
616 #endif
617
618 // Build packet here.
619 PacketPtr data_pkt = new Packet(mem_req,
620 Packet::ReadReq, Packet::Broadcast);
621 data_pkt->dataDynamicArray(new uint8_t[cacheBlkSize]);
622
623 cacheDataPC[tid] = block_PC;
624 cacheDataValid[tid] = false;
625
626 DPRINTF(Fetch, "Fetch: Doing instruction read.\n");
627
628 fetchedCacheLines++;
629
630 // Now do the timing access to see whether or not the instruction
631 // exists within the cache.
632 if (!icachePort->sendTiming(data_pkt)) {
633 if (data_pkt->result == Packet::BadAddress) {
634 fault = TheISA::genMachineCheckFault();
635 delete mem_req;
636 memReq[tid] = NULL;
637 }
638 assert(retryPkt == NULL);
639 assert(retryTid == -1);
640 DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid);
641 fetchStatus[tid] = IcacheWaitRetry;
642 retryPkt = data_pkt;
643 retryTid = tid;
644 cacheBlocked = true;
645 return false;
646 }
647
648 DPRINTF(Fetch, "[tid:%i]: Doing cache access.\n", tid);
649
650 lastIcacheStall[tid] = curTick;
651
652 DPRINTF(Activity, "[tid:%i]: Activity: Waiting on I-cache "
653 "response.\n", tid);
654
655 fetchStatus[tid] = IcacheWaitResponse;
656 } else {
657 delete mem_req;
658 memReq[tid] = NULL;
659 }
660
661 ret_fault = fault;
662 return true;
663 }
664
665 template <class Impl>
666 inline void
667 DefaultFetch<Impl>::doSquash(const Addr &new_PC, unsigned tid)
668 {
669 DPRINTF(Fetch, "[tid:%i]: Squashing, setting PC to: %#x.\n",
670 tid, new_PC);
671
672 PC[tid] = new_PC;
673 nextPC[tid] = new_PC + instSize;
674 nextNPC[tid] = new_PC + (2 * instSize);
675
676 // Clear the icache miss if it's outstanding.
677 if (fetchStatus[tid] == IcacheWaitResponse) {
678 DPRINTF(Fetch, "[tid:%i]: Squashing outstanding Icache miss.\n",
679 tid);
680 memReq[tid] = NULL;
681 }
682
683 // Get rid of the retrying packet if it was from this thread.
684 if (retryTid == tid) {
685 assert(cacheBlocked);
686 cacheBlocked = false;
687 retryTid = -1;
688 delete retryPkt->req;
689 delete retryPkt;
690 retryPkt = NULL;
691 }
692
693 fetchStatus[tid] = Squashing;
694
695 ++fetchSquashCycles;
696 }
697
698 template<class Impl>
699 void
700 DefaultFetch<Impl>::squashFromDecode(const Addr &new_PC,
701 const InstSeqNum &seq_num,
702 unsigned tid)
703 {
704 DPRINTF(Fetch, "[tid:%i]: Squashing from decode.\n",tid);
705
706 doSquash(new_PC, tid);
707
708 #if ISA_HAS_DELAY_SLOT
709 if (seq_num <= delaySlotInfo[tid].branchSeqNum) {
710 delaySlotInfo[tid].numInsts = 0;
711 delaySlotInfo[tid].targetAddr = 0;
712 delaySlotInfo[tid].targetReady = false;
713 }
714 #endif
715
716 // Tell the CPU to remove any instructions that are in flight between
717 // fetch and decode.
