Merge zizzer:/bk/newmem
[gem5.git] / src / cpu / o3 / fetch_impl.hh
1 /*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 * Korey Sewell
30 */
31
32 #include "config/use_checker.hh"
33
34 #include "arch/isa_traits.hh"
35 #include "arch/utility.hh"
36 #include "cpu/checker/cpu.hh"
37 #include "cpu/exetrace.hh"
38 #include "cpu/o3/fetch.hh"
39 #include "mem/packet.hh"
40 #include "mem/request.hh"
41 #include "sim/byteswap.hh"
42 #include "sim/host.hh"
43 #include "sim/core.hh"
44
45 #if FULL_SYSTEM
46 #include "arch/tlb.hh"
47 #include "arch/vtophys.hh"
48 #include "sim/system.hh"
49 #endif // FULL_SYSTEM
50
51 #include <algorithm>
52
53 template<class Impl>
54 void
55 DefaultFetch<Impl>::IcachePort::setPeer(Port *port)
56 {
57 Port::setPeer(port);
58
59 fetch->setIcache();
60 }
61
62 template<class Impl>
63 Tick
64 DefaultFetch<Impl>::IcachePort::recvAtomic(PacketPtr pkt)
65 {
66 panic("DefaultFetch doesn't expect recvAtomic callback!");
67 return curTick;
68 }
69
70 template<class Impl>
71 void
72 DefaultFetch<Impl>::IcachePort::recvFunctional(PacketPtr pkt)
73 {
74 DPRINTF(Fetch, "DefaultFetch doesn't update its state from a "
75 "functional call.");
76 }
77
78 template<class Impl>
79 void
80 DefaultFetch<Impl>::IcachePort::recvStatusChange(Status status)
81 {
82 if (status == RangeChange) {
83 if (!snoopRangeSent) {
84 snoopRangeSent = true;
85 sendStatusChange(Port::RangeChange);
86 }
87 return;
88 }
89
90 panic("DefaultFetch doesn't expect recvStatusChange callback!");
91 }
92
93 template<class Impl>
94 bool
95 DefaultFetch<Impl>::IcachePort::recvTiming(PacketPtr pkt)
96 {
97 DPRINTF(Fetch, "Received timing\n");
98 if (pkt->isResponse()) {
99 fetch->processCacheCompletion(pkt);
100 }
101 //else Snooped a coherence request, just return
102 return true;
103 }
104
105 template<class Impl>
106 void
107 DefaultFetch<Impl>::IcachePort::recvRetry()
108 {
109 fetch->recvRetry();
110 }
111
112 template<class Impl>
113 DefaultFetch<Impl>::DefaultFetch(Params *params)
114 : branchPred(params),
115 predecoder(NULL),
116 decodeToFetchDelay(params->decodeToFetchDelay),
117 renameToFetchDelay(params->renameToFetchDelay),
118 iewToFetchDelay(params->iewToFetchDelay),
119 commitToFetchDelay(params->commitToFetchDelay),
120 fetchWidth(params->fetchWidth),
121 cacheBlocked(false),
122 retryPkt(NULL),
123 retryTid(-1),
124 numThreads(params->numberOfThreads),
125 numFetchingThreads(params->smtNumFetchingThreads),
126 interruptPending(false),
127 drainPending(false),
128 switchedOut(false)
129 {
130 if (numThreads > Impl::MaxThreads)
131 fatal("numThreads is not a valid value\n");
132
133 // Set fetch stage's status to inactive.
134 _status = Inactive;
135
136 std::string policy = params->smtFetchPolicy;
137
138 // Convert string to lowercase
139 std::transform(policy.begin(), policy.end(), policy.begin(),
140 (int(*)(int)) tolower);
141
142 // Figure out fetch policy
143 if (policy == "singlethread") {
144 fetchPolicy = SingleThread;
145 if (numThreads > 1)
146 panic("Invalid Fetch Policy for a SMT workload.");
147 } else if (policy == "roundrobin") {
148 fetchPolicy = RoundRobin;
149 DPRINTF(Fetch, "Fetch policy set to Round Robin\n");
150 } else if (policy == "branch") {
151 fetchPolicy = Branch;
152 DPRINTF(Fetch, "Fetch policy set to Branch Count\n");
153 } else if (policy == "iqcount") {
154 fetchPolicy = IQ;
155 DPRINTF(Fetch, "Fetch policy set to IQ count\n");
156 } else if (policy == "lsqcount") {
157 fetchPolicy = LSQ;
158 DPRINTF(Fetch, "Fetch policy set to LSQ count\n");
159 } else {
160 fatal("Invalid Fetch Policy. Options Are: {SingleThread,"
161 " RoundRobin,LSQcount,IQcount}\n");
162 }
163
164 // Get the size of an instruction.
