ARM: Don't reset CPUs that are going to be switched in.
[gem5.git] / src / cpu / o3 / iew_impl.hh
1 /*
2 * Copyright (c) 2010-2011 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 */
42
43 // @todo: Fix the instantaneous communication among all the stages within
44 // iew. There's a clear delay between issue and execute, yet backwards
45 // communication happens simultaneously.
46
47 #include <queue>
48
49 #include "arch/utility.hh"
50 #include "config/the_isa.hh"
51 #include "config/use_checker.hh"
52 #include "cpu/o3/fu_pool.hh"
53 #include "cpu/o3/iew.hh"
54 #include "cpu/timebuf.hh"
55 #include "debug/Activity.hh"
56 #include "debug/Decode.hh"
57 #include "debug/IEW.hh"
58 #include "params/DerivO3CPU.hh"
59
60 #if USE_CHECKER
61 #include "cpu/checker/cpu.hh"
62 #endif // USE_CHECKER
63
64 using namespace std;
65
66 template<class Impl>
67 DefaultIEW<Impl>::DefaultIEW(O3CPU *_cpu, DerivO3CPUParams *params)
68 : issueToExecQueue(params->backComSize, params->forwardComSize),
69 cpu(_cpu),
70 instQueue(_cpu, this, params),
71 ldstQueue(_cpu, this, params),
72 fuPool(params->fuPool),
73 commitToIEWDelay(params->commitToIEWDelay),
74 renameToIEWDelay(params->renameToIEWDelay),
75 issueToExecuteDelay(params->issueToExecuteDelay),
76 dispatchWidth(params->dispatchWidth),
77 issueWidth(params->issueWidth),
78 wbOutstanding(0),
79 wbWidth(params->wbWidth),
80 numThreads(params->numThreads),
81 switchedOut(false)
82 {
83 _status = Active;
84 exeStatus = Running;
85 wbStatus = Idle;
86
87 // Setup wire to read instructions coming from issue.
88 fromIssue = issueToExecQueue.getWire(-issueToExecuteDelay);
89
90 // Instruction queue needs the queue between issue and execute.
91 instQueue.setIssueToExecuteQueue(&issueToExecQueue);
92
93 for (ThreadID tid = 0; tid < numThreads; tid++) {
94 dispatchStatus[tid] = Running;
95 stalls[tid].commit = false;
96 fetchRedirect[tid] = false;
97 }
98
99 wbMax = wbWidth * params->wbDepth;
100
101 updateLSQNextCycle = false;
102
103 ableToIssue = true;
104
105 skidBufferMax = (3 * (renameToIEWDelay * params->renameWidth)) + issueWidth;
106 }
107
108 template <class Impl>
109 std::string
110 DefaultIEW<Impl>::name() const
111 {
112 return cpu->name() + ".iew";
113 }
114
115 template <class Impl>
116 void
117 DefaultIEW<Impl>::regStats()
118 {
119 using namespace Stats;
120
121 instQueue.regStats();
122 ldstQueue.regStats();
123
124 iewIdleCycles
125 .name(name() + ".iewIdleCycles")
126 .desc("Number of cycles IEW is idle");
127
128 iewSquashCycles
129 .name(name() + ".iewSquashCycles")
130 .desc("Number of cycles IEW is squashing");
131
132 iewBlockCycles
133 .name(name() + ".iewBlockCycles")
134 .desc("Number of cycles IEW is blocking");
135
136 iewUnblockCycles
137 .name(name() + ".iewUnblockCycles")
138 .desc("Number of cycles IEW is unblocking");
139
140 iewDispatchedInsts
141 .name(name() + ".iewDispatchedInsts")
142 .desc("Number of instructions dispatched to IQ");
143
144 iewDispSquashedInsts
145 .name(name() + ".iewDispSquashedInsts")
146 .desc("Number of squashed instructions skipped by dispatch");
147
148 iewDispLoadInsts
149 .name(name() + ".iewDispLoadInsts")
150 .desc("Number of dispatched load instructions");
151
152 iewDispStoreInsts
153 .name(name() + ".iewDispStoreInsts")
154 .desc("Number of dispatched store instructions");
155
156 iewDispNonSpecInsts
157 .name(name() + ".iewDispNonSpecInsts")
158 .desc("Number of dispatched non-speculative instructions");
159
160 iewIQFullEvents
161 .name(name() + ".iewIQFullEvents")
162 .desc("Number of times the IQ has become full, causing a stall");
163
164 iewLSQFullEvents
165 .name(name() + ".iewLSQFullEvents")
166 .desc("Number of times the LSQ has become full, causing a stall");
167
168 memOrderViolationEvents
169 .name(name() + ".memOrderViolationEvents")
170 .desc("Number of memory order violations");
171
172 predictedTakenIncorrect
173 .name(name() + ".predictedTakenIncorrect")
174 .desc("Number of branches that were predicted taken incorrectly");
175
176 predictedNotTakenIncorrect
177 .name(name() + ".predictedNotTakenIncorrect")
178 .desc("Number of branches that were predicted not taken incorrectly");
179
180 branchMispredicts
181 .name(name() + ".branchMispredicts")
182 .desc("Number of branch mispredicts detected at execute");
183
184 branchMispredicts = predictedTakenIncorrect + predictedNotTakenIncorrect;
185
186 iewExecutedInsts
187 .name(name() + ".iewExecutedInsts")
188 .desc("Number of executed instructions");
189
190 iewExecLoadInsts
191 .init(cpu->numThreads)
192 .name(name() + ".iewExecLoadInsts")
193 .desc("Number of load instructions executed")
194 .flags(total);
195
196 iewExecSquashedInsts
197 .name(name() + ".iewExecSquashedInsts")
198 .desc("Number of squashed instructions skipped in execute");
199
200 iewExecutedSwp
201 .init(cpu->numThreads)
202 .name(name() + ".exec_swp")
203 .desc("number of swp insts executed")
204 .flags(total);
205
206 iewExecutedNop
207 .init(cpu->numThreads)
208 .name(name() + ".exec_nop")
209 .desc("number of nop insts executed")
210 .flags(total);
211
212 iewExecutedRefs
213 .init(cpu->numThreads)
214 .name(name() + ".exec_refs")
215 .desc("number of memory reference insts executed")
216 .flags(total);
217
218 iewExecutedBranches
219 .init(cpu->numThreads)
220 .name(name() + ".exec_branches")
221 .desc("Number of branches executed")
222 .flags(total);
223
