Turn the instruction tracing code into pluggable sim objects.
[gem5.git] / src / cpu / o3 / fetch_impl.hh
1 /*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 * Korey Sewell
30 */
31
32 #include <algorithm>
33 #include <cstring>
34
35 #include "config/use_checker.hh"
36
37 #include "arch/isa_traits.hh"
38 #include "arch/utility.hh"
39 #include "cpu/checker/cpu.hh"
40 #include "cpu/exetrace.hh"
41 #include "cpu/o3/fetch.hh"
42 #include "mem/packet.hh"
43 #include "mem/request.hh"
44 #include "sim/byteswap.hh"
45 #include "sim/host.hh"
46 #include "sim/core.hh"
47
48 #if FULL_SYSTEM
49 #include "arch/tlb.hh"
50 #include "arch/vtophys.hh"
51 #include "sim/system.hh"
52 #endif // FULL_SYSTEM
53
54 template<class Impl>
55 void
56 DefaultFetch<Impl>::IcachePort::setPeer(Port *port)
57 {
58 Port::setPeer(port);
59
60 fetch->setIcache();
61 }
62
63 template<class Impl>
64 Tick
65 DefaultFetch<Impl>::IcachePort::recvAtomic(PacketPtr pkt)
66 {
67 panic("DefaultFetch doesn't expect recvAtomic callback!");
68 return curTick;
69 }
70
71 template<class Impl>
72 void
73 DefaultFetch<Impl>::IcachePort::recvFunctional(PacketPtr pkt)
74 {
75 DPRINTF(Fetch, "DefaultFetch doesn't update its state from a "
76 "functional call.");
77 }
78
79 template<class Impl>
80 void
81 DefaultFetch<Impl>::IcachePort::recvStatusChange(Status status)
82 {
83 if (status == RangeChange) {
84 if (!snoopRangeSent) {
85 snoopRangeSent = true;
86 sendStatusChange(Port::RangeChange);
87 }
88 return;
89 }
90
91 panic("DefaultFetch doesn't expect recvStatusChange callback!");
92 }
93
94 template<class Impl>
95 bool
96 DefaultFetch<Impl>::IcachePort::recvTiming(PacketPtr pkt)
97 {
98 DPRINTF(Fetch, "Received timing\n");
99 if (pkt->isResponse()) {
100 fetch->processCacheCompletion(pkt);
101 }
102 //else Snooped a coherence request, just return
103 return true;
104 }
105
106 template<class Impl>
107 void
108 DefaultFetch<Impl>::IcachePort::recvRetry()
109 {
110 fetch->recvRetry();
111 }
112
113 template<class Impl>
114 DefaultFetch<Impl>::DefaultFetch(O3CPU *_cpu, Params *params)
115 : cpu(_cpu),
116 branchPred(params),
117 predecoder(NULL),
118 decodeToFetchDelay(params->decodeToFetchDelay),
119 renameToFetchDelay(params->renameToFetchDelay),
120 iewToFetchDelay(params->iewToFetchDelay),
121 commitToFetchDelay(params->commitToFetchDelay),
122 fetchWidth(params->fetchWidth),
123 cacheBlocked(false),
124 retryPkt(NULL),
125 retryTid(-1),
126 numThreads(params->numberOfThreads),
127 numFetchingThreads(params->smtNumFetchingThreads),
128 interruptPending(false),
129 drainPending(false),
130 switchedOut(false)
131 {
132 if (numThreads > Impl::MaxThreads)
133 fatal("numThreads is not a valid value\n");
134
135 // Set fetch stage's status to inactive.
136 _status = Inactive;
137
138 std::string policy = params->smtFetchPolicy;
139
140 // Convert string to lowercase
141 std::transform(policy.begin(), policy.end(), policy.begin(),
142 (int(*)(int)) tolower);
143
144 // Figure out fetch policy
145 if (policy == "singlethread") {
146 fetchPolicy = SingleThread;
147 if (numThreads > 1)
148 panic("Invalid Fetch Policy for a SMT workload.");
149 } else if (policy == "roundrobin") {
150 fetchPolicy = RoundRobin;
151 DPRINTF(Fetch, "Fetch policy set to Round Robin\n");
152 } else if (policy == "branch") {
153 fetchPolicy = Branch;
154 DPRINTF(Fetch, "Fetch policy set to Branch Count\n");
155 } else if (policy == "iqcount") {
156 fetchPolicy = IQ;
157 DPRINTF(Fetch, "Fetch policy set to IQ count\n");
158 } else if (policy == "lsqcount") {
159 fetchPolicy = LSQ;
160 DPRINTF(Fetch, "Fetch policy set to LSQ count\n");
161 } else {
162 fatal("Invalid Fetch Policy. Options Are: {SingleThread,"
163 " RoundRobin,LSQcount,IQcount}\n");
164 }
165
166 // Get the size of an instruction.
167 instSize = sizeof(TheISA::MachInst);
168
169 // Name is finally available, so create the port.