165 instSize = sizeof(TheISA::MachInst);
166 }
167
168 template <class Impl>
169 std::string
170 DefaultFetch<Impl>::name() const
171 {
172 return cpu->name() + ".fetch";
173 }
174
175 template <class Impl>
176 void
177 DefaultFetch<Impl>::regStats()
178 {
179 icacheStallCycles
180 .name(name() + ".icacheStallCycles")
181 .desc("Number of cycles fetch is stalled on an Icache miss")
182 .prereq(icacheStallCycles);
183
184 fetchedInsts
185 .name(name() + ".Insts")
186 .desc("Number of instructions fetch has processed")
187 .prereq(fetchedInsts);
188
189 fetchedBranches
190 .name(name() + ".Branches")
191 .desc("Number of branches that fetch encountered")
192 .prereq(fetchedBranches);
193
194 predictedBranches
195 .name(name() + ".predictedBranches")
196 .desc("Number of branches that fetch has predicted taken")
197 .prereq(predictedBranches);
198
199 fetchCycles
200 .name(name() + ".Cycles")
201 .desc("Number of cycles fetch has run and was not squashing or"
202 " blocked")
203 .prereq(fetchCycles);
204
205 fetchSquashCycles
206 .name(name() + ".SquashCycles")
207 .desc("Number of cycles fetch has spent squashing")
208 .prereq(fetchSquashCycles);
209
210 fetchIdleCycles
211 .name(name() + ".IdleCycles")
212 .desc("Number of cycles fetch was idle")
213 .prereq(fetchIdleCycles);
214
215 fetchBlockedCycles
216 .name(name() + ".BlockedCycles")
217 .desc("Number of cycles fetch has spent blocked")
218 .prereq(fetchBlockedCycles);
219
220 fetchedCacheLines
221 .name(name() + ".CacheLines")
222 .desc("Number of cache lines fetched")
223 .prereq(fetchedCacheLines);
224
225 fetchMiscStallCycles
226 .name(name() + ".MiscStallCycles")
227 .desc("Number of cycles fetch has spent waiting on interrupts, or "
228 "bad addresses, or out of MSHRs")
229 .prereq(fetchMiscStallCycles);
230
231 fetchIcacheSquashes
232 .name(name() + ".IcacheSquashes")
233 .desc("Number of outstanding Icache misses that were squashed")
234 .prereq(fetchIcacheSquashes);
235
236 fetchNisnDist
237 .init(/* base value */ 0,
238 /* last value */ fetchWidth,
239 /* bucket size */ 1)
240 .name(name() + ".rateDist")
241 .desc("Number of instructions fetched each cycle (Total)")
242 .flags(Stats::pdf);
243
244 idleRate
245 .name(name() + ".idleRate")
246 .desc("Percent of cycles fetch was idle")
247 .prereq(idleRate);
248 idleRate = fetchIdleCycles * 100 / cpu->numCycles;
249
250 branchRate
251 .name(name() + ".branchRate")
252 .desc("Number of branch fetches per cycle")
253 .flags(Stats::total);
254 branchRate = fetchedBranches / cpu->numCycles;
255
256 fetchRate
257 .name(name() + ".rate")
258 .desc("Number of inst fetches per cycle")
259 .flags(Stats::total);
260 fetchRate = fetchedInsts / cpu->numCycles;
261
262 branchPred.regStats();
263 }
264
265 template<class Impl>
266 void
267 DefaultFetch<Impl>::setCPU(O3CPU *cpu_ptr)
268 {
269 cpu = cpu_ptr;
270 DPRINTF(Fetch, "Setting the CPU pointer.\n");
271
272 // Name is finally available, so create the port.
273 icachePort = new IcachePort(this);
274
275 icachePort->snoopRangeSent = false;
276
277 #if USE_CHECKER
278 if (cpu->checker) {
279 cpu->checker->setIcachePort(icachePort);
280 }
281 #endif
282
283 // Schedule fetch to get the correct PC from the CPU
284 // scheduleFetchStartupEvent(1);
285
286 // Fetch needs to start fetching instructions at the very beginning,
287 // so it must start up in active state.
288 switchToActive();
289 }
290
291 template<class Impl>
292 void
293 DefaultFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer)
294 {
295 timeBuffer = time_buffer;
296
297 // Create wires to get information from proper places in time buffer.
298 fromDecode = timeBuffer->getWire(-decodeToFetchDelay);
299 fromRename = timeBuffer->getWire(-renameToFetchDelay);
300 fromIEW = timeBuffer->getWire(-iewToFetchDelay);
301 fromCommit = timeBuffer->getWire(-commitToFetchDelay);
302 }
303
304 template<class Impl>
305 void
306 DefaultFetch<Impl>::setActiveThreads(std::list<unsigned> *at_ptr)
307 {
308 activeThreads = at_ptr;
309 }
310
311 template<class Impl>
312 void
313 DefaultFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
314 {
315 fetchQueue = fq_ptr;
316
317 // Create wire to write information to proper place in fetch queue.
318 toDecode = fetchQueue->getWire(0);
319 }
320
321 template<class Impl>
322 void
323 DefaultFetch<Impl>::initStage()
324 {
325 // Setup PC and nextPC with initial state.
326 for (int tid = 0; tid < numThreads; tid++) {
327 PC[tid] = cpu->readPC(tid);
328 nextPC[tid] = cpu->readNextPC(tid);
329 nextNPC[tid] = cpu->readNextNPC(tid);
330 }
331
332 for (int tid=0; tid < numThreads; tid++) {
333
334 fetchStatus[tid] = Running;
335
336 priorityList.push_back(tid);
337
338 memReq[tid] = NULL;
339
340 stalls[tid].decode = false;
341 stalls[tid].rename = false;
342 stalls[tid].iew = false;
343 stalls[tid].commit = false;
344 }
345 }
346
347 template<class Impl>
348 void
349 DefaultFetch<Impl>::setIcache()
350 {
351 // Size of cache block.
352 cacheBlkSize = icachePort->peerBlockSize();
353
354 // Create mask to get rid of offset bits.
355 cacheBlkMask = (cacheBlkSize - 1);
356
357 for (int tid=0; tid < numThreads; tid++) {
358 // Create space to store a cache line.
359 cacheData[tid] = new uint8_t[cacheBlkSize];
360 cacheDataPC[tid] = 0;
361 cacheDataValid[tid] = false;
362 }
363 }
364
365 template<class Impl>
366 void
367 DefaultFetch<Impl>::processCacheCompletion(PacketPtr pkt)
368 {
369 unsigned tid = pkt->req->getThreadNum();
370
371 DPRINTF(Fetch, "[tid:%u] Waking up from cache miss.\n",tid);
372
373 // Only change the status if it's still waiting on the icache access
374 // to return.
375 if (fetchStatus[tid] != IcacheWaitResponse ||
376 pkt->req != memReq[tid] ||
377 isSwitchedOut()) {
378 ++fetchIcacheSquashes;
379 delete pkt->req;
380 delete pkt;
381 return;
382 }
383
384 memcpy(cacheData[tid], pkt->getPtr<uint8_t *>(), cacheBlkSize);
385 cacheDataValid[tid] = true;
386
387 if (!drainPending) {
388 // Wake up the CPU (if it went to sleep and was waiting on
389 // this completion event).
