Make branches work by repopulating the predecoder every time through. This is probabl...
[gem5.git] / src / cpu / o3 / fetch_impl.hh
1 /*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 * Korey Sewell
30 */
31
32 #include <algorithm>
33 #include <cstring>
34
35 #include "config/use_checker.hh"
36
37 #include "arch/isa_traits.hh"
38 #include "arch/utility.hh"
39 #include "cpu/checker/cpu.hh"
40 #include "cpu/exetrace.hh"
41 #include "cpu/o3/fetch.hh"
42 #include "mem/packet.hh"
43 #include "mem/request.hh"
44 #include "sim/byteswap.hh"
45 #include "sim/host.hh"
46 #include "sim/core.hh"
47
48 #if FULL_SYSTEM
49 #include "arch/tlb.hh"
50 #include "arch/vtophys.hh"
51 #include "sim/system.hh"
52 #endif // FULL_SYSTEM
53
54 template<class Impl>
55 void
56 DefaultFetch<Impl>::IcachePort::setPeer(Port *port)
57 {
58 Port::setPeer(port);
59
60 fetch->setIcache();
61 }
62
63 template<class Impl>
64 Tick
65 DefaultFetch<Impl>::IcachePort::recvAtomic(PacketPtr pkt)
66 {
67 panic("DefaultFetch doesn't expect recvAtomic callback!");
68 return curTick;
69 }
70
71 template<class Impl>
72 void
73 DefaultFetch<Impl>::IcachePort::recvFunctional(PacketPtr pkt)
74 {
75 DPRINTF(Fetch, "DefaultFetch doesn't update its state from a "
76 "functional call.");
77 }
78
79 template<class Impl>
80 void
81 DefaultFetch<Impl>::IcachePort::recvStatusChange(Status status)
82 {
83 if (status == RangeChange) {
84 if (!snoopRangeSent) {
85 snoopRangeSent = true;
86 sendStatusChange(Port::RangeChange);
87 }
88 return;
89 }
90
91 panic("DefaultFetch doesn't expect recvStatusChange callback!");
92 }
93
94 template<class Impl>
95 bool
96 DefaultFetch<Impl>::IcachePort::recvTiming(PacketPtr pkt)
97 {
98 DPRINTF(Fetch, "Received timing\n");
99 if (pkt->isResponse()) {
100 fetch->processCacheCompletion(pkt);
101 }
102 //else Snooped a coherence request, just return
103 return true;
104 }
105
106 template<class Impl>
107 void
108 DefaultFetch<Impl>::IcachePort::recvRetry()
109 {
110 fetch->recvRetry();
111 }
112
113 template<class Impl>
114 DefaultFetch<Impl>::DefaultFetch(O3CPU *_cpu, Params *params)
115 : cpu(_cpu),
116 branchPred(params),
117 predecoder(NULL),
118 decodeToFetchDelay(params->decodeToFetchDelay),
119 renameToFetchDelay(params->renameToFetchDelay),
120 iewToFetchDelay(params->iewToFetchDelay),
121 commitToFetchDelay(params->commitToFetchDelay),
122 fetchWidth(params->fetchWidth),
123 cacheBlocked(false),
124 retryPkt(NULL),
125 retryTid(-1),
126 numThreads(params->numberOfThreads),
127 numFetchingThreads(params->smtNumFetchingThreads),
128 interruptPending(false),
129 drainPending(false),
130 switchedOut(false)
131 {
132 if (numThreads > Impl::MaxThreads)
133 fatal("numThreads is not a valid value\n");
134
135 // Set fetch stage's status to inactive.
136 _status = Inactive;
137
138 std::string policy = params->smtFetchPolicy;
139
140 // Convert string to lowercase
141 std::transform(policy.begin(), policy.end(), policy.begin(),
142 (int(*)(int)) tolower);
143
144 // Figure out fetch policy
145 if (policy == "singlethread") {
146 fetchPolicy = SingleThread;
147 if (numThreads > 1)
148 panic("Invalid Fetch Policy for a SMT workload.");
149 } else if (policy == "roundrobin") {
150 fetchPolicy = RoundRobin;
151 DPRINTF(Fetch, "Fetch policy set to Round Robin\n");
152 } else if (policy == "branch") {
153 fetchPolicy = Branch;
154 DPRINTF(Fetch, "Fetch policy set to Branch Count\n");
155 } else if (policy == "iqcount") {
156 fetchPolicy = IQ;
157 DPRINTF(Fetch, "Fetch policy set to IQ count\n");
158 } else if (policy == "lsqcount") {
159 fetchPolicy = LSQ;
160 DPRINTF(Fetch, "Fetch policy set to LSQ count\n");
161 } else {
162 fatal("Invalid Fetch Policy. Options Are: {SingleThread,"
163 " RoundRobin,LSQcount,IQcount}\n");
164 }
165
166 // Get the size of an instruction.
167 instSize = sizeof(TheISA::MachInst);
168
169 // Name is finally available, so create the port.