170 icachePort = new IcachePort(this);
171
172 icachePort->snoopRangeSent = false;
173
174 #if USE_CHECKER
175 if (cpu->checker) {
176 cpu->checker->setIcachePort(icachePort);
177 }
178 #endif
179 }
180
181 template <class Impl>
182 std::string
183 DefaultFetch<Impl>::name() const
184 {
185 return cpu->name() + ".fetch";
186 }
187
188 template <class Impl>
189 void
190 DefaultFetch<Impl>::regStats()
191 {
192 icacheStallCycles
193 .name(name() + ".icacheStallCycles")
194 .desc("Number of cycles fetch is stalled on an Icache miss")
195 .prereq(icacheStallCycles);
196
197 fetchedInsts
198 .name(name() + ".Insts")
199 .desc("Number of instructions fetch has processed")
200 .prereq(fetchedInsts);
201
202 fetchedBranches
203 .name(name() + ".Branches")
204 .desc("Number of branches that fetch encountered")
205 .prereq(fetchedBranches);
206
207 predictedBranches
208 .name(name() + ".predictedBranches")
209 .desc("Number of branches that fetch has predicted taken")
210 .prereq(predictedBranches);
211
212 fetchCycles
213 .name(name() + ".Cycles")
214 .desc("Number of cycles fetch has run and was not squashing or"
215 " blocked")
216 .prereq(fetchCycles);
217
218 fetchSquashCycles
219 .name(name() + ".SquashCycles")
220 .desc("Number of cycles fetch has spent squashing")
221 .prereq(fetchSquashCycles);
222
223 fetchIdleCycles
224 .name(name() + ".IdleCycles")
225 .desc("Number of cycles fetch was idle")
226 .prereq(fetchIdleCycles);
227
228 fetchBlockedCycles
229 .name(name() + ".BlockedCycles")
230 .desc("Number of cycles fetch has spent blocked")
231 .prereq(fetchBlockedCycles);
232
233 fetchedCacheLines
234 .name(name() + ".CacheLines")
235 .desc("Number of cache lines fetched")
236 .prereq(fetchedCacheLines);
237
238 fetchMiscStallCycles
239 .name(name() + ".MiscStallCycles")
240 .desc("Number of cycles fetch has spent waiting on interrupts, or "
241 "bad addresses, or out of MSHRs")
242 .prereq(fetchMiscStallCycles);
243
244 fetchIcacheSquashes
245 .name(name() + ".IcacheSquashes")
246 .desc("Number of outstanding Icache misses that were squashed")
247 .prereq(fetchIcacheSquashes);
248
249 fetchNisnDist
250 .init(/* base value */ 0,
251 /* last value */ fetchWidth,
252 /* bucket size */ 1)
253 .name(name() + ".rateDist")
254 .desc("Number of instructions fetched each cycle (Total)")
255 .flags(Stats::pdf);
256
257 idleRate
258 .name(name() + ".idleRate")
259 .desc("Percent of cycles fetch was idle")
260 .prereq(idleRate);
261 idleRate = fetchIdleCycles * 100 / cpu->numCycles;
262
263 branchRate
264 .name(name() + ".branchRate")
265 .desc("Number of branch fetches per cycle")
266 .flags(Stats::total);
267 branchRate = fetchedBranches / cpu->numCycles;
268
269 fetchRate
270 .name(name() + ".rate")
271 .desc("Number of inst fetches per cycle")
272 .flags(Stats::total);
273 fetchRate = fetchedInsts / cpu->numCycles;
274
275 branchPred.regStats();
276 }
277
278 template<class Impl>
279 void
280 DefaultFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer)
281 {
282 timeBuffer = time_buffer;
283
284 // Create wires to get information from proper places in time buffer.
285 fromDecode = timeBuffer->getWire(-decodeToFetchDelay);
286 fromRename = timeBuffer->getWire(-renameToFetchDelay);
287 fromIEW = timeBuffer->getWire(-iewToFetchDelay);
288 fromCommit = timeBuffer->getWire(-commitToFetchDelay);
289 }
290
291 template<class Impl>
292 void
293 DefaultFetch<Impl>::setActiveThreads(std::list<unsigned> *at_ptr)
294 {
295 activeThreads = at_ptr;
296 }
297
298 template<class Impl>
299 void
300 DefaultFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
301 {
302 fetchQueue = fq_ptr;
303
304 // Create wire to write information to proper place in fetch queue.
305 toDecode = fetchQueue->getWire(0);
306 }
307
308 template<class Impl>
309 void
310 DefaultFetch<Impl>::initStage()
311 {
312 // Setup PC and nextPC with initial state.
313 for (int tid = 0; tid < numThreads; tid++) {
314 PC[tid] = cpu->readPC(tid);
315 nextPC[tid] = cpu->readNextPC(tid);
316 microPC[tid] = cpu->readMicroPC(tid);
317 }
318
319 for (int tid=0; tid < numThreads; tid++) {
320
321 fetchStatus[tid] = Running;
322
323 priorityList.push_back(tid);
324
325 memReq[tid] = NULL;
326
327 stalls[tid].decode = false;
328 stalls[tid].rename = false;
329 stalls[tid].iew = false;
330 stalls[tid].commit = false;
331 }
332
333 // Schedule fetch to get the correct PC from the CPU
334 // scheduleFetchStartupEvent(1);
335
336 // Fetch needs to start fetching instructions at the very beginning,
337 // so it must start up in active state.
338 switchToActive();
339 }
340
341 template<class Impl>
342 void
343 DefaultFetch<Impl>::setIcache()
344 {
345 // Size of cache block.
346 cacheBlkSize = icachePort->peerBlockSize();
347
348 // Create mask to get rid of offset bits.
349 cacheBlkMask = (cacheBlkSize - 1);
350
351 for (int tid=0; tid < numThreads; tid++) {
352 // Create space to store a cache line.
353 cacheData[tid] = new uint8_t[cacheBlkSize];
354 cacheDataPC[tid] = 0;
355 cacheDataValid[tid] = false;
356 }
357 }
358
359 template<class Impl>
360 void
361 DefaultFetch<Impl>::processCacheCompletion(PacketPtr pkt)
362 {
363 unsigned tid = pkt->req->getThreadNum();
364
365 DPRINTF(Fetch, "[tid:%u] Waking up from cache miss.\n",tid);
366
367 // Only change the status if it's still waiting on the icache access
368 // to return.
369 if (fetchStatus[tid] != IcacheWaitResponse ||
370 pkt->req != memReq[tid] ||
371 isSwitchedOut()) {
372 ++fetchIcacheSquashes;
373 delete pkt->req;
374 delete pkt;
375 return;
376 }
377
378 memcpy(cacheData[tid], pkt->getPtr<uint8_t>(), cacheBlkSize);
379 cacheDataValid[tid] = true;
380
381 if (!drainPending) {
382 // Wake up the CPU (if it went to sleep and was waiting on
383 // this completion event).
384 cpu->wakeCPU();
385
386 DPRINTF(Activity, "[tid:%u] Activating fetch due to cache completion\n",
387 tid);
388
389 switchToActive();
390 }
391
392 // Only switch to IcacheAccessComplete if we're not stalled as well.
