4d99fb520dbfe6f43d3c5e9c55a18388f96f07b0
[gem5.git] / src / cpu / o3 / inst_queue_impl.hh
1 /*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 * Korey Sewell
30 */
31
32 #include <limits>
33 #include <vector>
34
35 #include "sim/core.hh"
36
37 #include "cpu/o3/fu_pool.hh"
38 #include "cpu/o3/inst_queue.hh"
39
40 template <class Impl>
41 InstructionQueue<Impl>::FUCompletion::FUCompletion(DynInstPtr &_inst,
42 int fu_idx,
43 InstructionQueue<Impl> *iq_ptr)
44 : Event(&mainEventQueue, Stat_Event_Pri),
45 inst(_inst), fuIdx(fu_idx), iqPtr(iq_ptr), freeFU(false)
46 {
47 this->setFlags(Event::AutoDelete);
48 }
49
50 template <class Impl>
51 void
52 InstructionQueue<Impl>::FUCompletion::process()
53 {
54 iqPtr->processFUCompletion(inst, freeFU ? fuIdx : -1);
55 inst = NULL;
56 }
57
58
59 template <class Impl>
60 const char *
61 InstructionQueue<Impl>::FUCompletion::description()
62 {
63 return "Functional unit completion event";
64 }
65
66 template <class Impl>
67 InstructionQueue<Impl>::InstructionQueue(Params *params)
68 : fuPool(params->fuPool),
69 numEntries(params->numIQEntries),
70 totalWidth(params->issueWidth),
71 numPhysIntRegs(params->numPhysIntRegs),
72 numPhysFloatRegs(params->numPhysFloatRegs),
73 commitToIEWDelay(params->commitToIEWDelay)
74 {
75 assert(fuPool);
76
77 switchedOut = false;
78
79 numThreads = params->numberOfThreads;
80
81 // Set the number of physical registers as the number of int + float
82 numPhysRegs = numPhysIntRegs + numPhysFloatRegs;
83
84 //Create an entry for each physical register within the
85 //dependency graph.
86 dependGraph.resize(numPhysRegs);
87
88 // Resize the register scoreboard.
89 regScoreboard.resize(numPhysRegs);
90
91 //Initialize Mem Dependence Units
92 for (int i = 0; i < numThreads; i++) {
93 memDepUnit[i].init(params,i);
94 memDepUnit[i].setIQ(this);
95 }
96
97 resetState();
98
99 std::string policy = params->smtIQPolicy;
100
101 //Convert string to lowercase
102 std::transform(policy.begin(), policy.end(), policy.begin(),
103 (int(*)(int)) tolower);
104
105 //Figure out resource sharing policy
106 if (policy == "dynamic") {
107 iqPolicy = Dynamic;
108
109 //Set Max Entries to Total ROB Capacity
110 for (int i = 0; i < numThreads; i++) {
111 maxEntries[i] = numEntries;
112 }
113
114 } else if (policy == "partitioned") {
115 iqPolicy = Partitioned;
116
117 //@todo:make work if part_amt doesnt divide evenly.