170 icachePort = new IcachePort(this);
171
172 icachePort->snoopRangeSent = false;
173
174 #if USE_CHECKER
175 if (cpu->checker) {
176 cpu->checker->setIcachePort(icachePort);
177 }
178 #endif
179 }
180
181 template <class Impl>
182 std::string
183 DefaultFetch<Impl>::name() const
184 {
185 return cpu->name() + ".fetch";
186 }
187
188 template <class Impl>
189 void
190 DefaultFetch<Impl>::regStats()
191 {
192 icacheStallCycles
193 .name(name() + ".icacheStallCycles")
194 .desc("Number of cycles fetch is stalled on an Icache miss")
195 .prereq(icacheStallCycles);
196
197 fetchedInsts
198 .name(name() + ".Insts")
199 .desc("Number of instructions fetch has processed")
200 .prereq(fetchedInsts);
201
202 fetchedBranches
203 .name(name() + ".Branches")
204 .desc("Number of branches that fetch encountered")
205 .prereq(fetchedBranches);
206
207 predictedBranches
208 .name(name() + ".predictedBranches")
209 .desc("Number of branches that fetch has predicted taken")
210 .prereq(predictedBranches);
211
212 fetchCycles
213 .name(name() + ".Cycles")
214 .desc("Number of cycles fetch has run and was not squashing or"
215 " blocked")
216 .prereq(fetchCycles);
217
218 fetchSquashCycles
219 .name(name() + ".SquashCycles")
220 .desc("Number of cycles fetch has spent squashing")
221 .prereq(fetchSquashCycles);
222
223 fetchIdleCycles
224 .name(name() + ".IdleCycles")
225 .desc("Number of cycles fetch was idle")
226 .prereq(fetchIdleCycles);
227
228 fetchBlockedCycles
229 .name(name() + ".BlockedCycles")
230 .desc("Number of cycles fetch has spent blocked")
231 .prereq(fetchBlockedCycles);
232
233 fetchedCacheLines
234 .name(name() + ".CacheLines")
235 .desc("Number of cache lines fetched")
236 .prereq(fetchedCacheLines);
237
238 fetchMiscStallCycles
239 .name(name() + ".MiscStallCycles")
240 .desc("Number of cycles fetch has spent waiting on interrupts, or "
241 "bad addresses, or out of MSHRs")
242 .prereq(fetchMiscStallCycles);
243
244 fetchIcacheSquashes
245 .name(name() + ".IcacheSquashes")
246 .desc("Number of outstanding Icache misses that were squashed")
247 .prereq(fetchIcacheSquashes);
248
249 fetchNisnDist
250 .init(/* base value */ 0,
251 /* last value */ fetchWidth,
252 /* bucket size */ 1)
253 .name(name() + ".rateDist")
254 .desc("Number of instructions fetched each cycle (Total)")
255 .flags(Stats::pdf);
256
257 idleRate
258 .name(name() + ".idleRate")
259 .desc("Percent of cycles fetch was idle")
260 .prereq(idleRate);
261 idleRate = fetchIdleCycles * 100 / cpu->numCycles;
262
263 branchRate
264 .name(name() + ".branchRate")
265 .desc("Number of branch fetches per cycle")
266 .flags(Stats::total);
267 branchRate = fetchedBranches / cpu->numCycles;
268
269 fetchRate
270 .name(name() + ".rate")
271 .desc("Number of inst fetches per cycle")
272 .flags(Stats::total);
273 fetchRate = fetchedInsts / cpu->numCycles;
274
275 branchPred.regStats();
276 }
277
278 template<class Impl>
279 void
280 DefaultFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer)
281 {
282 timeBuffer = time_buffer;
283
284 // Create wires to get information from proper places in time buffer.
285 fromDecode = timeBuffer->getWire(-decodeToFetchDelay);
286 fromRename = timeBuffer->getWire(-renameToFetchDelay);
287 fromIEW = timeBuffer->getWire(-iewToFetchDelay);
288 fromCommit = timeBuffer->getWire(-commitToFetchDelay);
289 }
290
291 template<class Impl>
292 void
293 DefaultFetch<Impl>::setActiveThreads(std::list<unsigned> *at_ptr)
294 {
295 activeThreads = at_ptr;
296 }
297
298 template<class Impl>
299 void
300 DefaultFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
301 {
302 fetchQueue = fq_ptr;
303
304 // Create wire to write information to proper place in fetch queue.
305 toDecode = fetchQueue->getWire(0);
306 }
307
308 template<class Impl>
309 void
310 DefaultFetch<Impl>::initStage()
311 {
312 // Setup PC and nextPC with initial state.
313 for (int tid = 0; tid < numThreads; tid++) {
314 PC[tid] = cpu->readPC(tid);
315 nextPC[tid] = cpu->readNextPC(tid);
316 nextNPC[tid] = cpu->readNextNPC(tid);
317 }
318
319 for (int tid=0; tid < numThreads; tid++) {
320
321 fetchStatus[tid] = Running;
322
323 priorityList.push_back(tid);
324
325 memReq[tid] = NULL;
326
327 stalls[tid].decode = false;
328 stalls[tid].rename = false;
329 stalls[tid].iew = false;
330 stalls[tid].commit = false;
331 }
332
333 // Schedule fetch to get the correct PC from the CPU
334 // scheduleFetchStartupEvent(1);
335
336 // Fetch needs to start fetching instructions at the very beginning,
337 // so it must start up in active state.
338 switchToActive();
339 }
340
341 template<class Impl>
342 void
343 DefaultFetch<Impl>::setIcache()
344 {
345 // Size of cache block.
346 cacheBlkSize = icachePort->peerBlockSize();
347
348 // Create mask to get rid of offset bits.
349 cacheBlkMask = (cacheBlkSize - 1);
350
351 for (int tid=0; tid < numThreads; tid++) {
352 // Create space to store a cache line.
353 cacheData[tid] = new uint8_t[cacheBlkSize];
354 cacheDataPC[tid] = 0;
355 cacheDataValid[tid] = false;
356 }
357 }
358
359 template<class Impl>
360 void
361 DefaultFetch<Impl>::processCacheCompletion(PacketPtr pkt)
362 {
363 unsigned tid = pkt->req->getThreadNum();
364
365 DPRINTF(Fetch, "[tid:%u] Waking up from cache miss.\n",tid);
366
367 // Only change the status if it's still waiting on the icache access
368 // to return.
369 if (fetchStatus[tid] != IcacheWaitResponse ||
370 pkt->req != memReq[tid] ||
371 isSwitchedOut()) {
372 ++fetchIcacheSquashes;
373 delete pkt->req;
374 delete pkt;
375 return;
376 }
377
378 memcpy(cacheData[tid], pkt->getPtr<uint8_t>(), cacheBlkSize);
379 cacheDataValid[tid] = true;
380
381 if (!drainPending) {
382 // Wake up the CPU (if it went to sleep and was waiting on
383 // this completion event).
384 cpu->wakeCPU();
385
386 DPRINTF(Activity, "[tid:%u] Activating fetch due to cache completion\n",
387 tid);
388
389 switchToActive();
390 }
391
392 // Only switch to IcacheAccessComplete if we're not stalled as well.