718 cpu->removeInstsUntil(seq_num, tid);
719 }
720
721 template<class Impl>
722 bool
723 DefaultFetch<Impl>::checkStall(unsigned tid) const
724 {
725 bool ret_val = false;
726
727 if (cpu->contextSwitch) {
728 DPRINTF(Fetch,"[tid:%i]: Stalling for a context switch.\n",tid);
729 ret_val = true;
730 } else if (stalls[tid].decode) {
731 DPRINTF(Fetch,"[tid:%i]: Stall from Decode stage detected.\n",tid);
732 ret_val = true;
733 } else if (stalls[tid].rename) {
734 DPRINTF(Fetch,"[tid:%i]: Stall from Rename stage detected.\n",tid);
735 ret_val = true;
736 } else if (stalls[tid].iew) {
737 DPRINTF(Fetch,"[tid:%i]: Stall from IEW stage detected.\n",tid);
738 ret_val = true;
739 } else if (stalls[tid].commit) {
740 DPRINTF(Fetch,"[tid:%i]: Stall from Commit stage detected.\n",tid);
741 ret_val = true;
742 }
743
744 return ret_val;
745 }
746
747 template<class Impl>
748 typename DefaultFetch<Impl>::FetchStatus
749 DefaultFetch<Impl>::updateFetchStatus()
750 {
751 //Check Running
752 std::list<unsigned>::iterator threads = (*activeThreads).begin();
753
754 while (threads != (*activeThreads).end()) {
755
756 unsigned tid = *threads++;
757
758 if (fetchStatus[tid] == Running ||
759 fetchStatus[tid] == Squashing ||
760 fetchStatus[tid] == IcacheAccessComplete) {
761
762 if (_status == Inactive) {
763 DPRINTF(Activity, "[tid:%i]: Activating stage.\n",tid);
764
765 if (fetchStatus[tid] == IcacheAccessComplete) {
766 DPRINTF(Activity, "[tid:%i]: Activating fetch due to cache"
767 "completion\n",tid);
768 }
769
770 cpu->activateStage(O3CPU::FetchIdx);
771 }
772
773 return Active;
774 }
775 }
776
777 // Stage is switching from active to inactive, notify CPU of it.
778 if (_status == Active) {
779 DPRINTF(Activity, "Deactivating stage.\n");
780
781 cpu->deactivateStage(O3CPU::FetchIdx);
782 }
783
784 return Inactive;
785 }
786
787 template <class Impl>
788 void
789 DefaultFetch<Impl>::squash(const Addr &new_PC, const InstSeqNum &seq_num,
790 bool squash_delay_slot, unsigned tid)
791 {
792 DPRINTF(Fetch, "[tid:%u]: Squash from commit.\n",tid);
793
794 doSquash(new_PC, tid);
795
796 #if ISA_HAS_DELAY_SLOT
797 if (seq_num <= delaySlotInfo[tid].branchSeqNum) {
798 delaySlotInfo[tid].numInsts = 0;
799 delaySlotInfo[tid].targetAddr = 0;
800 delaySlotInfo[tid].targetReady = false;
801 }
802
803 // Tell the CPU to remove any instructions that are not in the ROB.
804 cpu->removeInstsNotInROB(tid, squash_delay_slot, seq_num);
805 #else
806 // Tell the CPU to remove any instructions that are not in the ROB.
807 cpu->removeInstsNotInROB(tid, true, 0);
808 #endif
809 }
810
811 template <class Impl>
812 void
813 DefaultFetch<Impl>::tick()
814 {
815 std::list<unsigned>::iterator threads = (*activeThreads).begin();
816 bool status_change = false;
817
818 wroteToTimeBuffer = false;
819
820 while (threads != (*activeThreads).end()) {
821 unsigned tid = *threads++;
822
823 // Check the signals for each thread to determine the proper status
824 // for each thread.
825 bool updated_status = checkSignalsAndUpdate(tid);
826 status_change = status_change || updated_status;
827 }
828
829 DPRINTF(Fetch, "Running stage.\n");
830
831 // Reset the number of the instruction we're fetching.
832 numInst = 0;
833
834 #if FULL_SYSTEM
835 if (fromCommit->commitInfo[0].interruptPending) {
836 interruptPending = true;
837 }
838
839 if (fromCommit->commitInfo[0].clearInterrupt) {
840 interruptPending = false;
841 }
842 #endif
843
844 for (threadFetched = 0; threadFetched < numFetchingThreads;
845 threadFetched++) {
846 // Fetch each of the actively fetching threads.
847 fetch(status_change);
848 }
849
850 // Record number of instructions fetched this cycle for distribution.
851 fetchNisnDist.sample(numInst);
852
853 if (status_change) {
854 // Change the fetch stage status if there was a status change.
855 _status = updateFetchStatus();
856 }
857
858 // If there was activity this cycle, inform the CPU of it.