224 iewExecStoreInsts
225 .name(name() + ".exec_stores")
226 .desc("Number of stores executed")
227 .flags(total);
228 iewExecStoreInsts = iewExecutedRefs - iewExecLoadInsts;
229
230 iewExecRate
231 .name(name() + ".exec_rate")
232 .desc("Inst execution rate")
233 .flags(total);
234
235 iewExecRate = iewExecutedInsts / cpu->numCycles;
236
237 iewInstsToCommit
238 .init(cpu->numThreads)
239 .name(name() + ".wb_sent")
240 .desc("cumulative count of insts sent to commit")
241 .flags(total);
242
243 writebackCount
244 .init(cpu->numThreads)
245 .name(name() + ".wb_count")
246 .desc("cumulative count of insts written-back")
247 .flags(total);
248
249 producerInst
250 .init(cpu->numThreads)
251 .name(name() + ".wb_producers")
252 .desc("num instructions producing a value")
253 .flags(total);
254
255 consumerInst
256 .init(cpu->numThreads)
257 .name(name() + ".wb_consumers")
258 .desc("num instructions consuming a value")
259 .flags(total);
260
261 wbPenalized
262 .init(cpu->numThreads)
263 .name(name() + ".wb_penalized")
264 .desc("number of instrctions required to write to 'other' IQ")
265 .flags(total);
266
267 wbPenalizedRate
268 .name(name() + ".wb_penalized_rate")
269 .desc ("fraction of instructions written-back that wrote to 'other' IQ")
270 .flags(total);
271
272 wbPenalizedRate = wbPenalized / writebackCount;
273
274 wbFanout
275 .name(name() + ".wb_fanout")
276 .desc("average fanout of values written-back")
277 .flags(total);
278
279 wbFanout = producerInst / consumerInst;
280
281 wbRate
282 .name(name() + ".wb_rate")
283 .desc("insts written-back per cycle")
284 .flags(total);
285 wbRate = writebackCount / cpu->numCycles;
286 }
287
288 template<class Impl>
289 void
290 DefaultIEW<Impl>::initStage()
291 {
292 for (ThreadID tid = 0; tid < numThreads; tid++) {
293 toRename->iewInfo[tid].usedIQ = true;
294 toRename->iewInfo[tid].freeIQEntries =
295 instQueue.numFreeEntries(tid);
296
297 toRename->iewInfo[tid].usedLSQ = true;
298 toRename->iewInfo[tid].freeLSQEntries =
299 ldstQueue.numFreeEntries(tid);
300 }
301
302 // Initialize the checker's dcache port here
303 #if USE_CHECKER
304 if (cpu->checker) {
305 cpu->checker->setDcachePort(&cpu->getDataPort());
306 }
307 #endif
308
309 cpu->activateStage(O3CPU::IEWIdx);
310 }
311
312 template<class Impl>
313 void
314 DefaultIEW<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
315 {
316 timeBuffer = tb_ptr;
317
318 // Setup wire to read information from time buffer, from commit.
319 fromCommit = timeBuffer->getWire(-commitToIEWDelay);
320
321 // Setup wire to write information back to previous stages.
322 toRename = timeBuffer->getWire(0);
323
324 toFetch = timeBuffer->getWire(0);
325
326 // Instruction queue also needs main time buffer.
327 instQueue.setTimeBuffer(tb_ptr);
328 }
329
330 template<class Impl>
331 void
332 DefaultIEW<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr)
333 {
334 renameQueue = rq_ptr;
335
336 // Setup wire to read information from rename queue.
337 fromRename = renameQueue->getWire(-renameToIEWDelay);
338 }
339
340 template<class Impl>
341 void
342 DefaultIEW<Impl>::setIEWQueue(TimeBuffer<IEWStruct> *iq_ptr)
343 {
344 iewQueue = iq_ptr;
345
346 // Setup wire to write instructions to commit.
347 toCommit = iewQueue->getWire(0);
348 }
349
350 template<class Impl>
351 void
352 DefaultIEW<Impl>::setActiveThreads(list<ThreadID> *at_ptr)
353 {
354 activeThreads = at_ptr;
355
356 ldstQueue.setActiveThreads(at_ptr);
357 instQueue.setActiveThreads(at_ptr);
358 }
359
360 template<class Impl>
361 void
362 DefaultIEW<Impl>::setScoreboard(Scoreboard *sb_ptr)
363 {
364 scoreboard = sb_ptr;
365 }
366
367 template <class Impl>
368 bool
369 DefaultIEW<Impl>::drain()
370 {
371 // IEW is ready to drain at any time.
372 cpu->signalDrained();
373 return true;
374 }
375
376 template <class Impl>
377 void
378 DefaultIEW<Impl>::resume()
379 {
380 }
381
382 template <class Impl>
383 void
384 DefaultIEW<Impl>::switchOut()
385 {
386 // Clear any state.
387 switchedOut = true;
388 assert(insts[0].empty());
389 assert(skidBuffer[0].empty());
390
391 instQueue.switchOut();
392 ldstQueue.switchOut();
393 fuPool->switchOut();
394
395 for (ThreadID tid = 0; tid < numThreads; tid++) {
396 while (!insts[tid].empty())
397 insts[tid].pop();
398 while (!skidBuffer[tid].empty())
399 skidBuffer[tid].pop();
400 }
401 }
402
403 template <class Impl>
404 void
405 DefaultIEW<Impl>::takeOverFrom()
406 {
407 // Reset all state.
408 _status = Active;
409 exeStatus = Running;
410 wbStatus = Idle;
411 switchedOut = false;
412
413 instQueue.takeOverFrom();
414 ldstQueue.takeOverFrom();
415 fuPool->takeOver();
416
417 initStage();
418 cpu->activityThisCycle();
419
420 for (ThreadID tid = 0; tid < numThreads; tid++) {
421 dispatchStatus[tid] = Running;
422 stalls[tid].commit = false;
423 fetchRedirect[tid] = false;
424 }
425
426 updateLSQNextCycle = false;
427
428 for (int i = 0; i < issueToExecQueue.getSize(); ++i) {
429 issueToExecQueue.advance();
430 }
431 }
432
433 template<class Impl>
434 void
435 DefaultIEW<Impl>::squash(ThreadID tid)
436 {
437 DPRINTF(IEW, "[tid:%i]: Squashing all instructions.\n", tid);
438
439 // Tell the IQ to start squashing.
440 instQueue.squash(tid);
441
442 // Tell the LDSTQ to start squashing.
443 ldstQueue.squash(fromCommit->commitInfo[tid].doneSeqNum, tid);
444 updatedQueues = true;
445
446 // Clear the skid buffer in case it has any data in it.