118 int part_amt = numEntries / numThreads;
119
120 //Divide ROB up evenly
121 for (int i = 0; i < numThreads; i++) {
122 maxEntries[i] = part_amt;
123 }
124
125 /*
126 DPRINTF(IQ, "IQ sharing policy set to Partitioned:"
127 "%i entries per thread.\n",part_amt);
128 */
129
130 } else if (policy == "threshold") {
131 iqPolicy = Threshold;
132
133 double threshold = (double)params->smtIQThreshold / 100;
134
135 int thresholdIQ = (int)((double)threshold * numEntries);
136
137 //Divide up by threshold amount
138 for (int i = 0; i < numThreads; i++) {
139 maxEntries[i] = thresholdIQ;
140 }
141
142 /*
143 DPRINTF(IQ, "IQ sharing policy set to Threshold:"
144 "%i entries per thread.\n",thresholdIQ);
145 */
146 } else {
147 assert(0 && "Invalid IQ Sharing Policy.Options Are:{Dynamic,"
148 "Partitioned, Threshold}");
149 }
150 }
151
152 template <class Impl>
153 InstructionQueue<Impl>::~InstructionQueue()
154 {
155 dependGraph.reset();
156 #ifdef DEBUG
157 cprintf("Nodes traversed: %i, removed: %i\n",
158 dependGraph.nodesTraversed, dependGraph.nodesRemoved);
159 #endif
160 }
161
162 template <class Impl>
163 std::string
164 InstructionQueue<Impl>::name() const
165 {
166 return cpu->name() + ".iq";
167 }
168
169 template <class Impl>
170 void
171 InstructionQueue<Impl>::regStats()
172 {
173 using namespace Stats;
174 iqInstsAdded
175 .name(name() + ".iqInstsAdded")
176 .desc("Number of instructions added to the IQ (excludes non-spec)")
177 .prereq(iqInstsAdded);
178
179 iqNonSpecInstsAdded
180 .name(name() + ".iqNonSpecInstsAdded")
181 .desc("Number of non-speculative instructions added to the IQ")
182 .prereq(iqNonSpecInstsAdded);
183
184 iqInstsIssued
185 .name(name() + ".iqInstsIssued")
186 .desc("Number of instructions issued")
187 .prereq(iqInstsIssued);
188
189 iqIntInstsIssued
190 .name(name() + ".iqIntInstsIssued")
191 .desc("Number of integer instructions issued")
192 .prereq(iqIntInstsIssued);
193
194 iqFloatInstsIssued
195 .name(name() + ".iqFloatInstsIssued")
196 .desc("Number of float instructions issued")
197 .prereq(iqFloatInstsIssued);
198
199 iqBranchInstsIssued
200 .name(name() + ".iqBranchInstsIssued")
201 .desc("Number of branch instructions issued")
202 .prereq(iqBranchInstsIssued);
203
204 iqMemInstsIssued
205 .name(name() + ".iqMemInstsIssued")
206 .desc("Number of memory instructions issued")
207 .prereq(iqMemInstsIssued);
208
209 iqMiscInstsIssued
210 .name(name() + ".iqMiscInstsIssued")
211 .desc("Number of miscellaneous instructions issued")
212 .prereq(iqMiscInstsIssued);
213
214 iqSquashedInstsIssued
215 .name(name() + ".iqSquashedInstsIssued")
216 .desc("Number of squashed instructions issued")
217 .prereq(iqSquashedInstsIssued);
218
219 iqSquashedInstsExamined
220 .name(name() + ".iqSquashedInstsExamined")
221 .desc("Number of squashed instructions iterated over during squash;"
222 " mainly for profiling")
223 .prereq(iqSquashedInstsExamined);
224
225 iqSquashedOperandsExamined
226 .name(name() + ".iqSquashedOperandsExamined")
227 .desc("Number of squashed operands that are examined and possibly "
228 "removed from graph")