390 cpu->wakeCPU();
391
392 DPRINTF(Activity, "[tid:%u] Activating fetch due to cache completion\n",
393 tid);
394
395 switchToActive();
396 }
397
398 // Only switch to IcacheAccessComplete if we're not stalled as well.
399 if (checkStall(tid)) {
400 fetchStatus[tid] = Blocked;
401 } else {
402 fetchStatus[tid] = IcacheAccessComplete;
403 }
404
405 // Reset the mem req to NULL.
406 delete pkt->req;
407 delete pkt;
408 memReq[tid] = NULL;
409 }
410
411 template <class Impl>
412 bool
413 DefaultFetch<Impl>::drain()
414 {
415 // Fetch is ready to drain at any time.
416 cpu->signalDrained();
417 drainPending = true;
418 return true;
419 }
420
421 template <class Impl>
422 void
423 DefaultFetch<Impl>::resume()
424 {
425 drainPending = false;
426 }
427
428 template <class Impl>
429 void
430 DefaultFetch<Impl>::switchOut()
431 {
432 switchedOut = true;
433 // Branch predictor needs to have its state cleared.
434 branchPred.switchOut();
435 }
436
437 template <class Impl>
438 void
439 DefaultFetch<Impl>::takeOverFrom()
440 {
441 // Reset all state
442 for (int i = 0; i < Impl::MaxThreads; ++i) {
443 stalls[i].decode = 0;
444 stalls[i].rename = 0;
445 stalls[i].iew = 0;
446 stalls[i].commit = 0;
447 PC[i] = cpu->readPC(i);
448 nextPC[i] = cpu->readNextPC(i);
449 #if ISA_HAS_DELAY_SLOT
450 nextNPC[i] = cpu->readNextNPC(i);
451 #else
452 nextNPC[i] = nextPC[i] + sizeof(TheISA::MachInst);
453 #endif
454 fetchStatus[i] = Running;
455 }
456 numInst = 0;
457 wroteToTimeBuffer = false;
458 _status = Inactive;
459 switchedOut = false;
460 interruptPending = false;
461 branchPred.takeOverFrom();
462 }
463
464 template <class Impl>
465 void
466 DefaultFetch<Impl>::wakeFromQuiesce()
467 {
468 DPRINTF(Fetch, "Waking up from quiesce\n");
469 // Hopefully this is safe
470 // @todo: Allow other threads to wake from quiesce.
471 fetchStatus[0] = Running;
472 }
473
474 template <class Impl>
475 inline void
476 DefaultFetch<Impl>::switchToActive()
477 {
478 if (_status == Inactive) {
479 DPRINTF(Activity, "Activating stage.\n");
480
481 cpu->activateStage(O3CPU::FetchIdx);
482
483 _status = Active;
484 }
485 }
486
487 template <class Impl>
488 inline void
489 DefaultFetch<Impl>::switchToInactive()
490 {
491 if (_status == Active) {
492 DPRINTF(Activity, "Deactivating stage.\n");
493
494 cpu->deactivateStage(O3CPU::FetchIdx);
495
496 _status = Inactive;
497 }
498 }
499
500 template <class Impl>
501 bool
502 DefaultFetch<Impl>::lookupAndUpdateNextPC(DynInstPtr &inst, Addr &next_PC,
503 Addr &next_NPC)
504 {
505 // Do branch prediction check here.
506 // A bit of a misnomer...next_PC is actually the current PC until
507 // this function updates it.
508 bool predict_taken;
509
510 if (!inst->isControl()) {
511 next_PC = next_NPC;
512 next_NPC = next_NPC + instSize;
513 inst->setPredTarg(next_PC, next_NPC);
514 inst->setPredTaken(false);
515 return false;
516 }
517
518 int tid = inst->threadNumber;
519 Addr pred_PC = next_PC;
520 predict_taken = branchPred.predict(inst, pred_PC, tid);
521
522 /* if (predict_taken) {
523 DPRINTF(Fetch, "[tid:%i]: Branch predicted to be taken to %#x.\n",
524 tid, pred_PC);
525 } else {
526 DPRINTF(Fetch, "[tid:%i]: Branch predicted to be not taken.\n", tid);
527 }*/
528
529 #if ISA_HAS_DELAY_SLOT
530 next_PC = next_NPC;
531 if (predict_taken)
532 next_NPC = pred_PC;
533 else
534 next_NPC += instSize;
535 #else
536 if (predict_taken)
537 next_PC = pred_PC;
538 else
539 next_PC += instSize;
540 next_NPC = next_PC + instSize;
541 #endif
542 /* DPRINTF(Fetch, "[tid:%i]: Branch predicted to go to %#x and then %#x.\n",
543 tid, next_PC, next_NPC);*/
544 inst->setPredTarg(next_PC, next_NPC);
545 inst->setPredTaken(predict_taken);
546
547 ++fetchedBranches;
548
549 if (predict_taken) {
550 ++predictedBranches;
551 }
552
553 return predict_taken;
554 }
555
556 template <class Impl>
557 bool
558 DefaultFetch<Impl>::fetchCacheLine(Addr fetch_PC, Fault &ret_fault, unsigned tid)
559 {
560 Fault fault = NoFault;
561
562 //AlphaDep
563 if (cacheBlocked) {
564 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, cache blocked\n",
565 tid);
566 return false;
567 } else if (isSwitchedOut()) {
568 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, switched out\n",
569 tid);
570 return false;
571 } else if (interruptPending && !(fetch_PC & 0x3)) {
572 // Hold off fetch from getting new instructions when:
573 // Cache is blocked, or
574 // while an interrupt is pending and we're not in PAL mode, or
575 // fetch is switched out.
576 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, interrupt pending\n",
577 tid);
578 return false;
579 }
580
581 // Align the fetch PC so it's at the start of a cache block.
582 Addr block_PC = icacheBlockAlignPC(fetch_PC);
583
584 // If we've already got the block, no need to try to fetch it again.
585 if (cacheDataValid[tid] && block_PC == cacheDataPC[tid]) {
586 return true;
587 }
588
589 // Setup the memReq to do a read of the first instruction's address.