393 if (checkStall(tid)) {
394 fetchStatus[tid] = Blocked;
395 } else {
396 fetchStatus[tid] = IcacheAccessComplete;
397 }
398
399 // Reset the mem req to NULL.
400 delete pkt->req;
401 delete pkt;
402 memReq[tid] = NULL;
403 }
404
405 template <class Impl>
406 bool
407 DefaultFetch<Impl>::drain()
408 {
409 // Fetch is ready to drain at any time.
410 cpu->signalDrained();
411 drainPending = true;
412 return true;
413 }
414
415 template <class Impl>
416 void
417 DefaultFetch<Impl>::resume()
418 {
419 drainPending = false;
420 }
421
422 template <class Impl>
423 void
424 DefaultFetch<Impl>::switchOut()
425 {
426 switchedOut = true;
427 // Branch predictor needs to have its state cleared.
428 branchPred.switchOut();
429 }
430
431 template <class Impl>
432 void
433 DefaultFetch<Impl>::takeOverFrom()
434 {
435 // Reset all state
436 for (int i = 0; i < Impl::MaxThreads; ++i) {
437 stalls[i].decode = 0;
438 stalls[i].rename = 0;
439 stalls[i].iew = 0;
440 stalls[i].commit = 0;
441 PC[i] = cpu->readPC(i);
442 nextPC[i] = cpu->readNextPC(i);
443 microPC[i] = cpu->readMicroPC(i);
444 fetchStatus[i] = Running;
445 }
446 numInst = 0;
447 wroteToTimeBuffer = false;
448 _status = Inactive;
449 switchedOut = false;
450 interruptPending = false;
451 branchPred.takeOverFrom();
452 }
453
454 template <class Impl>
455 void
456 DefaultFetch<Impl>::wakeFromQuiesce()
457 {
458 DPRINTF(Fetch, "Waking up from quiesce\n");
459 // Hopefully this is safe
460 // @todo: Allow other threads to wake from quiesce.
461 fetchStatus[0] = Running;
462 }
463
464 template <class Impl>
465 inline void
466 DefaultFetch<Impl>::switchToActive()
467 {
468 if (_status == Inactive) {
469 DPRINTF(Activity, "Activating stage.\n");
470
471 cpu->activateStage(O3CPU::FetchIdx);
472
473 _status = Active;
474 }
475 }
476
477 template <class Impl>
478 inline void
479 DefaultFetch<Impl>::switchToInactive()
480 {
481 if (_status == Active) {
482 DPRINTF(Activity, "Deactivating stage.\n");
483
484 cpu->deactivateStage(O3CPU::FetchIdx);
485
486 _status = Inactive;
487 }
488 }
489
490 template <class Impl>
491 bool
492 DefaultFetch<Impl>::lookupAndUpdateNextPC(DynInstPtr &inst, Addr &next_PC,
493 Addr &next_NPC, Addr &next_MicroPC)
494 {
495 // Do branch prediction check here.
496 // A bit of a misnomer...next_PC is actually the current PC until
497 // this function updates it.
498 bool predict_taken;
499
500 if (!inst->isControl()) {
501 if (inst->isMicroop() && !inst->isLastMicroop()) {
502 next_MicroPC++;
503 } else {
504 next_PC = next_NPC;
505 next_NPC = next_NPC + instSize;
506 next_MicroPC = 0;
507 }
508 inst->setPredTarg(next_PC, next_NPC, next_MicroPC);
509 inst->setPredTaken(false);
510 return false;
511 }
512
513 //Assume for now that all control flow is to a different macroop which
514 //would reset the micro pc to 0.
515 next_MicroPC = 0;
516
517 int tid = inst->threadNumber;
518 Addr pred_PC = next_PC;
519 predict_taken = branchPred.predict(inst, pred_PC, tid);
520
521 /* if (predict_taken) {
522 DPRINTF(Fetch, "[tid:%i]: Branch predicted to be taken to %#x.\n",
523 tid, pred_PC);
524 } else {
525 DPRINTF(Fetch, "[tid:%i]: Branch predicted to be not taken.\n", tid);
526 }*/
527
528 #if ISA_HAS_DELAY_SLOT
529 next_PC = next_NPC;
530 if (predict_taken)
531 next_NPC = pred_PC;
532 else
533 next_NPC += instSize;
534 #else
535 if (predict_taken)
536 next_PC = pred_PC;
537 else
538 next_PC += instSize;
539 next_NPC = next_PC + instSize;
540 #endif
541 /* DPRINTF(Fetch, "[tid:%i]: Branch predicted to go to %#x and then %#x.\n",
542 tid, next_PC, next_NPC);*/
543 inst->setPredTarg(next_PC, next_NPC, next_MicroPC);
544 inst->setPredTaken(predict_taken);
545
546 ++fetchedBranches;
547
548 if (predict_taken) {
549 ++predictedBranches;
550 }
551
552 return predict_taken;
553 }
554
555 template <class Impl>
556 bool
557 DefaultFetch<Impl>::fetchCacheLine(Addr fetch_PC, Fault &ret_fault, unsigned tid)
558 {
559 Fault fault = NoFault;
560
561 //AlphaDep
562 if (cacheBlocked) {
563 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, cache blocked\n",
564 tid);
565 return false;
566 } else if (isSwitchedOut()) {
567 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, switched out\n",
568 tid);
569 return false;
570 } else if (interruptPending && !(fetch_PC & 0x3)) {
571 // Hold off fetch from getting new instructions when:
572 // Cache is blocked, or
573 // while an interrupt is pending and we're not in PAL mode, or
574 // fetch is switched out.
575 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, interrupt pending\n",
576 tid);
577 return false;
578 }
579
580 // Align the fetch PC so it's at the start of a cache block.
581 Addr block_PC = icacheBlockAlignPC(fetch_PC);
582
583 // If we've already got the block, no need to try to fetch it again.