859 if (wroteToTimeBuffer || cpu->contextSwitch) {
860 DPRINTF(Activity, "Activity this cycle.\n");
861
862 cpu->activityThisCycle();
863 }
864 }
865
866 template <class Impl>
867 bool
868 DefaultFetch<Impl>::checkSignalsAndUpdate(unsigned tid)
869 {
870 // Update the per thread stall statuses.
871 if (fromDecode->decodeBlock[tid]) {
872 stalls[tid].decode = true;
873 }
874
875 if (fromDecode->decodeUnblock[tid]) {
876 assert(stalls[tid].decode);
877 assert(!fromDecode->decodeBlock[tid]);
878 stalls[tid].decode = false;
879 }
880
881 if (fromRename->renameBlock[tid]) {
882 stalls[tid].rename = true;
883 }
884
885 if (fromRename->renameUnblock[tid]) {
886 assert(stalls[tid].rename);
887 assert(!fromRename->renameBlock[tid]);
888 stalls[tid].rename = false;
889 }
890
891 if (fromIEW->iewBlock[tid]) {
892 stalls[tid].iew = true;
893 }
894
895 if (fromIEW->iewUnblock[tid]) {
896 assert(stalls[tid].iew);
897 assert(!fromIEW->iewBlock[tid]);
898 stalls[tid].iew = false;
899 }
900
901 if (fromCommit->commitBlock[tid]) {
902 stalls[tid].commit = true;
903 }
904
905 if (fromCommit->commitUnblock[tid]) {
906 assert(stalls[tid].commit);
907 assert(!fromCommit->commitBlock[tid]);
908 stalls[tid].commit = false;
909 }
910
911 // Check squash signals from commit.
912 if (fromCommit->commitInfo[tid].squash) {
913
914 DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
915 "from commit.\n",tid);
916
917 #if ISA_HAS_DELAY_SLOT
918 InstSeqNum doneSeqNum = fromCommit->commitInfo[tid].bdelayDoneSeqNum;
919 #else
920 InstSeqNum doneSeqNum = fromCommit->commitInfo[tid].doneSeqNum;
921 #endif
922 // In any case, squash.
923 squash(fromCommit->commitInfo[tid].nextPC,
924 doneSeqNum,
925 fromCommit->commitInfo[tid].squashDelaySlot,
926 tid);
927
928 // Also check if there's a mispredict that happened.
929 if (fromCommit->commitInfo[tid].branchMispredict) {
930 branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
931 fromCommit->commitInfo[tid].nextPC,
932 fromCommit->commitInfo[tid].branchTaken,
933 tid);
934 } else {
935 branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
936 tid);
937 }
938
939 return true;
940 } else if (fromCommit->commitInfo[tid].doneSeqNum) {
941 // Update the branch predictor if it wasn't a squashed instruction
942 // that was broadcasted.
943 branchPred.update(fromCommit->commitInfo[tid].doneSeqNum, tid);
944 }
945
946 // Check ROB squash signals from commit.
947 if (fromCommit->commitInfo[tid].robSquashing) {
948 DPRINTF(Fetch, "[tid:%u]: ROB is still squashing.\n", tid);
949
950 // Continue to squash.
951 fetchStatus[tid] = Squashing;
952
953 return true;
954 }
955
956 // Check squash signals from decode.
957 if (fromDecode->decodeInfo[tid].squash) {
958 DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
959 "from decode.\n",tid);
960
961 // Update the branch predictor.
962 if (fromDecode->decodeInfo[tid].branchMispredict) {
963 branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
964 fromDecode->decodeInfo[tid].nextPC,
965 fromDecode->decodeInfo[tid].branchTaken,
966 tid);
967 } else {
968 branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
969 tid);
970 }
971
972 if (fetchStatus[tid] != Squashing) {
973
974 #if ISA_HAS_DELAY_SLOT
975 InstSeqNum doneSeqNum = fromDecode->decodeInfo[tid].bdelayDoneSeqNum;
976 #else
977 InstSeqNum doneSeqNum = fromDecode->decodeInfo[tid].doneSeqNum;
978 #endif
979 // Squash unless we're already squashing
980 squashFromDecode(fromDecode->decodeInfo[tid].nextPC,
981 doneSeqNum,
982 tid);
983
984 return true;
985 }
986 }
987
988 if (checkStall(tid) &&
989 fetchStatus[tid] != IcacheWaitResponse &&
990 fetchStatus[tid] != IcacheWaitRetry) {
991 DPRINTF(Fetch, "[tid:%i]: Setting to blocked\n",tid);
992
993 fetchStatus[tid] = Blocked;
994
995 return true;
996 }
997
998 if (fetchStatus[tid] == Blocked ||
999 fetchStatus[tid] == Squashing) {
1000 // Switch status to running if fetch isn't being told to block or
1001 // squash this cycle.