393 if (checkStall(tid)) {
394 fetchStatus[tid] = Blocked;
395 } else {
396 fetchStatus[tid] = IcacheAccessComplete;
397 }
398
399 // Reset the mem req to NULL.
400 delete pkt->req;
401 delete pkt;
402 memReq[tid] = NULL;
403 }
404
405 template <class Impl>
406 bool
407 DefaultFetch<Impl>::drain()
408 {
409 // Fetch is ready to drain at any time.
410 cpu->signalDrained();
411 drainPending = true;
412 return true;
413 }
414
415 template <class Impl>
416 void
417 DefaultFetch<Impl>::resume()
418 {
419 drainPending = false;
420 }
421
422 template <class Impl>
423 void
424 DefaultFetch<Impl>::switchOut()
425 {
426 switchedOut = true;
427 // Branch predictor needs to have its state cleared.
428 branchPred.switchOut();
429 }
430
431 template <class Impl>
432 void
433 DefaultFetch<Impl>::takeOverFrom()
434 {
435 // Reset all state
436 for (int i = 0; i < Impl::MaxThreads; ++i) {
437 stalls[i].decode = 0;
438 stalls[i].rename = 0;
439 stalls[i].iew = 0;
440 stalls[i].commit = 0;
441 PC[i] = cpu->readPC(i);
442 nextPC[i] = cpu->readNextPC(i);
443 #if ISA_HAS_DELAY_SLOT
444 nextNPC[i] = cpu->readNextNPC(i);
445 #else
446 nextNPC[i] = nextPC[i] + sizeof(TheISA::MachInst);
447 #endif
448 fetchStatus[i] = Running;
449 }
450 numInst = 0;
451 wroteToTimeBuffer = false;
452 _status = Inactive;
453 switchedOut = false;
454 interruptPending = false;
455 branchPred.takeOverFrom();
456 }
457
458 template <class Impl>
459 void
460 DefaultFetch<Impl>::wakeFromQuiesce()
461 {
462 DPRINTF(Fetch, "Waking up from quiesce\n");
463 // Hopefully this is safe
464 // @todo: Allow other threads to wake from quiesce.
465 fetchStatus[0] = Running;
466 }
467
468 template <class Impl>
469 inline void
470 DefaultFetch<Impl>::switchToActive()
471 {
472 if (_status == Inactive) {
473 DPRINTF(Activity, "Activating stage.\n");
474
475 cpu->activateStage(O3CPU::FetchIdx);
476
477 _status = Active;
478 }
479 }
480
481 template <class Impl>
482 inline void
483 DefaultFetch<Impl>::switchToInactive()
484 {
485 if (_status == Active) {
486 DPRINTF(Activity, "Deactivating stage.\n");
487
488 cpu->deactivateStage(O3CPU::FetchIdx);
489
490 _status = Inactive;
491 }
492 }
493
494 template <class Impl>
495 bool
496 DefaultFetch<Impl>::lookupAndUpdateNextPC(DynInstPtr &inst, Addr &next_PC,
497 Addr &next_NPC)
498 {
499 // Do branch prediction check here.
500 // A bit of a misnomer...next_PC is actually the current PC until
501 // this function updates it.
502 bool predict_taken;
503
504 if (!inst->isControl()) {
505 next_PC = next_NPC;
506 next_NPC = next_NPC + instSize;
507 inst->setPredTarg(next_PC, next_NPC);
508 inst->setPredTaken(false);
509 return false;
510 }
511
512 int tid = inst->threadNumber;
513 Addr pred_PC = next_PC;
514 predict_taken = branchPred.predict(inst, pred_PC, tid);
515
516 /* if (predict_taken) {
517 DPRINTF(Fetch, "[tid:%i]: Branch predicted to be taken to %#x.\n",
518 tid, pred_PC);
519 } else {
520 DPRINTF(Fetch, "[tid:%i]: Branch predicted to be not taken.\n", tid);
521 }*/
522
523 #if ISA_HAS_DELAY_SLOT
524 next_PC = next_NPC;
525 if (predict_taken)
526 next_NPC = pred_PC;
527 else
528 next_NPC += instSize;
529 #else
530 if (predict_taken)
531 next_PC = pred_PC;
532 else
533 next_PC += instSize;
534 next_NPC = next_PC + instSize;
535 #endif
536 /* DPRINTF(Fetch, "[tid:%i]: Branch predicted to go to %#x and then %#x.\n",
537 tid, next_PC, next_NPC);*/
538 inst->setPredTarg(next_PC, next_NPC);
539 inst->setPredTaken(predict_taken);
540
541 ++fetchedBranches;
542
543 if (predict_taken) {
544 ++predictedBranches;
545 }
546
547 return predict_taken;
548 }
549
550 template <class Impl>
551 bool
552 DefaultFetch<Impl>::fetchCacheLine(Addr fetch_PC, Fault &ret_fault, unsigned tid)
553 {
554 Fault fault = NoFault;
555
556 //AlphaDep
557 if (cacheBlocked) {
558 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, cache blocked\n",
559 tid);
560 return false;
561 } else if (isSwitchedOut()) {
562 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, switched out\n",
563 tid);
564 return false;
565 } else if (interruptPending && !(fetch_PC & 0x3)) {
566 // Hold off fetch from getting new instructions when:
567 // Cache is blocked, or
568 // while an interrupt is pending and we're not in PAL mode, or
569 // fetch is switched out.
570 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, interrupt pending\n",
571 tid);
572 return false;
573 }
574
575 // Align the fetch PC so it's at the start of a cache block.
576 Addr block_PC = icacheBlockAlignPC(fetch_PC);
577
578 // If we've already got the block, no need to try to fetch it again.
579 if (cacheDataValid[tid] && block_PC == cacheDataPC[tid]) {
580 return true;
581 }
582
583 // Setup the memReq to do a read of the first instruction's address.
584 // Set the appropriate read size and flags as well.