584 if (cacheDataValid[tid] && block_PC == cacheDataPC[tid]) {
585 return true;
586 }
587
588 // Setup the memReq to do a read of the first instruction's address.
589 // Set the appropriate read size and flags as well.
590 // Build request here.
591 RequestPtr mem_req = new Request(tid, block_PC, cacheBlkSize, 0,
592 fetch_PC, cpu->readCpuId(), tid);
593
594 memReq[tid] = mem_req;
595
596 // Translate the instruction request.
597 fault = cpu->translateInstReq(mem_req, cpu->thread[tid]);
598
599 // In the case of faults, the fetch stage may need to stall and wait
600 // for the ITB miss to be handled.
601
602 // If translation was successful, attempt to read the first
603 // instruction.
604 if (fault == NoFault) {
605 #if 0
606 if (cpu->system->memctrl->badaddr(memReq[tid]->paddr) ||
607 memReq[tid]->isUncacheable()) {
608 DPRINTF(Fetch, "Fetch: Bad address %#x (hopefully on a "
609 "misspeculating path)!",
610 memReq[tid]->paddr);
611 ret_fault = TheISA::genMachineCheckFault();
612 return false;
613 }
614 #endif
615
616 // Build packet here.
617 PacketPtr data_pkt = new Packet(mem_req,
618 MemCmd::ReadReq, Packet::Broadcast);
619 data_pkt->dataDynamicArray(new uint8_t[cacheBlkSize]);
620
621 cacheDataPC[tid] = block_PC;
622 cacheDataValid[tid] = false;
623
624 DPRINTF(Fetch, "Fetch: Doing instruction read.\n");
625
626 fetchedCacheLines++;
627
628 // Now do the timing access to see whether or not the instruction
629 // exists within the cache.
630 if (!icachePort->sendTiming(data_pkt)) {
631 if (data_pkt->result == Packet::BadAddress) {
632 fault = TheISA::genMachineCheckFault();
633 delete mem_req;
634 memReq[tid] = NULL;
635 warn("Bad address!\n");
636 }
637 assert(retryPkt == NULL);
638 assert(retryTid == -1);
639 DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid);
640 fetchStatus[tid] = IcacheWaitRetry;
641 retryPkt = data_pkt;
642 retryTid = tid;
643 cacheBlocked = true;
644 return false;
645 }
646
647 DPRINTF(Fetch, "[tid:%i]: Doing cache access.\n", tid);
648
649 lastIcacheStall[tid] = curTick;
650
651 DPRINTF(Activity, "[tid:%i]: Activity: Waiting on I-cache "
652 "response.\n", tid);
653
654 fetchStatus[tid] = IcacheWaitResponse;
655 } else {
656 delete mem_req;
657 memReq[tid] = NULL;
658 }
659
660 ret_fault = fault;
661 return true;
662 }
663
664 template <class Impl>
665 inline void
666 DefaultFetch<Impl>::doSquash(const Addr &new_PC,
667 const Addr &new_NPC, const Addr &new_microPC, unsigned tid)
668 {
669 DPRINTF(Fetch, "[tid:%i]: Squashing, setting PC to: %#x, NPC to: %#x.\n",
670 tid, new_PC, new_NPC);
671
672 PC[tid] = new_PC;
673 nextPC[tid] = new_NPC;
674 microPC[tid] = new_microPC;
675
676 // Clear the icache miss if it's outstanding.
677 if (fetchStatus[tid] == IcacheWaitResponse) {
678 DPRINTF(Fetch, "[tid:%i]: Squashing outstanding Icache miss.\n",
679 tid);
680 memReq[tid] = NULL;
681 }
682
683 // Get rid of the retrying packet if it was from this thread.
684 if (retryTid == tid) {
685 assert(cacheBlocked);
686 if (retryPkt) {
687 delete retryPkt->req;
688 delete retryPkt;
689 }
690 retryPkt = NULL;
691 retryTid = -1;
692 }
693
694 fetchStatus[tid] = Squashing;
695
696 ++fetchSquashCycles;
697 }
698
699 template<class Impl>
700 void
701 DefaultFetch<Impl>::squashFromDecode(const Addr &new_PC, const Addr &new_NPC,
702 const Addr &new_MicroPC,
703 const InstSeqNum &seq_num, unsigned tid)
704 {
705 DPRINTF(Fetch, "[tid:%i]: Squashing from decode.\n",tid);
706
707 doSquash(new_PC, new_NPC, new_MicroPC, tid);
708
709 // Tell the CPU to remove any instructions that are in flight between
710 // fetch and decode.
711 cpu->removeInstsUntil(seq_num, tid);
712 }
713
714 template<class Impl>
715 bool
716 DefaultFetch<Impl>::checkStall(unsigned tid) const
717 {
718 bool ret_val = false;
719
720 if (cpu->contextSwitch) {
721 DPRINTF(Fetch,"[tid:%i]: Stalling for a context switch.\n",tid);
722 ret_val = true;
723 } else if (stalls[tid].decode) {
724 DPRINTF(Fetch,"[tid:%i]: Stall from Decode stage detected.\n",tid);
725 ret_val = true;
726 } else if (stalls[tid].rename) {
727 DPRINTF(Fetch,"[tid:%i]: Stall from Rename stage detected.\n",tid);
728 ret_val = true;
729 } else if (stalls[tid].iew) {
730 DPRINTF(Fetch,"[tid:%i]: Stall from IEW stage detected.\n",tid);
731 ret_val = true;
732 } else if (stalls[tid].commit) {
733 DPRINTF(Fetch,"[tid:%i]: Stall from Commit stage detected.\n",tid);
734 ret_val = true;
735 }
736
737 return ret_val;
738 }
739
740 template<class Impl>
741 typename DefaultFetch<Impl>::FetchStatus
742 DefaultFetch<Impl>::updateFetchStatus()
743 {
744 //Check Running
745 std::list<unsigned>::iterator threads = activeThreads->begin();
746 std::list<unsigned>::iterator end = activeThreads->end();
747
748 while (threads != end) {
749 unsigned tid = *threads++;
750
751 if (fetchStatus[tid] == Running ||
752 fetchStatus[tid] == Squashing ||
753 fetchStatus[tid] == IcacheAccessComplete) {
754
755 if (_status == Inactive) {
756 DPRINTF(Activity, "[tid:%i]: Activating stage.\n",tid);
757
758 if (fetchStatus[tid] == IcacheAccessComplete) {
759 DPRINTF(Activity, "[tid:%i]: Activating fetch due to cache"
760 "completion\n",tid);
761 }
762
763 cpu->activateStage(O3CPU::FetchIdx);
764 }
765
766 return Active;
767 }
768 }
769
770 // Stage is switching from active to inactive, notify CPU of it.