447 DPRINTF(IEW, "[tid:%i]: Removing skidbuffer instructions until [sn:%i].\n",
448 tid, fromCommit->commitInfo[tid].doneSeqNum);
449
450 while (!skidBuffer[tid].empty()) {
451 if (skidBuffer[tid].front()->isLoad() ||
452 skidBuffer[tid].front()->isStore() ) {
453 toRename->iewInfo[tid].dispatchedToLSQ++;
454 }
455
456 toRename->iewInfo[tid].dispatched++;
457
458 skidBuffer[tid].pop();
459 }
460
461 emptyRenameInsts(tid);
462 }
463
464 template<class Impl>
465 void
466 DefaultIEW<Impl>::squashDueToBranch(DynInstPtr &inst, ThreadID tid)
467 {
468 DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, PC: %s "
469 "[sn:%i].\n", tid, inst->pcState(), inst->seqNum);
470
471 if (toCommit->squash[tid] == false ||
472 inst->seqNum < toCommit->squashedSeqNum[tid]) {
473 toCommit->squash[tid] = true;
474 toCommit->squashedSeqNum[tid] = inst->seqNum;
475 toCommit->branchTaken[tid] = inst->pcState().branching();
476
477 TheISA::PCState pc = inst->pcState();
478 TheISA::advancePC(pc, inst->staticInst);
479
480 toCommit->pc[tid] = pc;
481 toCommit->mispredictInst[tid] = inst;
482 toCommit->includeSquashInst[tid] = false;
483
484 wroteToTimeBuffer = true;
485 }
486
487 }
488
489 template<class Impl>
490 void
491 DefaultIEW<Impl>::squashDueToMemOrder(DynInstPtr &inst, ThreadID tid)
492 {
493 DPRINTF(IEW, "[tid:%i]: Memory violation, squashing violator and younger "
494 "insts, PC: %s [sn:%i].\n", tid, inst->pcState(), inst->seqNum);
495 // Need to include inst->seqNum in the following comparison to cover the
496 // corner case when a branch misprediction and a memory violation for the
497 // same instruction (e.g. load PC) are detected in the same cycle. In this
498 // case the memory violator should take precedence over the branch
499 // misprediction because it requires the violator itself to be included in
500 // the squash.
501 if (toCommit->squash[tid] == false ||
502 inst->seqNum <= toCommit->squashedSeqNum[tid]) {
503 toCommit->squash[tid] = true;
504
505 toCommit->squashedSeqNum[tid] = inst->seqNum;
506 toCommit->pc[tid] = inst->pcState();
507 toCommit->mispredictInst[tid] = NULL;
508
509 // Must include the memory violator in the squash.
510 toCommit->includeSquashInst[tid] = true;
511
512 wroteToTimeBuffer = true;
513 }
514 }
515
516 template<class Impl>
517 void
518 DefaultIEW<Impl>::squashDueToMemBlocked(DynInstPtr &inst, ThreadID tid)
519 {
520 DPRINTF(IEW, "[tid:%i]: Memory blocked, squashing load and younger insts, "
521 "PC: %s [sn:%i].\n", tid, inst->pcState(), inst->seqNum);
522 if (toCommit->squash[tid] == false ||
523 inst->seqNum < toCommit->squashedSeqNum[tid]) {
524 toCommit->squash[tid] = true;
525
526 toCommit->squashedSeqNum[tid] = inst->seqNum;
527 toCommit->pc[tid] = inst->pcState();
528 toCommit->mispredictInst[tid] = NULL;
529
530 // Must include the broadcasted SN in the squash.
531 toCommit->includeSquashInst[tid] = true;
532
533 ldstQueue.setLoadBlockedHandled(tid);
534
535 wroteToTimeBuffer = true;
536 }
537 }
538
539 template<class Impl>
540 void
541 DefaultIEW<Impl>::block(ThreadID tid)
542 {
543 DPRINTF(IEW, "[tid:%u]: Blocking.\n", tid);
544
545 if (dispatchStatus[tid] != Blocked &&
546 dispatchStatus[tid] != Unblocking) {
547 toRename->iewBlock[tid] = true;
548 wroteToTimeBuffer = true;
549 }
550
551 // Add the current inputs to the skid buffer so they can be
552 // reprocessed when this stage unblocks.
553 skidInsert(tid);
554
555 dispatchStatus[tid] = Blocked;
556 }
557
558 template<class Impl>
559 void
560 DefaultIEW<Impl>::unblock(ThreadID tid)
561 {
562 DPRINTF(IEW, "[tid:%i]: Reading instructions out of the skid "
563 "buffer %u.\n",tid, tid);
564
565 // If the skid bufffer is empty, signal back to previous stages to unblock.
566 // Also switch status to running.
567 if (skidBuffer[tid].empty()) {
568 toRename->iewUnblock[tid] = true;
569 wroteToTimeBuffer = true;
570 DPRINTF(IEW, "[tid:%i]: Done unblocking.\n",tid);
571 dispatchStatus[tid] = Running;
572 }
573 }
574
575 template<class Impl>
576 void
577 DefaultIEW<Impl>::wakeDependents(DynInstPtr &inst)
578 {
579 instQueue.wakeDependents(inst);
580 }
581
582 template<class Impl>
583 void
584 DefaultIEW<Impl>::rescheduleMemInst(DynInstPtr &inst)
585 {
586 instQueue.rescheduleMemInst(inst);
587 }
588
589 template<class Impl>
590 void
591 DefaultIEW<Impl>::replayMemInst(DynInstPtr &inst)
592 {
593 instQueue.replayMemInst(inst);
594 }
595
596 template<class Impl>
597 void
598 DefaultIEW<Impl>::instToCommit(DynInstPtr &inst)
599 {
600 // This function should not be called after writebackInsts in a
601 // single cycle. That will cause problems with an instruction
602 // being added to the queue to commit without being processed by
603 // writebackInsts prior to being sent to commit.
604
605 // First check the time slot that this instruction will write
606 // to. If there are free write ports at the time, then go ahead
607 // and write the instruction to that time. If there are not,
608 // keep looking back to see where's the first time there's a
609 // free slot.
610 while ((*iewQueue)[wbCycle].insts[wbNumInst]) {
611 ++wbNumInst;
612 if (wbNumInst == wbWidth) {
613 ++wbCycle;
614 wbNumInst = 0;
615 }
616
617 assert((wbCycle * wbWidth + wbNumInst) <= wbMax);
618 }
619
620 DPRINTF(IEW, "Current wb cycle: %i, width: %i, numInst: %i\nwbActual:%i\n",
621 wbCycle, wbWidth, wbNumInst, wbCycle * wbWidth + wbNumInst);
622 // Add finished instruction to queue to commit.
623 (*iewQueue)[wbCycle].insts[wbNumInst] = inst;
624 (*iewQueue)[wbCycle].size++;
625 }
626
627 template <class Impl>
628 unsigned
629 DefaultIEW<Impl>::validInstsFromRename()
630 {
631 unsigned inst_count = 0;
632
633 for (int i=0; i<fromRename->size; i++) {
634 if (!fromRename->insts[i]->isSquashed())
635 inst_count++;
636 }
637
638 return inst_count;
639 }
640
641 template<class Impl>
642 void
643 DefaultIEW<Impl>::skidInsert(ThreadID tid)
644 {
645 DynInstPtr inst = NULL;
646
647 while (!insts[tid].empty()) {
648 inst = insts[tid].front();
649
650 insts[tid].pop();
651
652 DPRINTF(Decode,"[tid:%i]: Inserting [sn:%lli] PC:%s into "
653 "dispatch skidBuffer %i\n",tid, inst->seqNum,
654 inst->pcState(),tid);
655
656 skidBuffer[tid].push(inst);
657 }
658
659 assert(skidBuffer[tid].size() <= skidBufferMax &&
660 "Skidbuffer Exceeded Max Size");
661 }
662
663 template<class Impl>
664 int
665 DefaultIEW<Impl>::skidCount()
666 {
667 int max=0;
668
669 list<ThreadID>::iterator threads = activeThreads->begin();
670 list<ThreadID>::iterator end = activeThreads->end();
671
672 while (threads != end) {
673 ThreadID tid = *threads++;
674 unsigned thread_count = skidBuffer[tid].size();
675 if (max < thread_count)
676 max = thread_count;
677 }
678
679 return max;
680 }
681
682 template<class Impl>
683 bool
684 DefaultIEW<Impl>::skidsEmpty()
685 {
686 list<ThreadID>::iterator threads = activeThreads->begin();
687 list<ThreadID>::iterator end = activeThreads->end();
688
689 while (threads != end) {
690 ThreadID tid = *threads++;
691
692 if (!skidBuffer[tid].empty())
693 return false;
694 }
695
696 return true;
697 }
698
699 template <class Impl>
700 void
701 DefaultIEW<Impl>::updateStatus()
702 {
703 bool any_unblocking = false;
704
705 list<ThreadID>::iterator threads = activeThreads->begin();
706 list<ThreadID>::iterator end = activeThreads->end();
707
708 while (threads != end) {
709 ThreadID tid = *threads++;
710
711 if (dispatchStatus[tid] == Unblocking) {
712 any_unblocking = true;
713 break;
714 }
715 }
716
717 // If there are no ready instructions waiting to be scheduled by the IQ,
718 // and there's no stores waiting to write back, and dispatch is not
719 // unblocking, then there is no internal activity for the IEW stage.