590 // Set the appropriate read size and flags as well.
591 // Build request here.
592 RequestPtr mem_req = new Request(tid, block_PC, cacheBlkSize, 0,
593 fetch_PC, cpu->readCpuId(), tid);
594
595 memReq[tid] = mem_req;
596
597 // Translate the instruction request.
598 fault = cpu->translateInstReq(mem_req, cpu->thread[tid]);
599
600 // In the case of faults, the fetch stage may need to stall and wait
601 // for the ITB miss to be handled.
602
603 // If translation was successful, attempt to read the first
604 // instruction.
605 if (fault == NoFault) {
606 #if 0
607 if (cpu->system->memctrl->badaddr(memReq[tid]->paddr) ||
608 memReq[tid]->isUncacheable()) {
609 DPRINTF(Fetch, "Fetch: Bad address %#x (hopefully on a "
610 "misspeculating path)!",
611 memReq[tid]->paddr);
612 ret_fault = TheISA::genMachineCheckFault();
613 return false;
614 }
615 #endif
616
617 // Build packet here.
618 PacketPtr data_pkt = new Packet(mem_req,
619 MemCmd::ReadReq, Packet::Broadcast);
620 data_pkt->dataDynamicArray(new uint8_t[cacheBlkSize]);
621
622 cacheDataPC[tid] = block_PC;
623 cacheDataValid[tid] = false;
624
625 DPRINTF(Fetch, "Fetch: Doing instruction read.\n");
626
627 fetchedCacheLines++;
628
629 // Now do the timing access to see whether or not the instruction
630 // exists within the cache.
631 if (!icachePort->sendTiming(data_pkt)) {
632 if (data_pkt->result == Packet::BadAddress) {
633 fault = TheISA::genMachineCheckFault();
634 delete mem_req;
635 memReq[tid] = NULL;
636 warn("Bad address!\n");
637 }
638 assert(retryPkt == NULL);
639 assert(retryTid == -1);
640 DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid);
641 fetchStatus[tid] = IcacheWaitRetry;
642 retryPkt = data_pkt;
643 retryTid = tid;
644 cacheBlocked = true;
645 return false;
646 }
647
648 DPRINTF(Fetch, "[tid:%i]: Doing cache access.\n", tid);
649
650 lastIcacheStall[tid] = curTick;
651
652 DPRINTF(Activity, "[tid:%i]: Activity: Waiting on I-cache "
653 "response.\n", tid);
654
655 fetchStatus[tid] = IcacheWaitResponse;
656 } else {
657 delete mem_req;
658 memReq[tid] = NULL;
659 }
660
661 ret_fault = fault;
662 return true;
663 }
664
665 template <class Impl>
666 inline void
667 DefaultFetch<Impl>::doSquash(const Addr &new_PC,
668 const Addr &new_NPC, unsigned tid)
669 {
670 DPRINTF(Fetch, "[tid:%i]: Squashing, setting PC to: %#x, NPC to: %#x.\n",
671 tid, new_PC, new_NPC);
672
673 PC[tid] = new_PC;
674 nextPC[tid] = new_NPC;
675 nextNPC[tid] = new_NPC + instSize;
676
677 // Clear the icache miss if it's outstanding.
678 if (fetchStatus[tid] == IcacheWaitResponse) {
679 DPRINTF(Fetch, "[tid:%i]: Squashing outstanding Icache miss.\n",
680 tid);
681 memReq[tid] = NULL;
682 }
683
684 // Get rid of the retrying packet if it was from this thread.
685 if (retryTid == tid) {
686 assert(cacheBlocked);
687 if (retryPkt) {
688 delete retryPkt->req;
689 delete retryPkt;
690 }
691 retryPkt = NULL;
692 retryTid = -1;
693 }
694
695 fetchStatus[tid] = Squashing;
696
697 ++fetchSquashCycles;
698 }
699
700 template<class Impl>
701 void
702 DefaultFetch<Impl>::squashFromDecode(const Addr &new_PC, const Addr &new_NPC,
703 const InstSeqNum &seq_num,
704 unsigned tid)
705 {
706 DPRINTF(Fetch, "[tid:%i]: Squashing from decode.\n",tid);
707
708 doSquash(new_PC, new_NPC, tid);
709
710 // Tell the CPU to remove any instructions that are in flight between
711 // fetch and decode.
712 cpu->removeInstsUntil(seq_num, tid);
713 }
714
715 template<class Impl>
716 bool
717 DefaultFetch<Impl>::checkStall(unsigned tid) const
718 {
719 bool ret_val = false;
720
721 if (cpu->contextSwitch) {
722 DPRINTF(Fetch,"[tid:%i]: Stalling for a context switch.\n",tid);
723 ret_val = true;
724 } else if (stalls[tid].decode) {
725 DPRINTF(Fetch,"[tid:%i]: Stall from Decode stage detected.\n",tid);
726 ret_val = true;
727 } else if (stalls[tid].rename) {
728 DPRINTF(Fetch,"[tid:%i]: Stall from Rename stage detected.\n",tid);
729 ret_val = true;
730 } else if (stalls[tid].iew) {
731 DPRINTF(Fetch,"[tid:%i]: Stall from IEW stage detected.\n",tid);
732 ret_val = true;
733 } else if (stalls[tid].commit) {
734 DPRINTF(Fetch,"[tid:%i]: Stall from Commit stage detected.\n",tid);
735 ret_val = true;
736 }
737
738 return ret_val;
739 }
740
741 template<class Impl>
742 typename DefaultFetch<Impl>::FetchStatus
743 DefaultFetch<Impl>::updateFetchStatus()
744 {
745 //Check Running
746 std::list<unsigned>::iterator threads = activeThreads->begin();
747 std::list<unsigned>::iterator end = activeThreads->end();
748
749 while (threads != end) {
750 unsigned tid = *threads++;
751
752 if (fetchStatus[tid] == Running ||
753 fetchStatus[tid] == Squashing ||
754 fetchStatus[tid] == IcacheAccessComplete) {
755
756 if (_status == Inactive) {
757 DPRINTF(Activity, "[tid:%i]: Activating stage.\n",tid);
758
759 if (fetchStatus[tid] == IcacheAccessComplete) {
760 DPRINTF(Activity, "[tid:%i]: Activating fetch due to cache"
761 "completion\n",tid);
762 }
763
764 cpu->activateStage(O3CPU::FetchIdx);
765 }
766
767 return Active;
768 }
769 }
770
771 // Stage is switching from active to inactive, notify CPU of it.