771 if (_status == Active) {
772 DPRINTF(Activity, "Deactivating stage.\n");
773
774 cpu->deactivateStage(O3CPU::FetchIdx);
775 }
776
777 return Inactive;
778 }
779
780 template <class Impl>
781 void
782 DefaultFetch<Impl>::squash(const Addr &new_PC, const Addr &new_NPC,
783 const Addr &new_MicroPC,
784 const InstSeqNum &seq_num, unsigned tid)
785 {
786 DPRINTF(Fetch, "[tid:%u]: Squash from commit.\n",tid);
787
788 doSquash(new_PC, new_NPC, new_MicroPC, tid);
789
790 // Tell the CPU to remove any instructions that are not in the ROB.
791 cpu->removeInstsNotInROB(tid);
792 }
793
794 template <class Impl>
795 void
796 DefaultFetch<Impl>::tick()
797 {
798 std::list<unsigned>::iterator threads = activeThreads->begin();
799 std::list<unsigned>::iterator end = activeThreads->end();
800 bool status_change = false;
801
802 wroteToTimeBuffer = false;
803
804 while (threads != end) {
805 unsigned tid = *threads++;
806
807 // Check the signals for each thread to determine the proper status
808 // for each thread.
809 bool updated_status = checkSignalsAndUpdate(tid);
810 status_change = status_change || updated_status;
811 }
812
813 DPRINTF(Fetch, "Running stage.\n");
814
815 // Reset the number of the instruction we're fetching.
816 numInst = 0;
817
818 #if FULL_SYSTEM
819 if (fromCommit->commitInfo[0].interruptPending) {
820 interruptPending = true;
821 }
822
823 if (fromCommit->commitInfo[0].clearInterrupt) {
824 interruptPending = false;
825 }
826 #endif
827
828 for (threadFetched = 0; threadFetched < numFetchingThreads;
829 threadFetched++) {
830 // Fetch each of the actively fetching threads.
831 fetch(status_change);
832 }
833
834 // Record number of instructions fetched this cycle for distribution.
835 fetchNisnDist.sample(numInst);
836
837 if (status_change) {
838 // Change the fetch stage status if there was a status change.
839 _status = updateFetchStatus();
840 }
841
842 // If there was activity this cycle, inform the CPU of it.
843 if (wroteToTimeBuffer || cpu->contextSwitch) {
844 DPRINTF(Activity, "Activity this cycle.\n");
845
846 cpu->activityThisCycle();
847 }
848 }
849
850 template <class Impl>
851 bool
852 DefaultFetch<Impl>::checkSignalsAndUpdate(unsigned tid)
853 {
854 // Update the per thread stall statuses.
855 if (fromDecode->decodeBlock[tid]) {
856 stalls[tid].decode = true;
857 }
858
859 if (fromDecode->decodeUnblock[tid]) {
860 assert(stalls[tid].decode);
861 assert(!fromDecode->decodeBlock[tid]);
862 stalls[tid].decode = false;
863 }
864
865 if (fromRename->renameBlock[tid]) {
866 stalls[tid].rename = true;
867 }
868
869 if (fromRename->renameUnblock[tid]) {
870 assert(stalls[tid].rename);
871 assert(!fromRename->renameBlock[tid]);
872 stalls[tid].rename = false;
873 }
874
875 if (fromIEW->iewBlock[tid]) {
876 stalls[tid].iew = true;
877 }
878
879 if (fromIEW->iewUnblock[tid]) {
880 assert(stalls[tid].iew);
881 assert(!fromIEW->iewBlock[tid]);
882 stalls[tid].iew = false;
883 }
884
885 if (fromCommit->commitBlock[tid]) {
886 stalls[tid].commit = true;
887 }
888
889 if (fromCommit->commitUnblock[tid]) {
890 assert(stalls[tid].commit);
891 assert(!fromCommit->commitBlock[tid]);
892 stalls[tid].commit = false;
893 }
894
895 // Check squash signals from commit.
896 if (fromCommit->commitInfo[tid].squash) {
897
898 DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
899 "from commit.\n",tid);
900 // In any case, squash.
901 squash(fromCommit->commitInfo[tid].nextPC,
902 fromCommit->commitInfo[tid].nextNPC,
903 fromCommit->commitInfo[tid].nextMicroPC,
904 fromCommit->commitInfo[tid].doneSeqNum,
905 tid);
906
907 // Also check if there's a mispredict that happened.
908 if (fromCommit->commitInfo[tid].branchMispredict) {
909 branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
910 fromCommit->commitInfo[tid].nextPC,
911 fromCommit->commitInfo[tid].branchTaken,
912 tid);
913 } else {
914 branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
915 tid);
916 }
917
918 return true;
919 } else if (fromCommit->commitInfo[tid].doneSeqNum) {
920 // Update the branch predictor if it wasn't a squashed instruction
921 // that was broadcasted.
922 branchPred.update(fromCommit->commitInfo[tid].doneSeqNum, tid);
923 }
924
925 // Check ROB squash signals from commit.
926 if (fromCommit->commitInfo[tid].robSquashing) {
927 DPRINTF(Fetch, "[tid:%u]: ROB is still squashing.\n", tid);
928
929 // Continue to squash.
930 fetchStatus[tid] = Squashing;
931
932 return true;
933 }
934
935 // Check squash signals from decode.
936 if (fromDecode->decodeInfo[tid].squash) {
937 DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
938 "from decode.\n",tid);
939
940 // Update the branch predictor.