229 .prereq(iqSquashedOperandsExamined);
230
231 iqSquashedNonSpecRemoved
232 .name(name() + ".iqSquashedNonSpecRemoved")
233 .desc("Number of squashed non-spec instructions that were removed")
234 .prereq(iqSquashedNonSpecRemoved);
235 /*
236 queueResDist
237 .init(Num_OpClasses, 0, 99, 2)
238 .name(name() + ".IQ:residence:")
239 .desc("cycles from dispatch to issue")
240 .flags(total | pdf | cdf )
241 ;
242 for (int i = 0; i < Num_OpClasses; ++i) {
243 queueResDist.subname(i, opClassStrings[i]);
244 }
245 */
246 numIssuedDist
247 .init(0,totalWidth,1)
248 .name(name() + ".ISSUE:issued_per_cycle")
249 .desc("Number of insts issued each cycle")
250 .flags(pdf)
251 ;
252 /*
253 dist_unissued
254 .init(Num_OpClasses+2)
255 .name(name() + ".ISSUE:unissued_cause")
256 .desc("Reason ready instruction not issued")
257 .flags(pdf | dist)
258 ;
259 for (int i=0; i < (Num_OpClasses + 2); ++i) {
260 dist_unissued.subname(i, unissued_names[i]);
261 }
262 */
263 statIssuedInstType
264 .init(numThreads,Num_OpClasses)
265 .name(name() + ".ISSUE:FU_type")
266 .desc("Type of FU issued")
267 .flags(total | pdf | dist)
268 ;
269 statIssuedInstType.ysubnames(opClassStrings);
270
271 //
272 // How long did instructions for a particular FU type wait prior to issue
273 //
274 /*
275 issueDelayDist
276 .init(Num_OpClasses,0,99,2)
277 .name(name() + ".ISSUE:")
278 .desc("cycles from operands ready to issue")
279 .flags(pdf | cdf)
280 ;
281
282 for (int i=0; i<Num_OpClasses; ++i) {
283 std::stringstream subname;
284 subname << opClassStrings[i] << "_delay";
285 issueDelayDist.subname(i, subname.str());
286 }
287 */
288 issueRate
289 .name(name() + ".ISSUE:rate")
290 .desc("Inst issue rate")
291 .flags(total)
292 ;
293 issueRate = iqInstsIssued / cpu->numCycles;
294
295 statFuBusy
296 .init(Num_OpClasses)
297 .name(name() + ".ISSUE:fu_full")
298 .desc("attempts to use FU when none available")
299 .flags(pdf | dist)
300 ;
301 for (int i=0; i < Num_OpClasses; ++i) {
302 statFuBusy.subname(i, opClassStrings[i]);
303 }
304
305 fuBusy
306 .init(numThreads)
307 .name(name() + ".ISSUE:fu_busy_cnt")
308 .desc("FU busy when requested")
309 .flags(total)
310 ;
311
312 fuBusyRate
313 .name(name() + ".ISSUE:fu_busy_rate")
314 .desc("FU busy rate (busy events/executed inst)")
315 .flags(total)
316 ;
317 fuBusyRate = fuBusy / iqInstsIssued;
318
319 for ( int i=0; i < numThreads; i++) {
320 // Tell mem dependence unit to reg stats as well.
321 memDepUnit[i].regStats();
322 }
323 }
324
325 template <class Impl>
326 void
327 InstructionQueue<Impl>::resetState()
328 {
329 //Initialize thread IQ counts
330 for (int i = 0; i <numThreads; i++) {
331 count[i] = 0;
332 instList[i].clear();
333 }
334
335 // Initialize the number of free IQ entries.
336 freeEntries = numEntries;
337
338 // Note that in actuality, the registers corresponding to the logical
339 // registers start off as ready. However this doesn't matter for the
340 // IQ as the instruction should have been correctly told if those
341 // registers are ready in rename. Thus it can all be initialized as
342 // unready.