772 if (_status == Active) {
773 DPRINTF(Activity, "Deactivating stage.\n");
774
775 cpu->deactivateStage(O3CPU::FetchIdx);
776 }
777
778 return Inactive;
779 }
780
781 template <class Impl>
782 void
783 DefaultFetch<Impl>::squash(const Addr &new_PC, const Addr &new_NPC,
784 const InstSeqNum &seq_num,
785 bool squash_delay_slot, unsigned tid)
786 {
787 DPRINTF(Fetch, "[tid:%u]: Squash from commit.\n",tid);
788
789 doSquash(new_PC, new_NPC, tid);
790
791 #if ISA_HAS_DELAY_SLOT
792 // Tell the CPU to remove any instructions that are not in the ROB.
793 cpu->removeInstsNotInROB(tid, squash_delay_slot, seq_num);
794 #else
795 // Tell the CPU to remove any instructions that are not in the ROB.
796 cpu->removeInstsNotInROB(tid, true, 0);
797 #endif
798 }
799
800 template <class Impl>
801 void
802 DefaultFetch<Impl>::tick()
803 {
804 std::list<unsigned>::iterator threads = activeThreads->begin();
805 std::list<unsigned>::iterator end = activeThreads->end();
806 bool status_change = false;
807
808 wroteToTimeBuffer = false;
809
810 while (threads != end) {
811 unsigned tid = *threads++;
812
813 // Check the signals for each thread to determine the proper status
814 // for each thread.
815 bool updated_status = checkSignalsAndUpdate(tid);
816 status_change = status_change || updated_status;
817 }
818
819 DPRINTF(Fetch, "Running stage.\n");
820
821 // Reset the number of the instruction we're fetching.
822 numInst = 0;
823
824 #if FULL_SYSTEM
825 if (fromCommit->commitInfo[0].interruptPending) {
826 interruptPending = true;
827 }
828
829 if (fromCommit->commitInfo[0].clearInterrupt) {
830 interruptPending = false;
831 }
832 #endif
833
834 for (threadFetched = 0; threadFetched < numFetchingThreads;
835 threadFetched++) {
836 // Fetch each of the actively fetching threads.
837 fetch(status_change);
838 }
839
840 // Record number of instructions fetched this cycle for distribution.
841 fetchNisnDist.sample(numInst);
842
843 if (status_change) {
844 // Change the fetch stage status if there was a status change.
845 _status = updateFetchStatus();
846 }
847
848 // If there was activity this cycle, inform the CPU of it.
849 if (wroteToTimeBuffer || cpu->contextSwitch) {
850 DPRINTF(Activity, "Activity this cycle.\n");
851
852 cpu->activityThisCycle();
853 }
854 }
855
856 template <class Impl>
857 bool
858 DefaultFetch<Impl>::checkSignalsAndUpdate(unsigned tid)
859 {
860 // Update the per thread stall statuses.
861 if (fromDecode->decodeBlock[tid]) {
862 stalls[tid].decode = true;
863 }
864
865 if (fromDecode->decodeUnblock[tid]) {
866 assert(stalls[tid].decode);
867 assert(!fromDecode->decodeBlock[tid]);
868 stalls[tid].decode = false;
869 }
870
871 if (fromRename->renameBlock[tid]) {
872 stalls[tid].rename = true;
873 }
874
875 if (fromRename->renameUnblock[tid]) {
876 assert(stalls[tid].rename);
877 assert(!fromRename->renameBlock[tid]);
878 stalls[tid].rename = false;
879 }
880
881 if (fromIEW->iewBlock[tid]) {
882 stalls[tid].iew = true;
883 }
884
885 if (fromIEW->iewUnblock[tid]) {
886 assert(stalls[tid].iew);
887 assert(!fromIEW->iewBlock[tid]);
888 stalls[tid].iew = false;
889 }
890
891 if (fromCommit->commitBlock[tid]) {
892 stalls[tid].commit = true;
893 }
894
895 if (fromCommit->commitUnblock[tid]) {
896 assert(stalls[tid].commit);
897 assert(!fromCommit->commitBlock[tid]);
898 stalls[tid].commit = false;
899 }
900
901 // Check squash signals from commit.
902 if (fromCommit->commitInfo[tid].squash) {
903
904 DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
905 "from commit.\n",tid);
906
907 #if ISA_HAS_DELAY_SLOT
908 InstSeqNum doneSeqNum = fromCommit->commitInfo[tid].bdelayDoneSeqNum;
909 #else
910 InstSeqNum doneSeqNum = fromCommit->commitInfo[tid].doneSeqNum;
911 #endif
912 // In any case, squash.
913 squash(fromCommit->commitInfo[tid].nextPC,
914 fromCommit->commitInfo[tid].nextNPC,
915 doneSeqNum,
916 fromCommit->commitInfo[tid].squashDelaySlot,
917 tid);
918
919 // Also check if there's a mispredict that happened.
920 if (fromCommit->commitInfo[tid].branchMispredict) {
921 branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
922 fromCommit->commitInfo[tid].nextPC,
923 fromCommit->commitInfo[tid].branchTaken,
924 tid);
925 } else {
926 branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
927 tid);
928 }
929
930 return true;
931 } else if (fromCommit->commitInfo[tid].doneSeqNum) {
932 // Update the branch predictor if it wasn't a squashed instruction
933 // that was broadcasted.
934 branchPred.update(fromCommit->commitInfo[tid].doneSeqNum, tid);
935 }
936
937 // Check ROB squash signals from commit.