1002 DPRINTF(Fetch, "[tid:%i]: Done squashing, switching to running.\n",
1003 tid);
1004
1005 fetchStatus[tid] = Running;
1006
1007 return true;
1008 }
1009
1010 // If we've reached this point, we have not gotten any signals that
1011 // cause fetch to change its status. Fetch remains the same as before.
1012 return false;
1013 }
1014
1015 template<class Impl>
1016 void
1017 DefaultFetch<Impl>::fetch(bool &status_change)
1018 {
1019 //////////////////////////////////////////
1020 // Start actual fetch
1021 //////////////////////////////////////////
1022 int tid = getFetchingThread(fetchPolicy);
1023
1024 if (tid == -1 || drainPending) {
1025 DPRINTF(Fetch,"There are no more threads available to fetch from.\n");
1026
1027 // Breaks looping condition in tick()
1028 threadFetched = numFetchingThreads;
1029 return;
1030 }
1031
1032 DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid);
1033
1034 // The current PC.
1035 Addr &fetch_PC = PC[tid];
1036
1037 // Fault code for memory access.
1038 Fault fault = NoFault;
1039
1040 // If returning from the delay of a cache miss, then update the status
1041 // to running, otherwise do the cache access. Possibly move this up
1042 // to tick() function.
1043 if (fetchStatus[tid] == IcacheAccessComplete) {
1044 DPRINTF(Fetch, "[tid:%i]: Icache miss is complete.\n",
1045 tid);
1046
1047 fetchStatus[tid] = Running;
1048 status_change = true;
1049 } else if (fetchStatus[tid] == Running) {
1050 DPRINTF(Fetch, "[tid:%i]: Attempting to translate and read "
1051 "instruction, starting at PC %08p.\n",
1052 tid, fetch_PC);
1053
1054 bool fetch_success = fetchCacheLine(fetch_PC, fault, tid);
1055 if (!fetch_success) {
1056 if (cacheBlocked) {
1057 ++icacheStallCycles;
1058 } else {
1059 ++fetchMiscStallCycles;
1060 }
1061 return;
1062 }
1063 } else {
1064 if (fetchStatus[tid] == Idle) {
1065 ++fetchIdleCycles;
1066 DPRINTF(Fetch, "[tid:%i]: Fetch is idle!\n", tid);
1067 } else if (fetchStatus[tid] == Blocked) {
1068 ++fetchBlockedCycles;
1069 DPRINTF(Fetch, "[tid:%i]: Fetch is blocked!\n", tid);
1070 } else if (fetchStatus[tid] == Squashing) {
1071 ++fetchSquashCycles;
1072 DPRINTF(Fetch, "[tid:%i]: Fetch is squashing!\n", tid);
1073 } else if (fetchStatus[tid] == IcacheWaitResponse) {
1074 ++icacheStallCycles;
1075 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting cache response!\n", tid);
1076 }
1077
1078 // Status is Idle, Squashing, Blocked, or IcacheWaitResponse, so
1079 // fetch should do nothing.
1080 return;
1081 }
1082
1083 ++fetchCycles;
1084
1085 // If we had a stall due to an icache miss, then return.
1086 if (fetchStatus[tid] == IcacheWaitResponse) {
1087 ++icacheStallCycles;
1088 status_change = true;
1089 return;
1090 }
1091
1092 Addr next_PC = fetch_PC;
1093 Addr next_NPC = next_PC + instSize;
1094 InstSeqNum inst_seq;
1095 MachInst inst;
1096 ExtMachInst ext_inst;
1097 // @todo: Fix this hack.
1098 unsigned offset = (fetch_PC & cacheBlkMask) & ~3;
1099
1100 if (fault == NoFault) {
1101 // If the read of the first instruction was successful, then grab the
1102 // instructions from the rest of the cache line and put them into the
1103 // queue heading to decode.