343 for (int i = 0; i < numPhysRegs; ++i) {
344 regScoreboard[i] = false;
345 }
346
347 for (int i = 0; i < numThreads; ++i) {
348 squashedSeqNum[i] = 0;
349 }
350
351 for (int i = 0; i < Num_OpClasses; ++i) {
352 while (!readyInsts[i].empty())
353 readyInsts[i].pop();
354 queueOnList[i] = false;
355 readyIt[i] = listOrder.end();
356 }
357 nonSpecInsts.clear();
358 listOrder.clear();
359 }
360
361 template <class Impl>
362 void
363 InstructionQueue<Impl>::setActiveThreads(std::list<unsigned> *at_ptr)
364 {
365 activeThreads = at_ptr;
366 }
367
368 template <class Impl>
369 void
370 InstructionQueue<Impl>::setIssueToExecuteQueue(TimeBuffer<IssueStruct> *i2e_ptr)
371 {
372 issueToExecuteQueue = i2e_ptr;
373 }
374
375 template <class Impl>
376 void
377 InstructionQueue<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
378 {
379 timeBuffer = tb_ptr;
380
381 fromCommit = timeBuffer->getWire(-commitToIEWDelay);
382 }
383
384 template <class Impl>
385 void
386 InstructionQueue<Impl>::switchOut()
387 {
388 /*
389 if (!instList[0].empty() || (numEntries != freeEntries) ||
390 !readyInsts[0].empty() || !nonSpecInsts.empty() || !listOrder.empty()) {
391 dumpInsts();
392 // assert(0);
393 }
394 */
395 resetState();
396 dependGraph.reset();
397 instsToExecute.clear();
398 switchedOut = true;
399 for (int i = 0; i < numThreads; ++i) {
400 memDepUnit[i].switchOut();
401 }
402 }
403
404 template <class Impl>
405 void
406 InstructionQueue<Impl>::takeOverFrom()
407 {
408 switchedOut = false;
409 }
410
411 template <class Impl>
412 int
413 InstructionQueue<Impl>::entryAmount(int num_threads)
414 {
415 if (iqPolicy == Partitioned) {
416 return numEntries / num_threads;
417 } else {
418 return 0;
419 }
420 }
421
422
423 template <class Impl>
424 void
425 InstructionQueue<Impl>::resetEntries()
426 {
427 if (iqPolicy != Dynamic || numThreads > 1) {
428 int active_threads = activeThreads->size();
429
430 std::list<unsigned>::iterator threads = activeThreads->begin();
431 std::list<unsigned>::iterator end = activeThreads->end();
432
433 while (threads != end) {
434 unsigned tid = *threads++;
435
436 if (iqPolicy == Partitioned) {
437 maxEntries[tid] = numEntries / active_threads;
438 } else if(iqPolicy == Threshold && active_threads == 1) {
439 maxEntries[tid] = numEntries;
440 }
441 }
442 }
443 }
444
445 template <class Impl>
446 unsigned
447 InstructionQueue<Impl>::numFreeEntries()
448 {
449 return freeEntries;
450 }
451
452 template <class Impl>
453 unsigned
454 InstructionQueue<Impl>::numFreeEntries(unsigned tid)
455 {
456 return maxEntries[tid] - count[tid];
457 }
458
459 // Might want to do something more complex if it knows how many instructions
460 // will be issued this cycle.
461 template <class Impl>
462 bool
463 InstructionQueue<Impl>::isFull()
464 {
465 if (freeEntries == 0) {
466 return(true);
467 } else {
468 return(false);
469 }
470 }
471
472 template <class Impl>
473 bool
474 InstructionQueue<Impl>::isFull(unsigned tid)
475 {
476 if (numFreeEntries(tid) == 0) {
477 return(true);
478 } else {
479 return(false);
480 }
481 }
482
483 template <class Impl>
484 bool
485 InstructionQueue<Impl>::hasReadyInsts()
486 {
487 if (!listOrder.empty()) {
488 return true;
489 }
490
491 for (int i = 0; i < Num_OpClasses; ++i) {
492 if (!readyInsts[i].empty()) {
493 return true;
494 }
495 }
496
497 return false;
498 }
499
500 template <class Impl>
501 void
502 InstructionQueue<Impl>::insert(DynInstPtr &new_inst)
503 {
504 // Make sure the instruction is valid
505 assert(new_inst);
506
507 DPRINTF(IQ, "Adding instruction [sn:%lli] PC %#x to the IQ.\n",
508 new_inst->seqNum, new_inst->readPC());
509
510 assert(freeEntries != 0);
511
512 instList[new_inst->threadNumber].push_back(new_inst);
513
514 --freeEntries;
515
516 new_inst->setInIQ();
517
518 // Look through its source registers (physical regs), and mark any
519 // dependencies.
520 addToDependents(new_inst);
521
522 // Have this instruction set itself as the producer of its destination
523 // register(s).