938 if (fromCommit->commitInfo[tid].robSquashing) {
939 DPRINTF(Fetch, "[tid:%u]: ROB is still squashing.\n", tid);
940
941 // Continue to squash.
942 fetchStatus[tid] = Squashing;
943
944 return true;
945 }
946
947 // Check squash signals from decode.
948 if (fromDecode->decodeInfo[tid].squash) {
949 DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
950 "from decode.\n",tid);
951
952 // Update the branch predictor.
953 if (fromDecode->decodeInfo[tid].branchMispredict) {
954 branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
955 fromDecode->decodeInfo[tid].nextPC,
956 fromDecode->decodeInfo[tid].branchTaken,
957 tid);
958 } else {
959 branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
960 tid);
961 }
962
963 if (fetchStatus[tid] != Squashing) {
964
965 #if ISA_HAS_DELAY_SLOT
966 InstSeqNum doneSeqNum = fromDecode->decodeInfo[tid].bdelayDoneSeqNum;
967 #else
968 InstSeqNum doneSeqNum = fromDecode->decodeInfo[tid].doneSeqNum;
969 #endif
970 DPRINTF(Fetch, "Squashing from decode with PC = %#x, NPC = %#x\n",
971 fromDecode->decodeInfo[tid].nextPC,
972 fromDecode->decodeInfo[tid].nextNPC);
973 // Squash unless we're already squashing
974 squashFromDecode(fromDecode->decodeInfo[tid].nextPC,
975 fromDecode->decodeInfo[tid].nextNPC,
976 doneSeqNum,
977 tid);
978
979 return true;
980 }
981 }
982
983 if (checkStall(tid) &&
984 fetchStatus[tid] != IcacheWaitResponse &&
985 fetchStatus[tid] != IcacheWaitRetry) {
986 DPRINTF(Fetch, "[tid:%i]: Setting to blocked\n",tid);
987
988 fetchStatus[tid] = Blocked;
989
990 return true;
991 }
992
993 if (fetchStatus[tid] == Blocked ||
994 fetchStatus[tid] == Squashing) {
995 // Switch status to running if fetch isn't being told to block or
996 // squash this cycle.
997 DPRINTF(Fetch, "[tid:%i]: Done squashing, switching to running.\n",
998 tid);
999
1000 fetchStatus[tid] = Running;
1001
1002 return true;
1003 }
1004
1005 // If we've reached this point, we have not gotten any signals that
1006 // cause fetch to change its status. Fetch remains the same as before.
1007 return false;
1008 }
1009
1010 template<class Impl>
1011 void
1012 DefaultFetch<Impl>::fetch(bool &status_change)
1013 {
1014 //////////////////////////////////////////
1015 // Start actual fetch
1016 //////////////////////////////////////////
1017 int tid = getFetchingThread(fetchPolicy);
1018
1019 if (tid == -1 || drainPending) {
1020 DPRINTF(Fetch,"There are no more threads available to fetch from.\n");
1021
1022 // Breaks looping condition in tick()
1023 threadFetched = numFetchingThreads;
1024 return;
1025 }
1026
1027 DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid);
1028
1029 // The current PC.
1030 Addr &fetch_PC = PC[tid];
1031
1032 Addr &fetch_NPC = nextPC[tid];
1033
1034 // Fault code for memory access.
1035 Fault fault = NoFault;
1036
1037 // If returning from the delay of a cache miss, then update the status
1038 // to running, otherwise do the cache access. Possibly move this up
1039 // to tick() function.
1040 if (fetchStatus[tid] == IcacheAccessComplete) {
1041 DPRINTF(Fetch, "[tid:%i]: Icache miss is complete.\n",
1042 tid);
1043
1044 fetchStatus[tid] = Running;
1045 status_change = true;
1046 } else if (fetchStatus[tid] == Running) {
1047 DPRINTF(Fetch, "[tid:%i]: Attempting to translate and read "
1048 "instruction, starting at PC %08p.\n",
1049 tid, fetch_PC);
1050
1051 bool fetch_success = fetchCacheLine(fetch_PC, fault, tid);
1052 if (!fetch_success) {
1053 if (cacheBlocked) {
1054 ++icacheStallCycles;
1055 } else {
1056 ++fetchMiscStallCycles;
1057 }
1058 return;
1059 }
1060 } else {
1061 if (fetchStatus[tid] == Idle) {
1062 ++fetchIdleCycles;
1063 DPRINTF(Fetch, "[tid:%i]: Fetch is idle!\n", tid);
1064 } else if (fetchStatus[tid] == Blocked) {
1065 ++fetchBlockedCycles;
1066 DPRINTF(Fetch, "[tid:%i]: Fetch is blocked!\n", tid);
1067 } else if (fetchStatus[tid] == Squashing) {
1068 ++fetchSquashCycles;
1069 DPRINTF(Fetch, "[tid:%i]: Fetch is squashing!\n", tid);
1070 } else if (fetchStatus[tid] == IcacheWaitResponse) {
1071 ++icacheStallCycles;
1072 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting cache response!\n", tid);
1073 }
1074
1075 // Status is Idle, Squashing, Blocked, or IcacheWaitResponse, so
1076 // fetch should do nothing.
1077 return;
1078 }
1079
1080 ++fetchCycles;
1081
1082 // If we had a stall due to an icache miss, then return.
1083 if (fetchStatus[tid] == IcacheWaitResponse) {
1084 ++icacheStallCycles;
1085 status_change = true;
1086 return;
1087 }
1088
1089 Addr next_PC = fetch_PC;
1090 Addr next_NPC = fetch_NPC;
1091
1092 InstSeqNum inst_seq;
1093 MachInst inst;
1094 ExtMachInst ext_inst;
1095 // @todo: Fix this hack.
1096 unsigned offset = (fetch_PC & cacheBlkMask) & ~3;
1097
1098 if (fault == NoFault) {
1099 // If the read of the first instruction was successful, then grab the
1100 // instructions from the rest of the cache line and put them into the
1101 // queue heading to decode.