941 if (fromDecode->decodeInfo[tid].branchMispredict) {
942 branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
943 fromDecode->decodeInfo[tid].nextPC,
944 fromDecode->decodeInfo[tid].branchTaken,
945 tid);
946 } else {
947 branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
948 tid);
949 }
950
951 if (fetchStatus[tid] != Squashing) {
952
953 DPRINTF(Fetch, "Squashing from decode with PC = %#x, NPC = %#x\n",
954 fromDecode->decodeInfo[tid].nextPC,
955 fromDecode->decodeInfo[tid].nextNPC);
956 // Squash unless we're already squashing
957 squashFromDecode(fromDecode->decodeInfo[tid].nextPC,
958 fromDecode->decodeInfo[tid].nextNPC,
959 fromDecode->decodeInfo[tid].nextMicroPC,
960 fromDecode->decodeInfo[tid].doneSeqNum,
961 tid);
962
963 return true;
964 }
965 }
966
967 if (checkStall(tid) &&
968 fetchStatus[tid] != IcacheWaitResponse &&
969 fetchStatus[tid] != IcacheWaitRetry) {
970 DPRINTF(Fetch, "[tid:%i]: Setting to blocked\n",tid);
971
972 fetchStatus[tid] = Blocked;
973
974 return true;
975 }
976
977 if (fetchStatus[tid] == Blocked ||
978 fetchStatus[tid] == Squashing) {
979 // Switch status to running if fetch isn't being told to block or
980 // squash this cycle.
981 DPRINTF(Fetch, "[tid:%i]: Done squashing, switching to running.\n",
982 tid);
983
984 fetchStatus[tid] = Running;
985
986 return true;
987 }
988
989 // If we've reached this point, we have not gotten any signals that
990 // cause fetch to change its status. Fetch remains the same as before.
991 return false;
992 }
993
994 template<class Impl>
995 void
996 DefaultFetch<Impl>::fetch(bool &status_change)
997 {
998 //////////////////////////////////////////
999 // Start actual fetch
1000 //////////////////////////////////////////
1001 int tid = getFetchingThread(fetchPolicy);
1002
1003 if (tid == -1 || drainPending) {
1004 DPRINTF(Fetch,"There are no more threads available to fetch from.\n");
1005
1006 // Breaks looping condition in tick()
1007 threadFetched = numFetchingThreads;
1008 return;
1009 }
1010
1011 DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid);
1012
1013 // The current PC.
1014 Addr fetch_PC = PC[tid];
1015 Addr fetch_NPC = nextPC[tid];
1016 Addr fetch_MicroPC = microPC[tid];
1017
1018 // Fault code for memory access.
1019 Fault fault = NoFault;
1020
1021 // If returning from the delay of a cache miss, then update the status
1022 // to running, otherwise do the cache access. Possibly move this up
1023 // to tick() function.
1024 if (fetchStatus[tid] == IcacheAccessComplete) {
1025 DPRINTF(Fetch, "[tid:%i]: Icache miss is complete.\n",
1026 tid);
1027
1028 fetchStatus[tid] = Running;
1029 status_change = true;
1030 } else if (fetchStatus[tid] == Running) {
1031 DPRINTF(Fetch, "[tid:%i]: Attempting to translate and read "
1032 "instruction, starting at PC %08p.\n",
1033 tid, fetch_PC);
1034
1035 bool fetch_success = fetchCacheLine(fetch_PC, fault, tid);
1036 if (!fetch_success) {
1037 if (cacheBlocked) {
1038 ++icacheStallCycles;
1039 } else {
1040 ++fetchMiscStallCycles;
1041 }
1042 return;
1043 }
1044 } else {
1045 if (fetchStatus[tid] == Idle) {
1046 ++fetchIdleCycles;
1047 DPRINTF(Fetch, "[tid:%i]: Fetch is idle!\n", tid);
1048 } else if (fetchStatus[tid] == Blocked) {
1049 ++fetchBlockedCycles;
1050 DPRINTF(Fetch, "[tid:%i]: Fetch is blocked!\n", tid);
1051 } else if (fetchStatus[tid] == Squashing) {
1052 ++fetchSquashCycles;
1053 DPRINTF(Fetch, "[tid:%i]: Fetch is squashing!\n", tid);
1054 } else if (fetchStatus[tid] == IcacheWaitResponse) {
1055 ++icacheStallCycles;
1056 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting cache response!\n", tid);
1057 }
1058
1059 // Status is Idle, Squashing, Blocked, or IcacheWaitResponse, so
1060 // fetch should do nothing.
1061 return;
1062 }
1063
1064 ++fetchCycles;
1065
1066 // If we had a stall due to an icache miss, then return.
1067 if (fetchStatus[tid] == IcacheWaitResponse) {
1068 ++icacheStallCycles;
1069 status_change = true;
1070 return;
1071 }
1072
1073 Addr next_PC = fetch_PC;
1074 Addr next_NPC = fetch_NPC;
1075 Addr next_MicroPC = fetch_MicroPC;
1076
1077 InstSeqNum inst_seq;
1078 MachInst inst;
1079 ExtMachInst ext_inst;
1080 // @todo: Fix this hack.
1081 unsigned offset = (fetch_PC & cacheBlkMask) & ~3;
1082
1083 StaticInstPtr staticInst = NULL;
1084 StaticInstPtr macroop = NULL;
1085
1086 if (fault == NoFault) {
1087 // If the read of the first instruction was successful, then grab the
1088 // instructions from the rest of the cache line and put them into the
1089 // queue heading to decode.
1090
1091 DPRINTF(Fetch, "[tid:%i]: Adding instructions to queue to "
1092 "decode.\n",tid);
1093
1094 // Need to keep track of whether or not a predicted branch
1095 // ended this fetch block.
1096 bool predicted_branch = false;
1097
1098 while (offset < cacheBlkSize &&
1099 numInst < fetchWidth &&
1100 !predicted_branch) {
1101
1102 // If we're branching after this instruction, quite fetching
1103 // from the same block then.