720 instQueue.intInstQueueReads++;
721 if (_status == Active && !instQueue.hasReadyInsts() &&
722 !ldstQueue.willWB() && !any_unblocking) {
723 DPRINTF(IEW, "IEW switching to idle\n");
724
725 deactivateStage();
726
727 _status = Inactive;
728 } else if (_status == Inactive && (instQueue.hasReadyInsts() ||
729 ldstQueue.willWB() ||
730 any_unblocking)) {
731 // Otherwise there is internal activity. Set to active.
732 DPRINTF(IEW, "IEW switching to active\n");
733
734 activateStage();
735
736 _status = Active;
737 }
738 }
739
740 template <class Impl>
741 void
742 DefaultIEW<Impl>::resetEntries()
743 {
744 instQueue.resetEntries();
745 ldstQueue.resetEntries();
746 }
747
748 template <class Impl>
749 void
750 DefaultIEW<Impl>::readStallSignals(ThreadID tid)
751 {
752 if (fromCommit->commitBlock[tid]) {
753 stalls[tid].commit = true;
754 }
755
756 if (fromCommit->commitUnblock[tid]) {
757 assert(stalls[tid].commit);
758 stalls[tid].commit = false;
759 }
760 }
761
762 template <class Impl>
763 bool
764 DefaultIEW<Impl>::checkStall(ThreadID tid)
765 {
766 bool ret_val(false);
767
768 if (stalls[tid].commit) {
769 DPRINTF(IEW,"[tid:%i]: Stall from Commit stage detected.\n",tid);
770 ret_val = true;
771 } else if (instQueue.isFull(tid)) {
772 DPRINTF(IEW,"[tid:%i]: Stall: IQ is full.\n",tid);
773 ret_val = true;
774 } else if (ldstQueue.isFull(tid)) {
775 DPRINTF(IEW,"[tid:%i]: Stall: LSQ is full\n",tid);
776
777 if (ldstQueue.numLoads(tid) > 0 ) {
778
779 DPRINTF(IEW,"[tid:%i]: LSQ oldest load: [sn:%i] \n",
780 tid,ldstQueue.getLoadHeadSeqNum(tid));
781 }
782
783 if (ldstQueue.numStores(tid) > 0) {
784
785 DPRINTF(IEW,"[tid:%i]: LSQ oldest store: [sn:%i] \n",
786 tid,ldstQueue.getStoreHeadSeqNum(tid));
787 }
788
789 ret_val = true;
790 } else if (ldstQueue.isStalled(tid)) {
791 DPRINTF(IEW,"[tid:%i]: Stall: LSQ stall detected.\n",tid);
792 ret_val = true;
793 }
794
795 return ret_val;
796 }
797
798 template <class Impl>
799 void
800 DefaultIEW<Impl>::checkSignalsAndUpdate(ThreadID tid)
801 {
802 // Check if there's a squash signal, squash if there is
803 // Check stall signals, block if there is.
804 // If status was Blocked
805 // if so then go to unblocking
806 // If status was Squashing
807 // check if squashing is not high. Switch to running this cycle.
808
809 readStallSignals(tid);
810
811 if (fromCommit->commitInfo[tid].squash) {
812 squash(tid);
813
814 if (dispatchStatus[tid] == Blocked ||
815 dispatchStatus[tid] == Unblocking) {
816 toRename->iewUnblock[tid] = true;
817 wroteToTimeBuffer = true;
818 }
819
820 dispatchStatus[tid] = Squashing;
821 fetchRedirect[tid] = false;
822 return;
823 }
824
825 if (fromCommit->commitInfo[tid].robSquashing) {
826 DPRINTF(IEW, "[tid:%i]: ROB is still squashing.\n", tid);
827
828 dispatchStatus[tid] = Squashing;
829 emptyRenameInsts(tid);
830 wroteToTimeBuffer = true;
831 return;
832 }
833
834 if (checkStall(tid)) {
835 block(tid);
836 dispatchStatus[tid] = Blocked;
837 return;
838 }
839
840 if (dispatchStatus[tid] == Blocked) {
841 // Status from previous cycle was blocked, but there are no more stall
842 // conditions. Switch over to unblocking.
843 DPRINTF(IEW, "[tid:%i]: Done blocking, switching to unblocking.\n",
844 tid);
845
846 dispatchStatus[tid] = Unblocking;
847
848 unblock(tid);
849
850 return;
851 }
852
853 if (dispatchStatus[tid] == Squashing) {
854 // Switch status to running if rename isn't being told to block or
855 // squash this cycle.