1102
1103 DPRINTF(Fetch, "[tid:%i]: Adding instructions to queue to "
1104 "decode.\n",tid);
1105
1106 // Need to keep track of whether or not a predicted branch
1107 // ended this fetch block.
1108 bool predicted_branch = false;
1109
1110 for (;
1111 offset < cacheBlkSize &&
1112 numInst < fetchWidth &&
1113 !predicted_branch;
1114 ++numInst) {
1115
1116 // If we're branching after this instruction, quite fetching
1117 // from the same block then.
1118 predicted_branch =
1119 (fetch_PC + sizeof(TheISA::MachInst) != fetch_NPC);
1120 if (predicted_branch) {
1121 DPRINTF(Fetch, "Branch detected with PC = %#x, NPC = %#x\n",
1122 fetch_PC, fetch_NPC);
1123 }
1124
1125
1126 // Get a sequence number.
1127 inst_seq = cpu->getAndIncrementInstSeq();
1128
1129 // Make sure this is a valid index.
1130 assert(offset <= cacheBlkSize - instSize);
1131
1132 // Get the instruction from the array of the cache line.
1133 inst = TheISA::gtoh(*reinterpret_cast<TheISA::MachInst *>
1134 (&cacheData[tid][offset]));
1135
1136 predecoder.setTC(cpu->thread[tid]->getTC());
1137 predecoder.moreBytes(fetch_PC, 0, inst);
1138
1139 ext_inst = predecoder.getExtMachInst();
1140
1141 // Create a new DynInst from the instruction fetched.
1142 DynInstPtr instruction = new DynInst(ext_inst,
1143 fetch_PC, fetch_NPC,
1144 next_PC, next_NPC,
1145 inst_seq, cpu);
1146 instruction->setTid(tid);
1147
1148 instruction->setASID(tid);
1149
1150 instruction->setThreadState(cpu->thread[tid]);
1151
1152 DPRINTF(Fetch, "[tid:%i]: Instruction PC %#x created "
1153 "[sn:%lli]\n",
1154 tid, instruction->readPC(), inst_seq);
1155
1156 //DPRINTF(Fetch, "[tid:%i]: MachInst is %#x\n", tid, ext_inst);
1157
1158 DPRINTF(Fetch, "[tid:%i]: Instruction is: %s\n",
1159 tid, instruction->staticInst->disassemble(fetch_PC));
1160
1161 instruction->traceData =
1162 Trace::getInstRecord(curTick, cpu->tcBase(tid),
1163 instruction->staticInst,
1164 instruction->readPC());
1165
1166 ///FIXME This needs to be more robust in dealing with delay slots
1167 #if !ISA_HAS_DELAY_SLOT
1168 // predicted_branch |=
1169 #endif
1170 lookupAndUpdateNextPC(instruction, next_PC, next_NPC);
1171 predicted_branch |= (next_PC != fetch_NPC);
1172
1173 // Add instruction to the CPU's list of instructions.
1174 instruction->setInstListIt(cpu->addInst(instruction));
1175
1176 // Write the instruction to the first slot in the queue
1177 // that heads to decode.
1178 toDecode->insts[numInst] = instruction;
1179
1180 toDecode->size++;
1181
1182 // Increment stat of fetched instructions.
1183 ++fetchedInsts;
1184
1185 // Move to the next instruction, unless we have a branch.
1186 fetch_PC = next_PC;
1187 fetch_NPC = next_NPC;
1188
1189 if (instruction->isQuiesce()) {
1190 DPRINTF(Fetch, "Quiesce instruction encountered, halting fetch!",
1191 curTick);
1192 fetchStatus[tid] = QuiescePending;
1193 ++numInst;
1194 status_change = true;
1195 break;
1196 }
1197
1198 offset += instSize;
1199 }
1200
1201 if (offset >= cacheBlkSize) {
1202 DPRINTF(Fetch, "[tid:%i]: Done fetching, reached the end of cache "
1203 "block.\n", tid);
1204 } else if (numInst >= fetchWidth) {
1205 DPRINTF(Fetch, "[tid:%i]: Done fetching, reached fetch bandwidth "
1206 "for this cycle.\n", tid);
1207 } else if (predicted_branch) {
1208 DPRINTF(Fetch, "[tid:%i]: Done fetching, predicted branch "
1209 "instruction encountered.\n", tid);
1210 }
1211 }
1212
1213 if (numInst > 0) {
1214 wroteToTimeBuffer = true;
1215 }
1216
1217 // Now that fetching is completed, update the PC to signify what the next
1218 // cycle will be.
1219 if (fault == NoFault) {
1220 PC[tid] = next_PC;
1221 nextPC[tid] = next_NPC;
1222 nextNPC[tid] = next_NPC + instSize;
1223 #if ISA_HAS_DELAY_SLOT
1224 DPRINTF(Fetch, "[tid:%i]: Setting PC to %08p.\n", tid, PC[tid]);
1225 #else
1226 DPRINTF(Fetch, "[tid:%i]: Setting PC to %08p.\n", tid, next_PC);
1227 #endif
1228 } else {
1229 // We shouldn't be in an icache miss and also have a fault (an ITB
1230 // miss)
1231 if (fetchStatus[tid] == IcacheWaitResponse) {
1232 panic("Fetch should have exited prior to this!");
1233 }
1234
1235 // Send the fault to commit. This thread will not do anything
1236 // until commit handles the fault. The only other way it can
1237 // wake up is if a squash comes along and changes the PC.
1238 #if FULL_SYSTEM
1239 assert(numInst < fetchWidth);
1240 // Get a sequence number.
1241 inst_seq = cpu->getAndIncrementInstSeq();
1242 // We will use a nop in order to carry the fault.
1243 ext_inst = TheISA::NoopMachInst;
1244
1245 // Create a new DynInst from the dummy nop.