1104 predicted_branch =
1105 (fetch_PC + sizeof(TheISA::MachInst) != fetch_NPC);
1106 if (predicted_branch) {
1107 DPRINTF(Fetch, "Branch detected with PC = %#x, NPC = %#x\n",
1108 fetch_PC, fetch_NPC);
1109 }
1110
1111 // Make sure this is a valid index.
1112 assert(offset <= cacheBlkSize - instSize);
1113
1114 if (!macroop) {
1115 // Get the instruction from the array of the cache line.
1116 inst = TheISA::gtoh(*reinterpret_cast<TheISA::MachInst *>
1117 (&cacheData[tid][offset]));
1118
1119 predecoder.setTC(cpu->thread[tid]->getTC());
1120 predecoder.moreBytes(fetch_PC, fetch_PC, inst);
1121
1122 ext_inst = predecoder.getExtMachInst();
1123 staticInst = StaticInstPtr(ext_inst, fetch_PC);
1124 if (staticInst->isMacroop())
1125 macroop = staticInst;
1126 }
1127 do {
1128 if (macroop) {
1129 staticInst = macroop->fetchMicroop(fetch_MicroPC);
1130 if (staticInst->isLastMicroop())
1131 macroop = NULL;
1132 }
1133
1134 // Get a sequence number.
1135 inst_seq = cpu->getAndIncrementInstSeq();
1136
1137 // Create a new DynInst from the instruction fetched.
1138 DynInstPtr instruction = new DynInst(staticInst,
1139 fetch_PC, fetch_NPC, fetch_MicroPC,
1140 next_PC, next_NPC, next_MicroPC,
1141 inst_seq, cpu);
1142 instruction->setTid(tid);
1143
1144 instruction->setASID(tid);
1145
1146 instruction->setThreadState(cpu->thread[tid]);
1147
1148 DPRINTF(Fetch, "[tid:%i]: Instruction PC %#x created "
1149 "[sn:%lli]\n",
1150 tid, instruction->readPC(), inst_seq);
1151
1152 //DPRINTF(Fetch, "[tid:%i]: MachInst is %#x\n", tid, ext_inst);
1153
1154 DPRINTF(Fetch, "[tid:%i]: Instruction is: %s\n",
1155 tid, instruction->staticInst->disassemble(fetch_PC));
1156
1157 #if TRACING_ON
1158 instruction->traceData =
1159 cpu->getTracer()->getInstRecord(curTick, cpu->tcBase(tid),
1160 instruction->staticInst, instruction->readPC());
1161 #else
1162 instruction->traceData = NULL;
1163 #endif
1164
1165 ///FIXME This needs to be more robust in dealing with delay slots
1166 predicted_branch |=
1167 lookupAndUpdateNextPC(instruction, next_PC, next_NPC, next_MicroPC);
1168
1169 // Add instruction to the CPU's list of instructions.
1170 instruction->setInstListIt(cpu->addInst(instruction));
1171
1172 // Write the instruction to the first slot in the queue
1173 // that heads to decode.
1174 toDecode->insts[numInst] = instruction;
1175
1176 toDecode->size++;
1177
1178 // Increment stat of fetched instructions.
1179 ++fetchedInsts;
1180
1181 // Move to the next instruction, unless we have a branch.
1182 fetch_PC = next_PC;
1183 fetch_NPC = next_NPC;
1184 fetch_MicroPC = next_MicroPC;
1185
1186 if (instruction->isQuiesce()) {
1187 DPRINTF(Fetch, "Quiesce instruction encountered, halting fetch!",
1188 curTick);
1189 fetchStatus[tid] = QuiescePending;
1190 ++numInst;
1191 status_change = true;
1192 break;
1193 }
1194
1195 ++numInst;
1196 } while (staticInst->isMicroop() &&
1197 !staticInst->isLastMicroop() &&
1198 numInst < fetchWidth);
1199 offset += instSize;
1200 }
1201
1202 if (predicted_branch) {
1203 DPRINTF(Fetch, "[tid:%i]: Done fetching, predicted branch "
1204 "instruction encountered.\n", tid);
1205 } else if (numInst >= fetchWidth) {
1206 DPRINTF(Fetch, "[tid:%i]: Done fetching, reached fetch bandwidth "
1207 "for this cycle.\n", tid);
1208 } else if (offset >= cacheBlkSize) {
1209 DPRINTF(Fetch, "[tid:%i]: Done fetching, reached the end of cache "
1210 "block.\n", tid);
1211 }
1212 }
1213
1214 if (numInst > 0) {
1215 wroteToTimeBuffer = true;
1216 }
1217
1218 // Now that fetching is completed, update the PC to signify what the next
1219 // cycle will be.
1220 if (fault == NoFault) {
1221 PC[tid] = next_PC;
1222 nextPC[tid] = next_NPC;
1223 microPC[tid] = next_MicroPC;
1224 DPRINTF(Fetch, "[tid:%i]: Setting PC to %08p.\n", tid, next_PC);
1225 } else {
1226 // We shouldn't be in an icache miss and also have a fault (an ITB
1227 // miss)
1228 if (fetchStatus[tid] == IcacheWaitResponse) {
1229 panic("Fetch should have exited prior to this!");
1230 }
1231
1232 // Send the fault to commit. This thread will not do anything
1233 // until commit handles the fault. The only other way it can
1234 // wake up is if a squash comes along and changes the PC.
1235 #if FULL_SYSTEM
1236 assert(numInst < fetchWidth);
1237 // Get a sequence number.
1238 inst_seq = cpu->getAndIncrementInstSeq();
1239 // We will use a nop in order to carry the fault.
1240 ext_inst = TheISA::NoopMachInst;
1241
1242 // Create a new DynInst from the dummy nop.