524 addToProducers(new_inst);
525
526 if (new_inst->isMemRef()) {
527 memDepUnit[new_inst->threadNumber].insert(new_inst);
528 } else {
529 addIfReady(new_inst);
530 }
531
532 ++iqInstsAdded;
533
534 count[new_inst->threadNumber]++;
535
536 assert(freeEntries == (numEntries - countInsts()));
537 }
538
539 template <class Impl>
540 void
541 InstructionQueue<Impl>::insertNonSpec(DynInstPtr &new_inst)
542 {
543 // @todo: Clean up this code; can do it by setting inst as unable
544 // to issue, then calling normal insert on the inst.
545
546 assert(new_inst);
547
548 nonSpecInsts[new_inst->seqNum] = new_inst;
549
550 DPRINTF(IQ, "Adding non-speculative instruction [sn:%lli] PC %#x "
551 "to the IQ.\n",
552 new_inst->seqNum, new_inst->readPC());
553
554 assert(freeEntries != 0);
555
556 instList[new_inst->threadNumber].push_back(new_inst);
557
558 --freeEntries;
559
560 new_inst->setInIQ();
561
562 // Have this instruction set itself as the producer of its destination
563 // register(s).
564 addToProducers(new_inst);
565
566 // If it's a memory instruction, add it to the memory dependency
567 // unit.
568 if (new_inst->isMemRef()) {
569 memDepUnit[new_inst->threadNumber].insertNonSpec(new_inst);
570 }
571
572 ++iqNonSpecInstsAdded;
573
574 count[new_inst->threadNumber]++;
575
576 assert(freeEntries == (numEntries - countInsts()));
577 }
578
579 template <class Impl>
580 void
581 InstructionQueue<Impl>::insertBarrier(DynInstPtr &barr_inst)
582 {
583 memDepUnit[barr_inst->threadNumber].insertBarrier(barr_inst);
584
585 insertNonSpec(barr_inst);
586 }
587
588 template <class Impl>
589 typename Impl::DynInstPtr
590 InstructionQueue<Impl>::getInstToExecute()
591 {
592 assert(!instsToExecute.empty());
593 DynInstPtr inst = instsToExecute.front();
594 instsToExecute.pop_front();
595 return inst;
596 }
597
598 template <class Impl>
599 void
600 InstructionQueue<Impl>::addToOrderList(OpClass op_class)
601 {
602 assert(!readyInsts[op_class].empty());
603
604 ListOrderEntry queue_entry;
605
606 queue_entry.queueType = op_class;
607
608 queue_entry.oldestInst = readyInsts[op_class].top()->seqNum;
609
610 ListOrderIt list_it = listOrder.begin();
611 ListOrderIt list_end_it = listOrder.end();
612
613 while (list_it != list_end_it) {
614 if ((*list_it).oldestInst > queue_entry.oldestInst) {
615 break;
616 }
617
618 list_it++;
619 }
620
621 readyIt[op_class] = listOrder.insert(list_it, queue_entry);
622 queueOnList[op_class] = true;
623 }
624
625 template <class Impl>
626 void
627 InstructionQueue<Impl>::moveToYoungerInst(ListOrderIt list_order_it)
628 {
629 // Get iterator of next item on the list
630 // Delete the original iterator
631 // Determine if the next item is either the end of the list or younger
632 // than the new instruction. If so, then add in a new iterator right here.
633 // If not, then move along.
634 ListOrderEntry queue_entry;
635 OpClass op_class = (*list_order_it).queueType;
636 ListOrderIt next_it = list_order_it;
637
638 ++next_it;
639
640 queue_entry.queueType = op_class;
641 queue_entry.oldestInst = readyInsts[op_class].top()->seqNum;
642
643 while (next_it != listOrder.end() &&
644 (*next_it).oldestInst < queue_entry.oldestInst) {
645 ++next_it;
646 }
647
648 readyIt[op_class] = listOrder.insert(next_it, queue_entry);
649 }
650
651 template <class Impl>
652 void
653 InstructionQueue<Impl>::processFUCompletion(DynInstPtr &inst, int fu_idx)
654 {
655 DPRINTF(IQ, "Processing FU completion [sn:%lli]\n", inst->seqNum);
656 // The CPU could have been sleeping until this op completed (*extremely*
657 // long latency op). Wake it if it was. This may be overkill.