1246 DynInstPtr instruction = new DynInst(ext_inst,
1247 fetch_PC, fetch_NPC,
1248 next_PC, next_NPC,
1249 inst_seq, cpu);
1250 instruction->setPredTarg(next_PC, next_NPC);
1251 instruction->setTid(tid);
1252
1253 instruction->setASID(tid);
1254
1255 instruction->setThreadState(cpu->thread[tid]);
1256
1257 instruction->traceData = NULL;
1258
1259 instruction->setInstListIt(cpu->addInst(instruction));
1260
1261 instruction->fault = fault;
1262
1263 toDecode->insts[numInst] = instruction;
1264 toDecode->size++;
1265
1266 DPRINTF(Fetch, "[tid:%i]: Blocked, need to handle the trap.\n",tid);
1267
1268 fetchStatus[tid] = TrapPending;
1269 status_change = true;
1270 #else // !FULL_SYSTEM
1271 fetchStatus[tid] = TrapPending;
1272 status_change = true;
1273
1274 #endif // FULL_SYSTEM
1275 DPRINTF(Fetch, "[tid:%i]: fault (%s) detected @ PC %08p",
1276 tid, fault->name(), PC[tid]);
1277 }
1278 }
1279
1280 template<class Impl>
1281 void
1282 DefaultFetch<Impl>::recvRetry()
1283 {
1284 if (retryPkt != NULL) {
1285 assert(cacheBlocked);
1286 assert(retryTid != -1);
1287 assert(fetchStatus[retryTid] == IcacheWaitRetry);
1288
1289 if (icachePort->sendTiming(retryPkt)) {
1290 fetchStatus[retryTid] = IcacheWaitResponse;
1291 retryPkt = NULL;
1292 retryTid = -1;
1293 cacheBlocked = false;
1294 }
1295 } else {
1296 assert(retryTid == -1);
1297 // Access has been squashed since it was sent out. Just clear
1298 // the cache being blocked.
1299 cacheBlocked = false;
1300 }
1301 }
1302
1303 ///////////////////////////////////////
1304 // //
1305 // SMT FETCH POLICY MAINTAINED HERE //
1306 // //
1307 ///////////////////////////////////////
1308 template<class Impl>
1309 int
1310 DefaultFetch<Impl>::getFetchingThread(FetchPriority &fetch_priority)
1311 {
1312 if (numThreads > 1) {
1313 switch (fetch_priority) {
1314
1315 case SingleThread:
1316 return 0;
1317
1318 case RoundRobin:
1319 return roundRobin();
1320
1321 case IQ:
1322 return iqCount();
1323
1324 case LSQ:
1325 return lsqCount();
1326
1327 case Branch:
1328 return branchCount();
1329
1330 default:
1331 return -1;
1332 }
1333 } else {
1334 std::list<unsigned>::iterator thread = activeThreads->begin();
1335 assert(thread != activeThreads->end());
1336 int tid = *thread;
1337
1338 if (fetchStatus[tid] == Running ||
1339 fetchStatus[tid] == IcacheAccessComplete ||
1340 fetchStatus[tid] == Idle) {
1341 return tid;
1342 } else {
1343 return -1;
1344 }
1345 }
1346
1347 }
1348
1349
1350 template<class Impl>
1351 int
1352 DefaultFetch<Impl>::roundRobin()
1353 {
1354 std::list<unsigned>::iterator pri_iter = priorityList.begin();
1355 std::list<unsigned>::iterator end = priorityList.end();
1356
1357 int high_pri;
1358
1359 while (pri_iter != end) {
1360 high_pri = *pri_iter;
1361
1362 assert(high_pri <= numThreads);
1363
1364 if (fetchStatus[high_pri] == Running ||
1365 fetchStatus[high_pri] == IcacheAccessComplete ||
1366 fetchStatus[high_pri] == Idle) {
1367
1368 priorityList.erase(pri_iter);
1369 priorityList.push_back(high_pri);
1370
1371 return high_pri;
1372 }
1373
1374 pri_iter++;
1375 }
1376
1377 return -1;
1378 }
1379
1380 template<class Impl>
1381 int
1382 DefaultFetch<Impl>::iqCount()
1383 {
1384 std::priority_queue<unsigned> PQ;
1385
1386 std::list<unsigned>::iterator threads = activeThreads->begin();
1387 std::list<unsigned>::iterator end = activeThreads->end();
1388
1389 while (threads != end) {
1390 unsigned tid = *threads++;
1391
1392 PQ.push(fromIEW->iewInfo[tid].iqCount);
1393 }
1394
1395 while (!PQ.empty()) {
1396
1397 unsigned high_pri = PQ.top();
1398
1399 if (fetchStatus[high_pri] == Running ||
1400 fetchStatus[high_pri] == IcacheAccessComplete ||
1401 fetchStatus[high_pri] == Idle)
1402 return high_pri;
1403 else
1404 PQ.pop();
1405
1406 }
1407
1408 return -1;
1409 }
1410
1411 template<class Impl>
1412 int
1413 DefaultFetch<Impl>::lsqCount()
1414 {
1415 std::priority_queue<unsigned> PQ;
1416
1417 std::list<unsigned>::iterator threads = activeThreads->begin();
1418 std::list<unsigned>::iterator end = activeThreads->end();
1419
1420 while (threads != end) {
1421 unsigned tid = *threads++;
1422
1423 PQ.push(fromIEW->iewInfo[tid].ldstqCount);
1424 }
1425
1426 while (!PQ.empty()) {
1427
1428 unsigned high_pri = PQ.top();
1429
1430 if (fetchStatus[high_pri] == Running ||
1431 fetchStatus[high_pri] == IcacheAccessComplete ||
1432 fetchStatus[high_pri] == Idle)
1433 return high_pri;
1434 else
1435 PQ.pop();
1436
1437 }
1438
1439 return -1;
1440 }
1441
1442 template<class Impl>
1443 int
1444 DefaultFetch<Impl>::branchCount()
1445 {
1446 std::list<unsigned>::iterator thread = activeThreads->begin();
1447 assert(thread != activeThreads->end());
1448 unsigned tid = *thread;
1449
1450 panic("Branch Count Fetch policy unimplemented\n");
1451 return 0 * tid;
1452 }