1243 DynInstPtr instruction = new DynInst(ext_inst,
1244 fetch_PC, fetch_NPC, fetch_MicroPC,
1245 next_PC, next_NPC, next_MicroPC,
1246 inst_seq, cpu);
1247 instruction->setPredTarg(next_PC, next_NPC, 1);
1248 instruction->setTid(tid);
1249
1250 instruction->setASID(tid);
1251
1252 instruction->setThreadState(cpu->thread[tid]);
1253
1254 instruction->traceData = NULL;
1255
1256 instruction->setInstListIt(cpu->addInst(instruction));
1257
1258 instruction->fault = fault;
1259
1260 toDecode->insts[numInst] = instruction;
1261 toDecode->size++;
1262
1263 DPRINTF(Fetch, "[tid:%i]: Blocked, need to handle the trap.\n",tid);
1264
1265 fetchStatus[tid] = TrapPending;
1266 status_change = true;
1267 #else // !FULL_SYSTEM
1268 fetchStatus[tid] = TrapPending;
1269 status_change = true;
1270
1271 #endif // FULL_SYSTEM
1272 DPRINTF(Fetch, "[tid:%i]: fault (%s) detected @ PC %08p",
1273 tid, fault->name(), PC[tid]);
1274 }
1275 }
1276
1277 template<class Impl>
1278 void
1279 DefaultFetch<Impl>::recvRetry()
1280 {
1281 if (retryPkt != NULL) {
1282 assert(cacheBlocked);
1283 assert(retryTid != -1);
1284 assert(fetchStatus[retryTid] == IcacheWaitRetry);
1285
1286 if (icachePort->sendTiming(retryPkt)) {
1287 fetchStatus[retryTid] = IcacheWaitResponse;
1288 retryPkt = NULL;
1289 retryTid = -1;
1290 cacheBlocked = false;
1291 }
1292 } else {
1293 assert(retryTid == -1);
1294 // Access has been squashed since it was sent out. Just clear
1295 // the cache being blocked.
1296 cacheBlocked = false;
1297 }
1298 }
1299
1300 ///////////////////////////////////////
1301 // //
1302 // SMT FETCH POLICY MAINTAINED HERE //
1303 // //
1304 ///////////////////////////////////////
1305 template<class Impl>
1306 int
1307 DefaultFetch<Impl>::getFetchingThread(FetchPriority &fetch_priority)
1308 {
1309 if (numThreads > 1) {
1310 switch (fetch_priority) {
1311
1312 case SingleThread:
1313 return 0;
1314
1315 case RoundRobin:
1316 return roundRobin();
1317
1318 case IQ:
1319 return iqCount();
1320
1321 case LSQ:
1322 return lsqCount();
1323
1324 case Branch:
1325 return branchCount();
1326
1327 default:
1328 return -1;
1329 }
1330 } else {
1331 std::list<unsigned>::iterator thread = activeThreads->begin();
1332 assert(thread != activeThreads->end());
1333 int tid = *thread;
1334
1335 if (fetchStatus[tid] == Running ||
1336 fetchStatus[tid] == IcacheAccessComplete ||
1337 fetchStatus[tid] == Idle) {
1338 return tid;
1339 } else {
1340 return -1;
1341 }
1342 }
1343
1344 }
1345
1346
1347 template<class Impl>
1348 int
1349 DefaultFetch<Impl>::roundRobin()
1350 {
1351 std::list<unsigned>::iterator pri_iter = priorityList.begin();
1352 std::list<unsigned>::iterator end = priorityList.end();
1353
1354 int high_pri;
1355
1356 while (pri_iter != end) {
1357 high_pri = *pri_iter;
1358
1359 assert(high_pri <= numThreads);
1360
1361 if (fetchStatus[high_pri] == Running ||
1362 fetchStatus[high_pri] == IcacheAccessComplete ||
1363 fetchStatus[high_pri] == Idle) {
1364
1365 priorityList.erase(pri_iter);
1366 priorityList.push_back(high_pri);
1367
1368 return high_pri;
1369 }
1370
1371 pri_iter++;
1372 }
1373
1374 return -1;
1375 }
1376
1377 template<class Impl>
1378 int
1379 DefaultFetch<Impl>::iqCount()
1380 {
1381 std::priority_queue<unsigned> PQ;
1382
1383 std::list<unsigned>::iterator threads = activeThreads->begin();
1384 std::list<unsigned>::iterator end = activeThreads->end();
1385
1386 while (threads != end) {
1387 unsigned tid = *threads++;
1388
1389 PQ.push(fromIEW->iewInfo[tid].iqCount);
1390 }
1391
1392 while (!PQ.empty()) {
1393
1394 unsigned high_pri = PQ.top();
1395
1396 if (fetchStatus[high_pri] == Running ||
1397 fetchStatus[high_pri] == IcacheAccessComplete ||
1398 fetchStatus[high_pri] == Idle)
1399 return high_pri;
1400 else
1401 PQ.pop();
1402
1403 }
1404
1405 return -1;
1406 }
1407
1408 template<class Impl>
1409 int
1410 DefaultFetch<Impl>::lsqCount()
1411 {
1412 std::priority_queue<unsigned> PQ;
1413
1414 std::list<unsigned>::iterator threads = activeThreads->begin();
1415 std::list<unsigned>::iterator end = activeThreads->end();
1416
1417 while (threads != end) {
1418 unsigned tid = *threads++;
1419
1420 PQ.push(fromIEW->iewInfo[tid].ldstqCount);
1421 }
1422
1423 while (!PQ.empty()) {
1424
1425 unsigned high_pri = PQ.top();
1426
1427 if (fetchStatus[high_pri] == Running ||
1428 fetchStatus[high_pri] == IcacheAccessComplete ||
1429 fetchStatus[high_pri] == Idle)
1430 return high_pri;
1431 else
1432 PQ.pop();
1433
1434 }
1435
1436 return -1;
1437 }
1438
1439 template<class Impl>
1440 int
1441 DefaultFetch<Impl>::branchCount()
1442 {
1443 std::list<unsigned>::iterator thread = activeThreads->begin();
1444 assert(thread != activeThreads->end());
1445 unsigned tid = *thread;
1446
1447 panic("Branch Count Fetch policy unimplemented\n");
1448 return 0 * tid;
1449 }