856 DPRINTF(IEW, "[tid:%i]: Done squashing, switching to running.\n",
857 tid);
858
859 dispatchStatus[tid] = Running;
860
861 return;
862 }
863 }
864
865 template <class Impl>
866 void
867 DefaultIEW<Impl>::sortInsts()
868 {
869 int insts_from_rename = fromRename->size;
870 #ifdef DEBUG
871 for (ThreadID tid = 0; tid < numThreads; tid++)
872 assert(insts[tid].empty());
873 #endif
874 for (int i = 0; i < insts_from_rename; ++i) {
875 insts[fromRename->insts[i]->threadNumber].push(fromRename->insts[i]);
876 }
877 }
878
879 template <class Impl>
880 void
881 DefaultIEW<Impl>::emptyRenameInsts(ThreadID tid)
882 {
883 DPRINTF(IEW, "[tid:%i]: Removing incoming rename instructions\n", tid);
884
885 while (!insts[tid].empty()) {
886
887 if (insts[tid].front()->isLoad() ||
888 insts[tid].front()->isStore() ) {
889 toRename->iewInfo[tid].dispatchedToLSQ++;
890 }
891
892 toRename->iewInfo[tid].dispatched++;
893
894 insts[tid].pop();
895 }
896 }
897
898 template <class Impl>
899 void
900 DefaultIEW<Impl>::wakeCPU()
901 {
902 cpu->wakeCPU();
903 }
904
905 template <class Impl>
906 void
907 DefaultIEW<Impl>::activityThisCycle()
908 {
909 DPRINTF(Activity, "Activity this cycle.\n");
910 cpu->activityThisCycle();
911 }
912
913 template <class Impl>
914 inline void
915 DefaultIEW<Impl>::activateStage()
916 {
917 DPRINTF(Activity, "Activating stage.\n");
918 cpu->activateStage(O3CPU::IEWIdx);
919 }
920
921 template <class Impl>
922 inline void
923 DefaultIEW<Impl>::deactivateStage()
924 {
925 DPRINTF(Activity, "Deactivating stage.\n");
926 cpu->deactivateStage(O3CPU::IEWIdx);
927 }
928
929 template<class Impl>
930 void
931 DefaultIEW<Impl>::dispatch(ThreadID tid)
932 {
933 // If status is Running or idle,
934 // call dispatchInsts()
935 // If status is Unblocking,
936 // buffer any instructions coming from rename
937 // continue trying to empty skid buffer
938 // check if stall conditions have passed
939
940 if (dispatchStatus[tid] == Blocked) {
941 ++iewBlockCycles;
942
943 } else if (dispatchStatus[tid] == Squashing) {
944 ++iewSquashCycles;
945 }
946
947 // Dispatch should try to dispatch as many instructions as its bandwidth
948 // will allow, as long as it is not currently blocked.
949 if (dispatchStatus[tid] == Running ||
950 dispatchStatus[tid] == Idle) {
951 DPRINTF(IEW, "[tid:%i] Not blocked, so attempting to run "
952 "dispatch.\n", tid);
953
954 dispatchInsts(tid);
955 } else if (dispatchStatus[tid] == Unblocking) {
956 // Make sure that the skid buffer has something in it if the
957 // status is unblocking.
958 assert(!skidsEmpty());
959
960 // If the status was unblocking, then instructions from the skid
961 // buffer were used. Remove those instructions and handle
962 // the rest of unblocking.
963 dispatchInsts(tid);
964
965 ++iewUnblockCycles;
966
967 if (validInstsFromRename()) {
968 // Add the current inputs to the skid buffer so they can be
969 // reprocessed when this stage unblocks.
970 skidInsert(tid);
971 }
972
973 unblock(tid);
974 }
975 }
976
977 template <class Impl>
978 void
979 DefaultIEW<Impl>::dispatchInsts(ThreadID tid)
980 {
981 // Obtain instructions from skid buffer if unblocking, or queue from rename
982 // otherwise.
983 std::queue<DynInstPtr> &insts_to_dispatch =
984 dispatchStatus[tid] == Unblocking ?
985 skidBuffer[tid] : insts[tid];
986
987 int insts_to_add = insts_to_dispatch.size();
988
989 DynInstPtr inst;
990 bool add_to_iq = false;
991 int dis_num_inst = 0;
992
993 // Loop through the instructions, putting them in the instruction
994 // queue.
995 for ( ; dis_num_inst < insts_to_add &&
996 dis_num_inst < dispatchWidth;
997 ++dis_num_inst)
998 {
999 inst = insts_to_dispatch.front();
1000
1001 if (dispatchStatus[tid] == Unblocking) {
1002 DPRINTF(IEW, "[tid:%i]: Issue: Examining instruction from skid "
1003 "buffer\n", tid);
1004 }
1005
1006 // Make sure there's a valid instruction there.
1007 assert(inst);
1008
1009 DPRINTF(IEW, "[tid:%i]: Issue: Adding PC %s [sn:%lli] [tid:%i] to "
1010 "IQ.\n",
1011 tid, inst->pcState(), inst->seqNum, inst->threadNumber);
1012
1013 // Be sure to mark these instructions as ready so that the
1014 // commit stage can go ahead and execute them, and mark
1015 // them as issued so the IQ doesn't reprocess them.
1016
1017 // Check for squashed instructions.
1018 if (inst->isSquashed()) {
1019 DPRINTF(IEW, "[tid:%i]: Issue: Squashed instruction encountered, "
1020 "not adding to IQ.\n", tid);
1021
1022 ++iewDispSquashedInsts;
1023
1024 insts_to_dispatch.pop();
1025
1026 //Tell Rename That An Instruction has been processed
1027 if (inst->isLoad() || inst->isStore()) {
1028 toRename->iewInfo[tid].dispatchedToLSQ++;
1029 }
1030 toRename->iewInfo[tid].dispatched++;
1031
1032 continue;
1033 }
1034
1035 // Check for full conditions.
1036 if (instQueue.isFull(tid)) {
1037 DPRINTF(IEW, "[tid:%i]: Issue: IQ has become full.\n", tid);
1038
1039 // Call function to start blocking.
1040 block(tid);
1041
1042 // Set unblock to false. Special case where we are using
1043 // skidbuffer (unblocking) instructions but then we still
1044 // get full in the IQ.
1045 toRename->iewUnblock[tid] = false;
1046
1047 ++iewIQFullEvents;
1048 break;
1049 } else if (ldstQueue.isFull(tid)) {
1050 DPRINTF(IEW, "[tid:%i]: Issue: LSQ has become full.\n",tid);
1051
1052 // Call function to start blocking.
1053 block(tid);
1054
1055 // Set unblock to false. Special case where we are using
1056 // skidbuffer (unblocking) instructions but then we still
1057 // get full in the IQ.
1058 toRename->iewUnblock[tid] = false;
1059
1060 ++iewLSQFullEvents;
1061 break;
1062 }
1063
1064 // Otherwise issue the instruction just fine.
1065 if (inst->isLoad()) {
1066 DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
1067 "encountered, adding to LSQ.\n", tid);
1068
1069 // Reserve a spot in the load store queue for this
1070 // memory access.
1071 ldstQueue.insertLoad(inst);
1072
1073 ++iewDispLoadInsts;
1074
1075 add_to_iq = true;
1076
1077 toRename->iewInfo[tid].dispatchedToLSQ++;
1078 } else if (inst->isStore()) {
1079 DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
1080 "encountered, adding to LSQ.\n", tid);
1081
1082 ldstQueue.insertStore(inst);
1083
1084 ++iewDispStoreInsts;
1085
1086 if (inst->isStoreConditional()) {
1087 // Store conditionals need to be set as "canCommit()"
1088 // so that commit can process them when they reach the
1089 // head of commit.
1090 // @todo: This is somewhat specific to Alpha.
1091 inst->setCanCommit();
1092 instQueue.insertNonSpec(inst);
1093 add_to_iq = false;
1094
1095 ++iewDispNonSpecInsts;
1096 } else {
1097 add_to_iq = true;
1098 }
1099
1100 toRename->iewInfo[tid].dispatchedToLSQ++;
1101 } else if (inst->isMemBarrier() || inst->isWriteBarrier()) {
1102 // Same as non-speculative stores.