1104
1105 DPRINTF(Fetch, "[tid:%i]: Adding instructions to queue to "
1106 "decode.\n",tid);
1107
1108 // Need to keep track of whether or not a predicted branch
1109 // ended this fetch block.
1110 bool predicted_branch = false;
1111
1112 // Need to keep track of whether or not a delay slot
1113 // instruction has been fetched
1114
1115 for (;
1116 offset < cacheBlkSize &&
1117 numInst < fetchWidth &&
1118 (!predicted_branch || delaySlotInfo[tid].numInsts > 0);
1119 ++numInst) {
1120
1121 // Get a sequence number.
1122 inst_seq = cpu->getAndIncrementInstSeq();
1123
1124 // Make sure this is a valid index.
1125 assert(offset <= cacheBlkSize - instSize);
1126
1127 // Get the instruction from the array of the cache line.
1128 inst = TheISA::gtoh(*reinterpret_cast<TheISA::MachInst *>
1129 (&cacheData[tid][offset]));
1130
1131 #if THE_ISA == ALPHA_ISA
1132 ext_inst = TheISA::makeExtMI(inst, fetch_PC);
1133 #elif THE_ISA == SPARC_ISA
1134 ext_inst = TheISA::makeExtMI(inst, cpu->thread[tid]->getTC());
1135 #endif
1136
1137 // Create a new DynInst from the instruction fetched.
1138 DynInstPtr instruction = new DynInst(ext_inst, fetch_PC,
1139 next_PC,
1140 inst_seq, cpu);
1141 instruction->setTid(tid);
1142
1143 instruction->setASID(tid);
1144
1145 instruction->setThreadState(cpu->thread[tid]);
1146
1147 DPRINTF(Fetch, "[tid:%i]: Instruction PC %#x created "
1148 "[sn:%lli]\n",
1149 tid, instruction->readPC(), inst_seq);
1150
1151 DPRINTF(Fetch, "[tid:%i]: Instruction is: %s\n",
1152 tid, instruction->staticInst->disassemble(fetch_PC));
1153
1154 instruction->traceData =
1155 Trace::getInstRecord(curTick, cpu->tcBase(tid),
1156 instruction->staticInst,
1157 instruction->readPC());
1158
1159 predicted_branch = lookupAndUpdateNextPC(instruction, next_PC,
1160 next_NPC);
1161
1162 // Add instruction to the CPU's list of instructions.
1163 instruction->setInstListIt(cpu->addInst(instruction));
1164
1165 // Write the instruction to the first slot in the queue
1166 // that heads to decode.
1167 toDecode->insts[numInst] = instruction;
1168
1169 toDecode->size++;
1170
1171 // Increment stat of fetched instructions.
1172 ++fetchedInsts;
1173
1174 // Move to the next instruction, unless we have a branch.
1175 fetch_PC = next_PC;
1176
1177 if (instruction->isQuiesce()) {
1178 DPRINTF(Fetch, "Quiesce instruction encountered, halting fetch!",
1179 curTick);
1180 fetchStatus[tid] = QuiescePending;
1181 ++numInst;
1182 status_change = true;
1183 break;
1184 }
1185
1186 offset += instSize;
1187
1188 #if ISA_HAS_DELAY_SLOT
1189 if (predicted_branch) {
1190 delaySlotInfo[tid].branchSeqNum = inst_seq;
1191
1192 DPRINTF(Fetch, "[tid:%i]: Delay slot branch set to [sn:%i]\n",
1193 tid, inst_seq);
1194 continue;
1195 } else if (delaySlotInfo[tid].numInsts > 0) {
1196 --delaySlotInfo[tid].numInsts;
1197
1198 // It's OK to set PC to target of branch
1199 if (delaySlotInfo[tid].numInsts == 0) {
1200 delaySlotInfo[tid].targetReady = true;
1201
1202 // Break the looping condition
1203 predicted_branch = true;
1204 }
1205
1206 DPRINTF(Fetch, "[tid:%i]: %i delay slot inst(s) left to"
1207 " process.\n", tid, delaySlotInfo[tid].numInsts);
1208 }
1209 #endif
1210 }
1211
1212 if (offset >= cacheBlkSize) {
1213 DPRINTF(Fetch, "[tid:%i]: Done fetching, reached the end of cache "
1214 "block.\n", tid);
1215 } else if (numInst >= fetchWidth) {
1216 DPRINTF(Fetch, "[tid:%i]: Done fetching, reached fetch bandwidth "
1217 "for this cycle.\n", tid);
1218 } else if (predicted_branch && delaySlotInfo[tid].numInsts <= 0) {
1219 DPRINTF(Fetch, "[tid:%i]: Done fetching, predicted branch "
1220 "instruction encountered.\n", tid);
1221 }
1222 }
1223
1224 if (numInst > 0) {
1225 wroteToTimeBuffer = true;
1226 }
1227
1228 // Now that fetching is completed, update the PC to signify what the next
1229 // cycle will be.