585 // Build request here.
586 RequestPtr mem_req = new Request(tid, block_PC, cacheBlkSize, 0,
587 fetch_PC, cpu->readCpuId(), tid);
588
589 memReq[tid] = mem_req;
590
591 // Translate the instruction request.
592 fault = cpu->translateInstReq(mem_req, cpu->thread[tid]);
593
594 // In the case of faults, the fetch stage may need to stall and wait
595 // for the ITB miss to be handled.
596
597 // If translation was successful, attempt to read the first
598 // instruction.
599 if (fault == NoFault) {
600 #if 0
601 if (cpu->system->memctrl->badaddr(memReq[tid]->paddr) ||
602 memReq[tid]->isUncacheable()) {
603 DPRINTF(Fetch, "Fetch: Bad address %#x (hopefully on a "
604 "misspeculating path)!",
605 memReq[tid]->paddr);
606 ret_fault = TheISA::genMachineCheckFault();
607 return false;
608 }
609 #endif
610
611 // Build packet here.
612 PacketPtr data_pkt = new Packet(mem_req,
613 MemCmd::ReadReq, Packet::Broadcast);
614 data_pkt->dataDynamicArray(new uint8_t[cacheBlkSize]);
615
616 cacheDataPC[tid] = block_PC;
617 cacheDataValid[tid] = false;
618
619 DPRINTF(Fetch, "Fetch: Doing instruction read.\n");
620
621 fetchedCacheLines++;
622
623 // Now do the timing access to see whether or not the instruction
624 // exists within the cache.
625 if (!icachePort->sendTiming(data_pkt)) {
626 if (data_pkt->result == Packet::BadAddress) {
627 fault = TheISA::genMachineCheckFault();
628 delete mem_req;
629 memReq[tid] = NULL;
630 warn("Bad address!\n");
631 }
632 assert(retryPkt == NULL);
633 assert(retryTid == -1);
634 DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid);
635 fetchStatus[tid] = IcacheWaitRetry;
636 retryPkt = data_pkt;
637 retryTid = tid;
638 cacheBlocked = true;
639 return false;
640 }
641
642 DPRINTF(Fetch, "[tid:%i]: Doing cache access.\n", tid);
643
644 lastIcacheStall[tid] = curTick;
645
646 DPRINTF(Activity, "[tid:%i]: Activity: Waiting on I-cache "
647 "response.\n", tid);
648
649 fetchStatus[tid] = IcacheWaitResponse;
650 } else {
651 delete mem_req;
652 memReq[tid] = NULL;
653 }
654
655 ret_fault = fault;
656 return true;
657 }
658
659 template <class Impl>
660 inline void
661 DefaultFetch<Impl>::doSquash(const Addr &new_PC,
662 const Addr &new_NPC, unsigned tid)
663 {
664 DPRINTF(Fetch, "[tid:%i]: Squashing, setting PC to: %#x, NPC to: %#x.\n",
665 tid, new_PC, new_NPC);
666
667 PC[tid] = new_PC;
668 nextPC[tid] = new_NPC;
669 nextNPC[tid] = new_NPC + instSize;
670
671 // Clear the icache miss if it's outstanding.
672 if (fetchStatus[tid] == IcacheWaitResponse) {
673 DPRINTF(Fetch, "[tid:%i]: Squashing outstanding Icache miss.\n",
674 tid);
675 memReq[tid] = NULL;
676 }
677
678 // Get rid of the retrying packet if it was from this thread.
679 if (retryTid == tid) {
680 assert(cacheBlocked);
681 if (retryPkt) {
682 delete retryPkt->req;
683 delete retryPkt;
684 }
685 retryPkt = NULL;
686 retryTid = -1;
687 }
688
689 fetchStatus[tid] = Squashing;
690
691 ++fetchSquashCycles;
692 }
693
694 template<class Impl>
695 void
696 DefaultFetch<Impl>::squashFromDecode(const Addr &new_PC, const Addr &new_NPC,
697 const InstSeqNum &seq_num,
698 unsigned tid)
699 {
700 DPRINTF(Fetch, "[tid:%i]: Squashing from decode.\n",tid);
701
702 doSquash(new_PC, new_NPC, tid);
703
704 // Tell the CPU to remove any instructions that are in flight between
705 // fetch and decode.
706 cpu->removeInstsUntil(seq_num, tid);
707 }
708
709 template<class Impl>
710 bool
711 DefaultFetch<Impl>::checkStall(unsigned tid) const
712 {
713 bool ret_val = false;
714
715 if (cpu->contextSwitch) {
716 DPRINTF(Fetch,"[tid:%i]: Stalling for a context switch.\n",tid);
717 ret_val = true;
718 } else if (stalls[tid].decode) {
719 DPRINTF(Fetch,"[tid:%i]: Stall from Decode stage detected.\n",tid);
720 ret_val = true;
721 } else if (stalls[tid].rename) {
722 DPRINTF(Fetch,"[tid:%i]: Stall from Rename stage detected.\n",tid);
723 ret_val = true;
724 } else if (stalls[tid].iew) {
725 DPRINTF(Fetch,"[tid:%i]: Stall from IEW stage detected.\n",tid);
726 ret_val = true;
727 } else if (stalls[tid].commit) {
728 DPRINTF(Fetch,"[tid:%i]: Stall from Commit stage detected.\n",tid);
729 ret_val = true;
730 }
731
732 return ret_val;
733 }
734
735 template<class Impl>
736 typename DefaultFetch<Impl>::FetchStatus
737 DefaultFetch<Impl>::updateFetchStatus()
738 {
739 //Check Running
740 std::list<unsigned>::iterator threads = activeThreads->begin();
741 std::list<unsigned>::iterator end = activeThreads->end();
742
743 while (threads != end) {
744 unsigned tid = *threads++;
745
746 if (fetchStatus[tid] == Running ||
747 fetchStatus[tid] == Squashing ||
748 fetchStatus[tid] == IcacheAccessComplete) {
749
750 if (_status == Inactive) {
751 DPRINTF(Activity, "[tid:%i]: Activating stage.\n",tid);
752
753 if (fetchStatus[tid] == IcacheAccessComplete) {
754 DPRINTF(Activity, "[tid:%i]: Activating fetch due to cache"
755 "completion\n",tid);
756 }
757
758 cpu->activateStage(O3CPU::FetchIdx);
759 }
760
761 return Active;
762 }
763 }
764
765 // Stage is switching from active to inactive, notify CPU of it.