1103 inst->setCanCommit();
1104 instQueue.insertBarrier(inst);
1105 add_to_iq = false;
1106 } else if (inst->isNop()) {
1107 DPRINTF(IEW, "[tid:%i]: Issue: Nop instruction encountered, "
1108 "skipping.\n", tid);
1109
1110 inst->setIssued();
1111 inst->setExecuted();
1112 inst->setCanCommit();
1113
1114 instQueue.recordProducer(inst);
1115
1116 iewExecutedNop[tid]++;
1117
1118 add_to_iq = false;
1119 } else if (inst->isExecuted()) {
1120 assert(0 && "Instruction shouldn't be executed.\n");
1121 DPRINTF(IEW, "Issue: Executed branch encountered, "
1122 "skipping.\n");
1123
1124 inst->setIssued();
1125 inst->setCanCommit();
1126
1127 instQueue.recordProducer(inst);
1128
1129 add_to_iq = false;
1130 } else {
1131 add_to_iq = true;
1132 }
1133 if (inst->isNonSpeculative()) {
1134 DPRINTF(IEW, "[tid:%i]: Issue: Nonspeculative instruction "
1135 "encountered, skipping.\n", tid);
1136
1137 // Same as non-speculative stores.
1138 inst->setCanCommit();
1139
1140 // Specifically insert it as nonspeculative.
1141 instQueue.insertNonSpec(inst);
1142
1143 ++iewDispNonSpecInsts;
1144
1145 add_to_iq = false;
1146 }
1147
1148 // If the instruction queue is not full, then add the
1149 // instruction.
1150 if (add_to_iq) {
1151 instQueue.insert(inst);
1152 }
1153
1154 insts_to_dispatch.pop();
1155
1156 toRename->iewInfo[tid].dispatched++;
1157
1158 ++iewDispatchedInsts;
1159
1160 #if TRACING_ON
1161 inst->dispatchTick = curTick();
1162 #endif
1163 }
1164
1165 if (!insts_to_dispatch.empty()) {
1166 DPRINTF(IEW,"[tid:%i]: Issue: Bandwidth Full. Blocking.\n", tid);
1167 block(tid);
1168 toRename->iewUnblock[tid] = false;
1169 }
1170
1171 if (dispatchStatus[tid] == Idle && dis_num_inst) {
1172 dispatchStatus[tid] = Running;
1173
1174 updatedQueues = true;
1175 }
1176
1177 dis_num_inst = 0;
1178 }
1179
1180 template <class Impl>
1181 void
1182 DefaultIEW<Impl>::printAvailableInsts()
1183 {
1184 int inst = 0;
1185
1186 std::cout << "Available Instructions: ";
1187
1188 while (fromIssue->insts[inst]) {
1189
1190 if (inst%3==0) std::cout << "\n\t";
1191
1192 std::cout << "PC: " << fromIssue->insts[inst]->pcState()
1193 << " TN: " << fromIssue->insts[inst]->threadNumber
1194 << " SN: " << fromIssue->insts[inst]->seqNum << " | ";
1195
1196 inst++;
1197
1198 }
1199
1200 std::cout << "\n";
1201 }
1202
1203 template <class Impl>
1204 void
1205 DefaultIEW<Impl>::executeInsts()
1206 {
1207 wbNumInst = 0;
1208 wbCycle = 0;
1209
1210 list<ThreadID>::iterator threads = activeThreads->begin();
1211 list<ThreadID>::iterator end = activeThreads->end();
1212
1213 while (threads != end) {
1214 ThreadID tid = *threads++;
1215 fetchRedirect[tid] = false;
1216 }
1217
1218 // Uncomment this if you want to see all available instructions.
1219 // @todo This doesn't actually work anymore, we should fix it.
1220 // printAvailableInsts();
1221
1222 // Execute/writeback any instructions that are available.
1223 int insts_to_execute = fromIssue->size;
1224 int inst_num = 0;
1225 for (; inst_num < insts_to_execute;
1226 ++inst_num) {
1227
1228 DPRINTF(IEW, "Execute: Executing instructions from IQ.\n");
1229
1230 DynInstPtr inst = instQueue.getInstToExecute();
1231
1232 DPRINTF(IEW, "Execute: Processing PC %s, [tid:%i] [sn:%i].\n",
1233 inst->pcState(), inst->threadNumber,inst->seqNum);
1234
1235 // Check if the instruction is squashed; if so then skip it
1236 if (inst->isSquashed()) {
1237 DPRINTF(IEW, "Execute: Instruction was squashed. PC: %s, [tid:%i]"
1238 " [sn:%i]\n", inst->pcState(), inst->threadNumber,
1239 inst->seqNum);
1240
1241 // Consider this instruction executed so that commit can go
1242 // ahead and retire the instruction.
1243 inst->setExecuted();
1244
1245 // Not sure if I should set this here or just let commit try to
1246 // commit any squashed instructions. I like the latter a bit more.
1247 inst->setCanCommit();
1248
1249 ++iewExecSquashedInsts;
1250
1251 decrWb(inst->seqNum);
1252 continue;
1253 }
1254
1255 Fault fault = NoFault;
1256
1257 // Execute instruction.
1258 // Note that if the instruction faults, it will be handled
1259 // at the commit stage.
1260 if (inst->isMemRef()) {
1261 DPRINTF(IEW, "Execute: Calculating address for memory "
1262 "reference.\n");
1263
1264 // Tell the LDSTQ to execute this instruction (if it is a load).
1265 if (inst->isLoad()) {
1266 // Loads will mark themselves as executed, and their writeback
1267 // event adds the instruction to the queue to commit
1268 fault = ldstQueue.executeLoad(inst);
1269
1270 if (inst->isTranslationDelayed() &&
1271 fault == NoFault) {
1272 // A hw page table walk is currently going on; the
1273 // instruction must be deferred.
1274 DPRINTF(IEW, "Execute: Delayed translation, deferring "
1275 "load.\n");
1276 instQueue.deferMemInst(inst);
1277 continue;
1278 }
1279
1280 if (inst->isDataPrefetch() || inst->isInstPrefetch()) {
1281 inst->fault = NoFault;
1282 }
1283 } else if (inst->isStore()) {
1284 fault = ldstQueue.executeStore(inst);
1285
1286 if (inst->isTranslationDelayed() &&
1287 fault == NoFault) {
1288 // A hw page table walk is currently going on; the
1289 // instruction must be deferred.
1290 DPRINTF(IEW, "Execute: Delayed translation, deferring "
1291 "store.\n");
1292 instQueue.deferMemInst(inst);
1293 continue;
1294 }
1295
1296 // If the store had a fault then it may not have a mem req
1297 if (fault != NoFault || inst->readPredicate() == false ||
1298 !inst->isStoreConditional()) {
1299 // If the instruction faulted, then we need to send it along
1300 // to commit without the instruction completing.
1301 // Send this instruction to commit, also make sure iew stage
1302 // realizes there is activity.
1303 inst->setExecuted();
1304 instToCommit(inst);
1305 activityThisCycle();
1306 }
1307
1308 // Store conditionals will mark themselves as
1309 // executed, and their writeback event will add the
1310 // instruction to the queue to commit.