1230 if (fault == NoFault) {
1231 #if ISA_HAS_DELAY_SLOT
1232 if (delaySlotInfo[tid].targetReady &&
1233 delaySlotInfo[tid].numInsts == 0) {
1234 // Set PC to target
1235 PC[tid] = delaySlotInfo[tid].targetAddr; //next_PC
1236 nextPC[tid] = next_PC + instSize; //next_NPC
1237 nextNPC[tid] = next_PC + (2 * instSize);
1238
1239 delaySlotInfo[tid].targetReady = false;
1240 } else {
1241 PC[tid] = next_PC;
1242 nextPC[tid] = next_NPC;
1243 nextNPC[tid] = next_NPC + instSize;
1244 }
1245
1246 DPRINTF(Fetch, "[tid:%i]: Setting PC to %08p.\n", tid, PC[tid]);
1247 #else
1248 DPRINTF(Fetch, "[tid:%i]: Setting PC to %08p.\n",tid, next_PC);
1249 PC[tid] = next_PC;
1250 nextPC[tid] = next_PC + instSize;
1251 #endif
1252 } else {
1253 // We shouldn't be in an icache miss and also have a fault (an ITB
1254 // miss)
1255 if (fetchStatus[tid] == IcacheWaitResponse) {
1256 panic("Fetch should have exited prior to this!");
1257 }
1258
1259 // Send the fault to commit. This thread will not do anything
1260 // until commit handles the fault. The only other way it can
1261 // wake up is if a squash comes along and changes the PC.
1262 #if FULL_SYSTEM
1263 assert(numInst != fetchWidth);
1264 // Get a sequence number.
1265 inst_seq = cpu->getAndIncrementInstSeq();
1266 // We will use a nop in order to carry the fault.
1267 ext_inst = TheISA::NoopMachInst;
1268
1269 // Create a new DynInst from the dummy nop.
1270 DynInstPtr instruction = new DynInst(ext_inst, fetch_PC,
1271 next_PC,
1272 inst_seq, cpu);
1273 instruction->setPredTarg(next_PC + instSize);
1274 instruction->setTid(tid);
1275
1276 instruction->setASID(tid);
1277
1278 instruction->setThreadState(cpu->thread[tid]);
1279
1280 instruction->traceData = NULL;
1281
1282 instruction->setInstListIt(cpu->addInst(instruction));
1283
1284 instruction->fault = fault;
1285
1286 toDecode->insts[numInst] = instruction;
1287 toDecode->size++;
1288
1289 DPRINTF(Fetch, "[tid:%i]: Blocked, need to handle the trap.\n",tid);
1290
1291 fetchStatus[tid] = TrapPending;
1292 status_change = true;
1293 #else // !FULL_SYSTEM
1294 fetchStatus[tid] = TrapPending;
1295 status_change = true;
1296
1297 #endif // FULL_SYSTEM
1298 DPRINTF(Fetch, "[tid:%i]: fault (%s) detected @ PC %08p",
1299 tid, fault->name(), PC[tid]);
1300 }
1301 }
1302
1303 template<class Impl>
1304 void
1305 DefaultFetch<Impl>::recvRetry()
1306 {
1307 if (retryPkt != NULL) {
1308 assert(cacheBlocked);
1309 assert(retryTid != -1);
1310 assert(fetchStatus[retryTid] == IcacheWaitRetry);
1311
1312 if (icachePort->sendTiming(retryPkt)) {
1313 fetchStatus[retryTid] = IcacheWaitResponse;
1314 retryPkt = NULL;
1315 retryTid = -1;
1316 cacheBlocked = false;
1317 }
1318 } else {
1319 assert(retryTid == -1);
1320 // Access has been squashed since it was sent out. Just clear
1321 // the cache being blocked.