766 if (_status == Active) {
767 DPRINTF(Activity, "Deactivating stage.\n");
768
769 cpu->deactivateStage(O3CPU::FetchIdx);
770 }
771
772 return Inactive;
773 }
774
775 template <class Impl>
776 void
777 DefaultFetch<Impl>::squash(const Addr &new_PC, const Addr &new_NPC,
778 const InstSeqNum &seq_num,
779 bool squash_delay_slot, unsigned tid)
780 {
781 DPRINTF(Fetch, "[tid:%u]: Squash from commit.\n",tid);
782
783 doSquash(new_PC, new_NPC, tid);
784
785 #if ISA_HAS_DELAY_SLOT
786 // Tell the CPU to remove any instructions that are not in the ROB.
787 cpu->removeInstsNotInROB(tid, squash_delay_slot, seq_num);
788 #else
789 // Tell the CPU to remove any instructions that are not in the ROB.
790 cpu->removeInstsNotInROB(tid, true, 0);
791 #endif
792 }
793
794 template <class Impl>
795 void
796 DefaultFetch<Impl>::tick()
797 {
798 std::list<unsigned>::iterator threads = activeThreads->begin();
799 std::list<unsigned>::iterator end = activeThreads->end();
800 bool status_change = false;
801
802 wroteToTimeBuffer = false;
803
804 while (threads != end) {
805 unsigned tid = *threads++;
806
807 // Check the signals for each thread to determine the proper status
808 // for each thread.
809 bool updated_status = checkSignalsAndUpdate(tid);
810 status_change = status_change || updated_status;
811 }
812
813 DPRINTF(Fetch, "Running stage.\n");
814
815 // Reset the number of the instruction we're fetching.
816 numInst = 0;
817
818 #if FULL_SYSTEM
819 if (fromCommit->commitInfo[0].interruptPending) {
820 interruptPending = true;
821 }
822
823 if (fromCommit->commitInfo[0].clearInterrupt) {
824 interruptPending = false;
825 }
826 #endif
827
828 for (threadFetched = 0; threadFetched < numFetchingThreads;
829 threadFetched++) {
830 // Fetch each of the actively fetching threads.
831 fetch(status_change);
832 }
833
834 // Record number of instructions fetched this cycle for distribution.
835 fetchNisnDist.sample(numInst);
836
837 if (status_change) {
838 // Change the fetch stage status if there was a status change.
839 _status = updateFetchStatus();
840 }
841
842 // If there was activity this cycle, inform the CPU of it.
843 if (wroteToTimeBuffer || cpu->contextSwitch) {
844 DPRINTF(Activity, "Activity this cycle.\n");
845
846 cpu->activityThisCycle();
847 }
848 }
849
850 template <class Impl>
851 bool
852 DefaultFetch<Impl>::checkSignalsAndUpdate(unsigned tid)
853 {
854 // Update the per thread stall statuses.
855 if (fromDecode->decodeBlock[tid]) {
856 stalls[tid].decode = true;
857 }
858
859 if (fromDecode->decodeUnblock[tid]) {
860 assert(stalls[tid].decode);
861 assert(!fromDecode->decodeBlock[tid]);
862 stalls[tid].decode = false;
863 }
864
865 if (fromRename->renameBlock[tid]) {
866 stalls[tid].rename = true;
867 }
868
869 if (fromRename->renameUnblock[tid]) {
870 assert(stalls[tid].rename);
871 assert(!fromRename->renameBlock[tid]);
872 stalls[tid].rename = false;
873 }
874
875 if (fromIEW->iewBlock[tid]) {
876 stalls[tid].iew = true;
877 }
878
879 if (fromIEW->iewUnblock[tid]) {
880 assert(stalls[tid].iew);
881 assert(!fromIEW->iewBlock[tid]);
882 stalls[tid].iew = false;
883 }
884
885 if (fromCommit->commitBlock[tid]) {
886 stalls[tid].commit = true;
887 }
888
889 if (fromCommit->commitUnblock[tid]) {
890 assert(stalls[tid].commit);
891 assert(!fromCommit->commitBlock[tid]);
892 stalls[tid].commit = false;
893 }
894
895 // Check squash signals from commit.
896 if (fromCommit->commitInfo[tid].squash) {
897
898 DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
899 "from commit.\n",tid);
900
901 #if ISA_HAS_DELAY_SLOT
902 InstSeqNum doneSeqNum = fromCommit->commitInfo[tid].bdelayDoneSeqNum;
903 #else
904 InstSeqNum doneSeqNum = fromCommit->commitInfo[tid].doneSeqNum;
905 #endif
906 // In any case, squash.
907 squash(fromCommit->commitInfo[tid].nextPC,
908 fromCommit->commitInfo[tid].nextNPC,
909 doneSeqNum,
910 fromCommit->commitInfo[tid].squashDelaySlot,
911 tid);
912
913 // Also check if there's a mispredict that happened.
914 if (fromCommit->commitInfo[tid].branchMispredict) {
915 branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
916 fromCommit->commitInfo[tid].nextPC,
917 fromCommit->commitInfo[tid].branchTaken,
918 tid);
919 } else {
920 branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
921 tid);
922 }
923
924 return true;
925 } else if (fromCommit->commitInfo[tid].doneSeqNum) {
926 // Update the branch predictor if it wasn't a squashed instruction
927 // that was broadcasted.
928 branchPred.update(fromCommit->commitInfo[tid].doneSeqNum, tid);
929 }
930
931 // Check ROB squash signals from commit.