1311 } else {
1312 panic("Unexpected memory type!\n");
1313 }
1314
1315 } else {
1316 // If the instruction has already faulted, then skip executing it.
1317 // Such case can happen when it faulted during ITLB translation.
1318 // If we execute the instruction (even if it's a nop) the fault
1319 // will be replaced and we will lose it.
1320 if (inst->getFault() == NoFault) {
1321 inst->execute();
1322 if (inst->readPredicate() == false)
1323 inst->forwardOldRegs();
1324 }
1325
1326 inst->setExecuted();
1327
1328 instToCommit(inst);
1329 }
1330
1331 updateExeInstStats(inst);
1332
1333 // Check if branch prediction was correct, if not then we need
1334 // to tell commit to squash in flight instructions. Only
1335 // handle this if there hasn't already been something that
1336 // redirects fetch in this group of instructions.
1337
1338 // This probably needs to prioritize the redirects if a different
1339 // scheduler is used. Currently the scheduler schedules the oldest
1340 // instruction first, so the branch resolution order will be correct.
1341 ThreadID tid = inst->threadNumber;
1342
1343 if (!fetchRedirect[tid] ||
1344 !toCommit->squash[tid] ||
1345 toCommit->squashedSeqNum[tid] > inst->seqNum) {
1346
1347 // Prevent testing for misprediction on load instructions,
1348 // that have not been executed.
1349 bool loadNotExecuted = !inst->isExecuted() && inst->isLoad();
1350
1351 if (inst->mispredicted() && !loadNotExecuted) {
1352 fetchRedirect[tid] = true;
1353
1354 DPRINTF(IEW, "Execute: Branch mispredict detected.\n");
1355 DPRINTF(IEW, "Predicted target was PC: %s.\n",
1356 inst->readPredTarg());
1357 DPRINTF(IEW, "Execute: Redirecting fetch to PC: %s.\n",
1358 inst->pcState());
1359 // If incorrect, then signal the ROB that it must be squashed.
1360 squashDueToBranch(inst, tid);
1361
1362 if (inst->readPredTaken()) {
1363 predictedTakenIncorrect++;
1364 } else {
1365 predictedNotTakenIncorrect++;
1366 }
1367 } else if (ldstQueue.violation(tid)) {
1368 assert(inst->isMemRef());
1369 // If there was an ordering violation, then get the
1370 // DynInst that caused the violation. Note that this
1371 // clears the violation signal.
1372 DynInstPtr violator;
1373 violator = ldstQueue.getMemDepViolator(tid);
1374
1375 DPRINTF(IEW, "LDSTQ detected a violation. Violator PC: %s "
1376 "[sn:%lli], inst PC: %s [sn:%lli]. Addr is: %#x.\n",
1377 violator->pcState(), violator->seqNum,
1378 inst->pcState(), inst->seqNum, inst->physEffAddr);
1379
1380 fetchRedirect[tid] = true;
1381
1382 // Tell the instruction queue that a violation has occured.
1383 instQueue.violation(inst, violator);
1384
1385 // Squash.
1386 squashDueToMemOrder(violator, tid);
1387
1388 ++memOrderViolationEvents;
1389 } else if (ldstQueue.loadBlocked(tid) &&
1390 !ldstQueue.isLoadBlockedHandled(tid)) {
1391 fetchRedirect[tid] = true;
1392
1393 DPRINTF(IEW, "Load operation couldn't execute because the "
1394 "memory system is blocked. PC: %s [sn:%lli]\n",
1395 inst->pcState(), inst->seqNum);
1396
1397 squashDueToMemBlocked(inst, tid);
1398 }
1399 } else {
1400 // Reset any state associated with redirects that will not
1401 // be used.
1402 if (ldstQueue.violation(tid)) {
1403 assert(inst->isMemRef());
1404
1405 DynInstPtr violator = ldstQueue.getMemDepViolator(tid);
1406
1407 DPRINTF(IEW, "LDSTQ detected a violation. Violator PC: "
1408 "%s, inst PC: %s. Addr is: %#x.\n",
1409 violator->pcState(), inst->pcState(),
1410 inst->physEffAddr);
1411 DPRINTF(IEW, "Violation will not be handled because "
1412 "already squashing\n");
1413
1414 ++memOrderViolationEvents;
1415 }
1416 if (ldstQueue.loadBlocked(tid) &&
1417 !ldstQueue.isLoadBlockedHandled(tid)) {
1418 DPRINTF(IEW, "Load operation couldn't execute because the "
1419 "memory system is blocked. PC: %s [sn:%lli]\n",
1420 inst->pcState(), inst->seqNum);
1421 DPRINTF(IEW, "Blocked load will not be handled because "
1422 "already squashing\n");
1423
1424 ldstQueue.setLoadBlockedHandled(tid);
1425 }
1426
1427 }
1428 }
1429
1430 // Update and record activity if we processed any instructions.
1431 if (inst_num) {
1432 if (exeStatus == Idle) {
1433 exeStatus = Running;
1434 }
1435
1436 updatedQueues = true;
1437
1438 cpu->activityThisCycle();
1439 }
1440
1441 // Need to reset this in case a writeback event needs to write into the
1442 // iew queue. That way the writeback event will write into the correct
1443 // spot in the queue.
1444 wbNumInst = 0;
1445
1446 }
1447
1448 template <class Impl>
1449 void
1450 DefaultIEW<Impl>::writebackInsts()
1451 {
1452 // Loop through the head of the time buffer and wake any
1453 // dependents. These instructions are about to write back. Also
1454 // mark scoreboard that this instruction is finally complete.
1455 // Either have IEW have direct access to scoreboard, or have this
1456 // as part of backwards communication.
1457 for (int inst_num = 0; inst_num < wbWidth &&
1458 toCommit->insts[inst_num]; inst_num++) {
1459 DynInstPtr inst = toCommit->insts[inst_num];
1460 ThreadID tid = inst->threadNumber;
1461
1462 DPRINTF(IEW, "Sending instructions to commit, [sn:%lli] PC %s.\n",
1463 inst->seqNum, inst->pcState());
1464
1465 iewInstsToCommit[tid]++;
1466
1467 // Some instructions will be sent to commit without having
1468 // executed because they need commit to handle them.
1469 // E.g. Uncached loads have not actually executed when they
1470 // are first sent to commit. Instead commit must tell the LSQ
1471 // when it's ready to execute the uncached load.
1472 if (!inst->isSquashed() && inst->isExecuted() && inst->getFault() == NoFault) {
1473 int dependents = instQueue.wakeDependents(inst);
1474
1475 for (int i = 0; i < inst->numDestRegs(); i++) {
1476 //mark as Ready
1477 DPRINTF(IEW,"Setting Destination Register %i\n",
1478 inst->renamedDestRegIdx(i));
1479 scoreboard->setReg(inst->renamedDestRegIdx(i));
1480 }
1481
1482 if (dependents) {
1483 producerInst[tid]++;
1484 consumerInst[tid]+= dependents;
1485 }
1486 writebackCount[tid]++;
1487 }
1488
1489 decrWb(inst->seqNum);
1490 }
1491 }
1492
1493 template<class Impl>
1494 void
1495 DefaultIEW<Impl>::tick()
1496 {
1497 wbNumInst = 0;
1498 wbCycle = 0;
1499
1500 wroteToTimeBuffer = false;
1501 updatedQueues = false;
1502
1503 sortInsts();
1504
1505 // Free function units marked as being freed this cycle.