1322 cacheBlocked = false;
1323 }
1324 }
1325
1326 ///////////////////////////////////////
1327 // //
1328 // SMT FETCH POLICY MAINTAINED HERE //
1329 // //
1330 ///////////////////////////////////////
1331 template<class Impl>
1332 int
1333 DefaultFetch<Impl>::getFetchingThread(FetchPriority &fetch_priority)
1334 {
1335 if (numThreads > 1) {
1336 switch (fetch_priority) {
1337
1338 case SingleThread:
1339 return 0;
1340
1341 case RoundRobin:
1342 return roundRobin();
1343
1344 case IQ:
1345 return iqCount();
1346
1347 case LSQ:
1348 return lsqCount();
1349
1350 case Branch:
1351 return branchCount();
1352
1353 default:
1354 return -1;
1355 }
1356 } else {
1357 int tid = *((*activeThreads).begin());
1358
1359 if (fetchStatus[tid] == Running ||
1360 fetchStatus[tid] == IcacheAccessComplete ||
1361 fetchStatus[tid] == Idle) {
1362 return tid;
1363 } else {
1364 return -1;
1365 }
1366 }
1367
1368 }
1369
1370
1371 template<class Impl>
1372 int
1373 DefaultFetch<Impl>::roundRobin()
1374 {
1375 std::list<unsigned>::iterator pri_iter = priorityList.begin();
1376 std::list<unsigned>::iterator end = priorityList.end();
1377
1378 int high_pri;
1379
1380 while (pri_iter != end) {
1381 high_pri = *pri_iter;
1382
1383 assert(high_pri <= numThreads);
1384
1385 if (fetchStatus[high_pri] == Running ||
1386 fetchStatus[high_pri] == IcacheAccessComplete ||
1387 fetchStatus[high_pri] == Idle) {
1388
1389 priorityList.erase(pri_iter);
1390 priorityList.push_back(high_pri);
1391
1392 return high_pri;
1393 }
1394
1395 pri_iter++;
1396 }
1397
1398 return -1;
1399 }
1400
1401 template<class Impl>
1402 int
1403 DefaultFetch<Impl>::iqCount()
1404 {
1405 std::priority_queue<unsigned> PQ;
1406
1407 std::list<unsigned>::iterator threads = (*activeThreads).begin();
1408
1409 while (threads != (*activeThreads).end()) {
1410 unsigned tid = *threads++;
1411
1412 PQ.push(fromIEW->iewInfo[tid].iqCount);
1413 }
1414
1415 while (!PQ.empty()) {
1416
1417 unsigned high_pri = PQ.top();
1418
1419 if (fetchStatus[high_pri] == Running ||
1420 fetchStatus[high_pri] == IcacheAccessComplete ||
1421 fetchStatus[high_pri] == Idle)
1422 return high_pri;
1423 else
1424 PQ.pop();
1425
1426 }
1427
1428 return -1;
1429 }
1430
1431 template<class Impl>
1432 int
1433 DefaultFetch<Impl>::lsqCount()
1434 {
1435 std::priority_queue<unsigned> PQ;
1436
1437
1438 std::list<unsigned>::iterator threads = (*activeThreads).begin();
1439
1440 while (threads != (*activeThreads).end()) {
1441 unsigned tid = *threads++;
1442
1443 PQ.push(fromIEW->iewInfo[tid].ldstqCount);
1444 }
1445
1446 while (!PQ.empty()) {
1447
1448 unsigned high_pri = PQ.top();
1449
1450 if (fetchStatus[high_pri] == Running ||
1451 fetchStatus[high_pri] == IcacheAccessComplete ||
1452 fetchStatus[high_pri] == Idle)
1453 return high_pri;
1454 else
1455 PQ.pop();
1456
1457 }
1458
1459 return -1;
1460 }
1461
1462 template<class Impl>
1463 int
1464 DefaultFetch<Impl>::branchCount()
1465 {
1466 std::list<unsigned>::iterator threads = (*activeThreads).begin();
1467 panic("Branch Count Fetch policy unimplemented\n");
1468 return *threads;
1469 }