932 if (fromCommit->commitInfo[tid].robSquashing) {
933 DPRINTF(Fetch, "[tid:%u]: ROB is still squashing.\n", tid);
934
935 // Continue to squash.
936 fetchStatus[tid] = Squashing;
937
938 return true;
939 }
940
941 // Check squash signals from decode.
942 if (fromDecode->decodeInfo[tid].squash) {
943 DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
944 "from decode.\n",tid);
945
946 // Update the branch predictor.
947 if (fromDecode->decodeInfo[tid].branchMispredict) {
948 branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
949 fromDecode->decodeInfo[tid].nextPC,
950 fromDecode->decodeInfo[tid].branchTaken,
951 tid);
952 } else {
953 branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
954 tid);
955 }
956
957 if (fetchStatus[tid] != Squashing) {
958
959 #if ISA_HAS_DELAY_SLOT
960 InstSeqNum doneSeqNum = fromDecode->decodeInfo[tid].bdelayDoneSeqNum;
961 #else
962 InstSeqNum doneSeqNum = fromDecode->decodeInfo[tid].doneSeqNum;
963 #endif
964 DPRINTF(Fetch, "Squashing from decode with PC = %#x, NPC = %#x\n",
965 fromDecode->decodeInfo[tid].nextPC,
966 fromDecode->decodeInfo[tid].nextNPC);
967 // Squash unless we're already squashing
968 squashFromDecode(fromDecode->decodeInfo[tid].nextPC,
969 fromDecode->decodeInfo[tid].nextNPC,
970 doneSeqNum,
971 tid);
972
973 return true;
974 }
975 }
976
977 if (checkStall(tid) &&
978 fetchStatus[tid] != IcacheWaitResponse &&
979 fetchStatus[tid] != IcacheWaitRetry) {
980 DPRINTF(Fetch, "[tid:%i]: Setting to blocked\n",tid);
981
982 fetchStatus[tid] = Blocked;
983
984 return true;
985 }
986
987 if (fetchStatus[tid] == Blocked ||
988 fetchStatus[tid] == Squashing) {
989 // Switch status to running if fetch isn't being told to block or
990 // squash this cycle.
991 DPRINTF(Fetch, "[tid:%i]: Done squashing, switching to running.\n",
992 tid);
993
994 fetchStatus[tid] = Running;
995
996 return true;
997 }
998
999 // If we've reached this point, we have not gotten any signals that
1000 // cause fetch to change its status. Fetch remains the same as before.
1001 return false;
1002 }
1003
1004 template<class Impl>
1005 void
1006 DefaultFetch<Impl>::fetch(bool &status_change)
1007 {
1008 //////////////////////////////////////////
1009 // Start actual fetch
1010 //////////////////////////////////////////
1011 int tid = getFetchingThread(fetchPolicy);
1012
1013 if (tid == -1 || drainPending) {
1014 DPRINTF(Fetch,"There are no more threads available to fetch from.\n");
1015
1016 // Breaks looping condition in tick()
1017 threadFetched = numFetchingThreads;
1018 return;
1019 }
1020
1021 DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid);
1022
1023 // The current PC.
1024 Addr &fetch_PC = PC[tid];
1025
1026 Addr &fetch_NPC = nextPC[tid];
1027
1028 // Fault code for memory access.
1029 Fault fault = NoFault;
1030
1031 // If returning from the delay of a cache miss, then update the status
1032 // to running, otherwise do the cache access. Possibly move this up
1033 // to tick() function.
1034 if (fetchStatus[tid] == IcacheAccessComplete) {
1035 DPRINTF(Fetch, "[tid:%i]: Icache miss is complete.\n",
1036 tid);
1037
1038 fetchStatus[tid] = Running;
1039 status_change = true;
1040 } else if (fetchStatus[tid] == Running) {
1041 DPRINTF(Fetch, "[tid:%i]: Attempting to translate and read "
1042 "instruction, starting at PC %08p.\n",
1043 tid, fetch_PC);
1044
1045 bool fetch_success = fetchCacheLine(fetch_PC, fault, tid);
1046 if (!fetch_success) {
1047 if (cacheBlocked) {
1048 ++icacheStallCycles;
1049 } else {
1050 ++fetchMiscStallCycles;
1051 }
1052 return;
1053 }
1054 } else {
1055 if (fetchStatus[tid] == Idle) {
1056 ++fetchIdleCycles;
1057 DPRINTF(Fetch, "[tid:%i]: Fetch is idle!\n", tid);
1058 } else if (fetchStatus[tid] == Blocked) {
1059 ++fetchBlockedCycles;
1060 DPRINTF(Fetch, "[tid:%i]: Fetch is blocked!\n", tid);
1061 } else if (fetchStatus[tid] == Squashing) {
1062 ++fetchSquashCycles;
1063 DPRINTF(Fetch, "[tid:%i]: Fetch is squashing!\n", tid);
1064 } else if (fetchStatus[tid] == IcacheWaitResponse) {
1065 ++icacheStallCycles;
1066 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting cache response!\n", tid);
1067 }
1068
1069 // Status is Idle, Squashing, Blocked, or IcacheWaitResponse, so
1070 // fetch should do nothing.
1071 return;
1072 }
1073
1074 ++fetchCycles;
1075
1076 // If we had a stall due to an icache miss, then return.
1077 if (fetchStatus[tid] == IcacheWaitResponse) {
1078 ++icacheStallCycles;
1079 status_change = true;
1080 return;
1081 }
1082
1083 Addr next_PC = fetch_PC;
1084 Addr next_NPC = fetch_NPC;
1085
1086 InstSeqNum inst_seq;
1087 MachInst inst;
1088 ExtMachInst ext_inst;
1089 // @todo: Fix this hack.
1090 unsigned offset = (fetch_PC & cacheBlkMask) & ~3;
1091
1092 if (fault == NoFault) {
1093 // If the read of the first instruction was successful, then grab the
1094 // instructions from the rest of the cache line and put them into the
1095 // queue heading to decode.
1096
1097 DPRINTF(Fetch, "[tid:%i]: Adding instructions to queue to "
1098 "decode.\n",tid);
1099
1100 // Need to keep track of whether or not a predicted branch
1101 // ended this fetch block.