658 if (isSwitchedOut()) {
659 DPRINTF(IQ, "FU completion not processed, IQ is switched out [sn:%lli]\n",
660 inst->seqNum);
661 return;
662 }
663
664 iewStage->wakeCPU();
665
666 if (fu_idx > -1)
667 fuPool->freeUnitNextCycle(fu_idx);
668
669 // @todo: Ensure that these FU Completions happen at the beginning
670 // of a cycle, otherwise they could add too many instructions to
671 // the queue.
672 issueToExecuteQueue->access(0)->size++;
673 instsToExecute.push_back(inst);
674 }
675
676 // @todo: Figure out a better way to remove the squashed items from the
677 // lists. Checking the top item of each list to see if it's squashed
678 // wastes time and forces jumps.
679 template <class Impl>
680 void
681 InstructionQueue<Impl>::scheduleReadyInsts()
682 {
683 DPRINTF(IQ, "Attempting to schedule ready instructions from "
684 "the IQ.\n");
685
686 IssueStruct *i2e_info = issueToExecuteQueue->access(0);
687
688 // Have iterator to head of the list
689 // While I haven't exceeded bandwidth or reached the end of the list,
690 // Try to get a FU that can do what this op needs.
691 // If successful, change the oldestInst to the new top of the list, put
692 // the queue in the proper place in the list.
693 // Increment the iterator.
694 // This will avoid trying to schedule a certain op class if there are no
695 // FUs that handle it.
696 ListOrderIt order_it = listOrder.begin();
697 ListOrderIt order_end_it = listOrder.end();
698 int total_issued = 0;
699
700 while (total_issued < totalWidth &&
701 iewStage->canIssue() &&
702 order_it != order_end_it) {
703 OpClass op_class = (*order_it).queueType;
704
705 assert(!readyInsts[op_class].empty());
706
707 DynInstPtr issuing_inst = readyInsts[op_class].top();
708
709 assert(issuing_inst->seqNum == (*order_it).oldestInst);
710
711 if (issuing_inst->isSquashed()) {
712 readyInsts[op_class].pop();
713
714 if (!readyInsts[op_class].empty()) {
715 moveToYoungerInst(order_it);
716 } else {
717 readyIt[op_class] = listOrder.end();
718 queueOnList[op_class] = false;
719 }
720
721 listOrder.erase(order_it++);
722
723 ++iqSquashedInstsIssued;
724
725 continue;
726 }
727
728 int idx = -2;
729 int op_latency = 1;
730 int tid = issuing_inst->threadNumber;
731
732 if (op_class != No_OpClass) {
733 idx = fuPool->getUnit(op_class);
734
735 if (idx > -1) {
736 op_latency = fuPool->getOpLatency(op_class);
737 }
738 }
739
740 // If we have an instruction that doesn't require a FU, or a
741 // valid FU, then schedule for execution.
742 if (idx == -2 || idx != -1) {
743 if (op_latency == 1) {
744 i2e_info->size++;
745 instsToExecute.push_back(issuing_inst);
746
747 // Add the FU onto the list of FU's to be freed next
748 // cycle if we used one.
749 if (idx >= 0)
750 fuPool->freeUnitNextCycle(idx);
751 } else {
752 int issue_latency = fuPool->getIssueLatency(op_class);
753 // Generate completion event for the FU
754 FUCompletion *execution = new FUCompletion(issuing_inst,
755 idx, this);
756
757 execution->schedule(curTick + cpu->cycles(issue_latency - 1));
758
759 // @todo: Enforce that issue_latency == 1 or op_latency
760 if (issue_latency > 1) {
761 // If FU isn't pipelined, then it must be freed
762 // upon the execution completing.