1506 fuPool->processFreeUnits();
1507
1508 list<ThreadID>::iterator threads = activeThreads->begin();
1509 list<ThreadID>::iterator end = activeThreads->end();
1510
1511 // Check stall and squash signals, dispatch any instructions.
1512 while (threads != end) {
1513 ThreadID tid = *threads++;
1514
1515 DPRINTF(IEW,"Issue: Processing [tid:%i]\n",tid);
1516
1517 checkSignalsAndUpdate(tid);
1518 dispatch(tid);
1519 }
1520
1521 if (exeStatus != Squashing) {
1522 executeInsts();
1523
1524 writebackInsts();
1525
1526 // Have the instruction queue try to schedule any ready instructions.
1527 // (In actuality, this scheduling is for instructions that will
1528 // be executed next cycle.)
1529 instQueue.scheduleReadyInsts();
1530
1531 // Also should advance its own time buffers if the stage ran.
1532 // Not the best place for it, but this works (hopefully).
1533 issueToExecQueue.advance();
1534 }
1535
1536 bool broadcast_free_entries = false;
1537
1538 if (updatedQueues || exeStatus == Running || updateLSQNextCycle) {
1539 exeStatus = Idle;
1540 updateLSQNextCycle = false;
1541
1542 broadcast_free_entries = true;
1543 }
1544
1545 // Writeback any stores using any leftover bandwidth.
1546 ldstQueue.writebackStores();
1547
1548 // Check the committed load/store signals to see if there's a load
1549 // or store to commit. Also check if it's being told to execute a
1550 // nonspeculative instruction.
1551 // This is pretty inefficient...
1552
1553 threads = activeThreads->begin();
1554 while (threads != end) {
1555 ThreadID tid = (*threads++);
1556
1557 DPRINTF(IEW,"Processing [tid:%i]\n",tid);
1558
1559 // Update structures based on instructions committed.
1560 if (fromCommit->commitInfo[tid].doneSeqNum != 0 &&
1561 !fromCommit->commitInfo[tid].squash &&
1562 !fromCommit->commitInfo[tid].robSquashing) {
1563
1564 ldstQueue.commitStores(fromCommit->commitInfo[tid].doneSeqNum,tid);
1565
1566 ldstQueue.commitLoads(fromCommit->commitInfo[tid].doneSeqNum,tid);
1567
1568 updateLSQNextCycle = true;
1569 instQueue.commit(fromCommit->commitInfo[tid].doneSeqNum,tid);
1570 }
1571
1572 if (fromCommit->commitInfo[tid].nonSpecSeqNum != 0) {
1573
1574 //DPRINTF(IEW,"NonspecInst from thread %i",tid);
1575 if (fromCommit->commitInfo[tid].uncached) {
1576 instQueue.replayMemInst(fromCommit->commitInfo[tid].uncachedLoad);
1577 fromCommit->commitInfo[tid].uncachedLoad->setAtCommit();
1578 } else {
1579 instQueue.scheduleNonSpec(
1580 fromCommit->commitInfo[tid].nonSpecSeqNum);
1581 }
1582 }
1583
1584 if (broadcast_free_entries) {
1585 toFetch->iewInfo[tid].iqCount =
1586 instQueue.getCount(tid);
1587 toFetch->iewInfo[tid].ldstqCount =
1588 ldstQueue.getCount(tid);
1589
1590 toRename->iewInfo[tid].usedIQ = true;
1591 toRename->iewInfo[tid].freeIQEntries =
1592 instQueue.numFreeEntries();
1593 toRename->iewInfo[tid].usedLSQ = true;
1594 toRename->iewInfo[tid].freeLSQEntries =
1595 ldstQueue.numFreeEntries(tid);
1596
1597 wroteToTimeBuffer = true;
1598 }
1599
1600 DPRINTF(IEW, "[tid:%i], Dispatch dispatched %i instructions.\n",
1601 tid, toRename->iewInfo[tid].dispatched);
1602 }
1603
1604 DPRINTF(IEW, "IQ has %i free entries (Can schedule: %i). "
1605 "LSQ has %i free entries.\n",
1606 instQueue.numFreeEntries(), instQueue.hasReadyInsts(),
1607 ldstQueue.numFreeEntries());
1608
1609 updateStatus();
1610
1611 if (wroteToTimeBuffer) {
1612 DPRINTF(Activity, "Activity this cycle.\n");
1613 cpu->activityThisCycle();
1614 }
1615 }
1616
1617 template <class Impl>
1618 void
1619 DefaultIEW<Impl>::updateExeInstStats(DynInstPtr &inst)
1620 {
1621 ThreadID tid = inst->threadNumber;
1622
1623 //
1624 // Pick off the software prefetches
1625 //
1626 #ifdef TARGET_ALPHA
1627 if (inst->isDataPrefetch())
1628 iewExecutedSwp[tid]++;
1629 else
1630 iewIewExecutedcutedInsts++;
1631 #else
1632 iewExecutedInsts++;
1633 #endif
1634
1635 #if TRACING_ON
1636 inst->completeTick = curTick();
1637 #endif
1638
1639 //
1640 // Control operations
1641 //
1642 if (inst->isControl())
1643 iewExecutedBranches[tid]++;
1644
1645 //
1646 // Memory operations
1647 //
1648 if (inst->isMemRef()) {
1649 iewExecutedRefs[tid]++;
1650
1651 if (inst->isLoad()) {
1652 iewExecLoadInsts[tid]++;
1653 }
1654 }
1655 }
1656
1657 template <class Impl>
1658 void
1659 DefaultIEW<Impl>::checkMisprediction(DynInstPtr &inst)
1660 {
1661 ThreadID tid = inst->threadNumber;
1662
1663 if (!fetchRedirect[tid] ||
1664 !toCommit->squash[tid] ||
1665 toCommit->squashedSeqNum[tid] > inst->seqNum) {
1666
1667 if (inst->mispredicted()) {
1668 fetchRedirect[tid] = true;
1669
1670 DPRINTF(IEW, "Execute: Branch mispredict detected.\n");
1671 DPRINTF(IEW, "Predicted target was PC:%#x, NPC:%#x.\n",
1672 inst->predInstAddr(), inst->predNextInstAddr());
1673 DPRINTF(IEW, "Execute: Redirecting fetch to PC: %#x,"
1674 " NPC: %#x.\n", inst->nextInstAddr(),
1675 inst->nextInstAddr());
1676 // If incorrect, then signal the ROB that it must be squashed.
1677 squashDueToBranch(inst, tid);
1678
1679 if (inst->readPredTaken()) {
1680 predictedTakenIncorrect++;
1681 } else {
1682 predictedNotTakenIncorrect++;
1683 }
1684 }
1685 }
1686 }