1102 bool predicted_branch = false;
1103
1104 for (;
1105 offset < cacheBlkSize &&
1106 numInst < fetchWidth &&
1107 !predicted_branch;
1108 ++numInst) {
1109
1110 // If we're branching after this instruction, quite fetching
1111 // from the same block then.
1112 predicted_branch =
1113 (fetch_PC + sizeof(TheISA::MachInst) != fetch_NPC);
1114 if (predicted_branch) {
1115 DPRINTF(Fetch, "Branch detected with PC = %#x, NPC = %#x\n",
1116 fetch_PC, fetch_NPC);
1117 }
1118
1119
1120 // Get a sequence number.
1121 inst_seq = cpu->getAndIncrementInstSeq();
1122
1123 // Make sure this is a valid index.
1124 assert(offset <= cacheBlkSize - instSize);
1125
1126 // Get the instruction from the array of the cache line.
1127 inst = TheISA::gtoh(*reinterpret_cast<TheISA::MachInst *>
1128 (&cacheData[tid][offset]));
1129
1130 predecoder.setTC(cpu->thread[tid]->getTC());
1131 predecoder.moreBytes(fetch_PC, fetch_PC, inst);
1132
1133 ext_inst = predecoder.getExtMachInst();
1134
1135 // Create a new DynInst from the instruction fetched.
1136 DynInstPtr instruction = new DynInst(ext_inst,
1137 fetch_PC, fetch_NPC,
1138 next_PC, next_NPC,
1139 inst_seq, cpu);
1140 instruction->setTid(tid);
1141
1142 instruction->setASID(tid);
1143
1144 instruction->setThreadState(cpu->thread[tid]);
1145
1146 DPRINTF(Fetch, "[tid:%i]: Instruction PC %#x created "
1147 "[sn:%lli]\n",
1148 tid, instruction->readPC(), inst_seq);
1149
1150 //DPRINTF(Fetch, "[tid:%i]: MachInst is %#x\n", tid, ext_inst);
1151
1152 DPRINTF(Fetch, "[tid:%i]: Instruction is: %s\n",
1153 tid, instruction->staticInst->disassemble(fetch_PC));
1154
1155 #if TRACING_ON
1156 instruction->traceData =
1157 Trace::getInstRecord(curTick, cpu->tcBase(tid),
1158 instruction->staticInst,
1159 instruction->readPC());
1160 #else
1161 instruction->traceData = NULL;
1162 #endif
1163
1164 ///FIXME This needs to be more robust in dealing with delay slots
1165 #if !ISA_HAS_DELAY_SLOT
1166 // predicted_branch |=
1167 #endif
1168 lookupAndUpdateNextPC(instruction, next_PC, next_NPC);
1169 predicted_branch |= (next_PC != fetch_NPC);
1170
1171 // Add instruction to the CPU's list of instructions.
1172 instruction->setInstListIt(cpu->addInst(instruction));
1173
1174 // Write the instruction to the first slot in the queue
1175 // that heads to decode.
1176 toDecode->insts[numInst] = instruction;
1177
1178 toDecode->size++;
1179
1180 // Increment stat of fetched instructions.
1181 ++fetchedInsts;
1182
1183 // Move to the next instruction, unless we have a branch.
1184 fetch_PC = next_PC;
1185 fetch_NPC = next_NPC;
1186
1187 if (instruction->isQuiesce()) {
1188 DPRINTF(Fetch, "Quiesce instruction encountered, halting fetch!",
1189 curTick);
1190 fetchStatus[tid] = QuiescePending;
1191 ++numInst;
1192 status_change = true;
1193 break;
1194 }
1195
1196 offset += instSize;
1197 }
1198
1199 if (offset >= cacheBlkSize) {
1200 DPRINTF(Fetch, "[tid:%i]: Done fetching, reached the end of cache "
1201 "block.\n", tid);
1202 } else if (numInst >= fetchWidth) {
1203 DPRINTF(Fetch, "[tid:%i]: Done fetching, reached fetch bandwidth "
1204 "for this cycle.\n", tid);
1205 } else if (predicted_branch) {
1206 DPRINTF(Fetch, "[tid:%i]: Done fetching, predicted branch "
1207 "instruction encountered.\n", tid);
1208 }
1209 }
1210
1211 if (numInst > 0) {
1212 wroteToTimeBuffer = true;
1213 }
1214
1215 // Now that fetching is completed, update the PC to signify what the next
1216 // cycle will be.
1217 if (fault == NoFault) {
1218 PC[tid] = next_PC;
1219 nextPC[tid] = next_NPC;
1220 nextNPC[tid] = next_NPC + instSize;
1221 #if ISA_HAS_DELAY_SLOT
1222 DPRINTF(Fetch, "[tid:%i]: Setting PC to %08p.\n", tid, PC[tid]);
1223 #else
1224 DPRINTF(Fetch, "[tid:%i]: Setting PC to %08p.\n", tid, next_PC);
1225 #endif
1226 } else {
1227 // We shouldn't be in an icache miss and also have a fault (an ITB
1228 // miss)
1229 if (fetchStatus[tid] == IcacheWaitResponse) {
1230 panic("Fetch should have exited prior to this!");
1231 }
1232
1233 // Send the fault to commit. This thread will not do anything
1234 // until commit handles the fault. The only other way it can
1235 // wake up is if a squash comes along and changes the PC.
1236 #if FULL_SYSTEM
1237 assert(numInst < fetchWidth);
1238 // Get a sequence number.
1239 inst_seq = cpu->getAndIncrementInstSeq();
1240 // We will use a nop in order to carry the fault.
1241 ext_inst = TheISA::NoopMachInst;
1242
1243 // Create a new DynInst from the dummy nop.
1244 DynInstPtr instruction = new DynInst(ext_inst,
1245 fetch_PC, fetch_NPC,
1246 next_PC, next_NPC,
1247 inst_seq, cpu);
1248 instruction->setPredTarg(next_PC, next_NPC);
1249 instruction->setTid(tid);
1250
1251 instruction->setASID(tid);
1252
1253 instruction->setThreadState(cpu->thread[tid]);
1254
1255 instruction->traceData = NULL;
1256
1257 instruction->setInstListIt(cpu->addInst(instruction));
1258
1259 instruction->fault = fault;
1260
1261 toDecode->insts[numInst] = instruction;
1262 toDecode->size++;
1263
1264 DPRINTF(Fetch, "[tid:%i]: Blocked, need to handle the trap.\n",tid);
1265
1266 fetchStatus[tid] = TrapPending;
1267 status_change = true;
1268 #else // !FULL_SYSTEM
1269 fetchStatus[tid] = TrapPending;
1270 status_change = true;
1271
1272 #endif // FULL_SYSTEM
1273 DPRINTF(Fetch, "[tid:%i]: fault (%s) detected @ PC %08p",
1274 tid, fault->name(), PC[tid]);
1275 }
1276 }
1277
1278 template<class Impl>
1279 void
1280 DefaultFetch<Impl>::recvRetry()
1281 {
1282 if (retryPkt != NULL) {
1283 assert(cacheBlocked);
1284 assert(retryTid != -1);
1285 assert(fetchStatus[retryTid] == IcacheWaitRetry);
1286
1287 if (icachePort->sendTiming(retryPkt)) {
1288 fetchStatus[retryTid] = IcacheWaitResponse;
1289 retryPkt = NULL;
1290 retryTid = -1;
1291 cacheBlocked = false;
1292 }
1293 } else {
1294 assert(retryTid == -1);
1295 // Access has been squashed since it was sent out. Just clear
1296 // the cache being blocked.
1297 cacheBlocked = false;
1298 }
1299 }
1300
1301 ///////////////////////////////////////
1302 // //
1303 // SMT FETCH POLICY MAINTAINED HERE //
1304 // //
1305 ///////////////////////////////////////
1306 template<class Impl>
1307 int
1308 DefaultFetch<Impl>::getFetchingThread(FetchPriority &fetch_priority)
1309 {
1310 if (numThreads > 1) {
1311 switch (fetch_priority) {
1312
1313 case SingleThread:
1314 return 0;
1315
1316 case RoundRobin:
1317 return roundRobin();
1318
1319 case IQ:
1320 return iqCount();
1321
1322 case LSQ:
1323 return lsqCount();
1324
1325 case Branch:
1326 return branchCount();
1327
1328 default:
1329 return -1;
1330 }
1331 } else {
1332 std::list<unsigned>::iterator thread = activeThreads->begin();
1333 assert(thread != activeThreads->end());
1334 int tid = *thread;
1335
1336 if (fetchStatus[tid] == Running ||
1337 fetchStatus[tid] == IcacheAccessComplete ||
1338 fetchStatus[tid] == Idle) {
1339 return tid;
1340 } else {
1341 return -1;
1342 }
1343 }
1344
1345 }
1346
1347
1348 template<class Impl>
1349 int
1350 DefaultFetch<Impl>::roundRobin()
1351 {
1352 std::list<unsigned>::iterator pri_iter = priorityList.begin();
1353 std::list<unsigned>::iterator end = priorityList.end();
1354
1355 int high_pri;
1356
1357 while (pri_iter != end) {
1358 high_pri = *pri_iter;
1359
1360 assert(high_pri <= numThreads);
1361
1362 if (fetchStatus[high_pri] == Running ||
1363 fetchStatus[high_pri] == IcacheAccessComplete ||
1364 fetchStatus[high_pri] == Idle) {
1365
1366 priorityList.erase(pri_iter);
1367 priorityList.push_back(high_pri);
1368
1369 return high_pri;
1370 }
1371
1372 pri_iter++;
1373 }
1374
1375 return -1;
1376 }
1377
1378 template<class Impl>
1379 int
1380 DefaultFetch<Impl>::iqCount()
1381 {
1382 std::priority_queue<unsigned> PQ;
1383
1384 std::list<unsigned>::iterator threads = activeThreads->begin();
1385 std::list<unsigned>::iterator end = activeThreads->end();
1386
1387 while (threads != end) {
1388 unsigned tid = *threads++;
1389
1390 PQ.push(fromIEW->iewInfo[tid].iqCount);
1391 }
1392
1393 while (!PQ.empty()) {
1394
1395 unsigned high_pri = PQ.top();
1396
1397 if (fetchStatus[high_pri] == Running ||
1398 fetchStatus[high_pri] == IcacheAccessComplete ||
1399 fetchStatus[high_pri] == Idle)
1400 return high_pri;
1401 else
1402 PQ.pop();
1403
1404 }
1405
1406 return -1;
1407 }
1408
1409 template<class Impl>
1410 int
1411 DefaultFetch<Impl>::lsqCount()
1412 {
1413 std::priority_queue<unsigned> PQ;
1414
1415 std::list<unsigned>::iterator threads = activeThreads->begin();
1416 std::list<unsigned>::iterator end = activeThreads->end();
1417
1418 while (threads != end) {
1419 unsigned tid = *threads++;
1420
1421 PQ.push(fromIEW->iewInfo[tid].ldstqCount);
1422 }
1423
1424 while (!PQ.empty()) {
1425
1426 unsigned high_pri = PQ.top();
1427
1428 if (fetchStatus[high_pri] == Running ||
1429 fetchStatus[high_pri] == IcacheAccessComplete ||
1430 fetchStatus[high_pri] == Idle)
1431 return high_pri;
1432 else
1433 PQ.pop();
1434
1435 }
1436
1437 return -1;
1438 }
1439
1440 template<class Impl>
1441 int
1442 DefaultFetch<Impl>::branchCount()
1443 {
1444 std::list<unsigned>::iterator thread = activeThreads->begin();
1445 assert(thread != activeThreads->end());
1446 unsigned tid = *thread;
1447
1448 panic("Branch Count Fetch policy unimplemented\n");
1449 return 0 * tid;
1450 }