763 execution->setFreeFU();
764 } else {
765 // Add the FU onto the list of FU's to be freed next cycle.
766 fuPool->freeUnitNextCycle(idx);
767 }
768 }
769
770 DPRINTF(IQ, "Thread %i: Issuing instruction PC %#x "
771 "[sn:%lli]\n",
772 tid, issuing_inst->readPC(),
773 issuing_inst->seqNum);
774
775 readyInsts[op_class].pop();
776
777 if (!readyInsts[op_class].empty()) {
778 moveToYoungerInst(order_it);
779 } else {
780 readyIt[op_class] = listOrder.end();
781 queueOnList[op_class] = false;
782 }
783
784 issuing_inst->setIssued();
785 ++total_issued;
786
787 if (!issuing_inst->isMemRef()) {
788 // Memory instructions can not be freed from the IQ until they
789 // complete.
790 ++freeEntries;
791 count[tid]--;
792 issuing_inst->clearInIQ();
793 } else {
794 memDepUnit[tid].issue(issuing_inst);
795 }
796
797 listOrder.erase(order_it++);
798 statIssuedInstType[tid][op_class]++;
799 iewStage->incrWb(issuing_inst->seqNum);
800 } else {
801 statFuBusy[op_class]++;
802 fuBusy[tid]++;
803 ++order_it;
804 }
805 }
806
807 numIssuedDist.sample(total_issued);
808 iqInstsIssued+= total_issued;
809
810 // If we issued any instructions, tell the CPU we had activity.
811 if (total_issued) {
812 cpu->activityThisCycle();
813 } else {
814 DPRINTF(IQ, "Not able to schedule any instructions.\n");
815 }
816 }
817
818 template <class Impl>
819 void
820 InstructionQueue<Impl>::scheduleNonSpec(const InstSeqNum &inst)
821 {
822 DPRINTF(IQ, "Marking nonspeculative instruction [sn:%lli] as ready "
823 "to execute.\n", inst);
824
825 NonSpecMapIt inst_it = nonSpecInsts.find(inst);
826
827 assert(inst_it != nonSpecInsts.end());
828
829 unsigned tid = (*inst_it).second->threadNumber;
830
831 (*inst_it).second->setAtCommit();
832
833 (*inst_it).second->setCanIssue();
834
835 if (!(*inst_it).second->isMemRef()) {
836 addIfReady((*inst_it).second);
837 } else {
838 memDepUnit[tid].nonSpecInstReady((*inst_it).second);
839 }
840
841 (*inst_it).second = NULL;
842
843 nonSpecInsts.erase(inst_it);
844 }
845
846 template <class Impl>
847 void
848 InstructionQueue<Impl>::commit(const InstSeqNum &inst, unsigned tid)
849 {
850 DPRINTF(IQ, "[tid:%i]: Committing instructions older than [sn:%i]\n",
851 tid,inst);
852
853 ListIt iq_it = instList[tid].begin();
854
855 while (iq_it != instList[tid].end() &&
856 (*iq_it)->seqNum <= inst) {
857 ++iq_it;
858 instList[tid].pop_front();
859 }
860
861 assert(freeEntries == (numEntries - countInsts()));
862 }
863
864 template <class Impl>
865 int
866 InstructionQueue<Impl>::wakeDependents(DynInstPtr &completed_inst)
867 {
868 int dependents = 0;
869
870 DPRINTF(IQ, "Waking dependents of completed instruction.\n");
871
872 assert(!completed_inst->isSquashed());
873
874 // Tell the memory dependence unit to wake any dependents on this
875 // instruction if it is a memory instruction. Also complete the memory
876 // instruction at this point since we know it executed without issues.
877 // @todo: Might want to rename "completeMemInst" to something that
878 // indicates that it won't need to be replayed, and call this
879 // earlier. Might not be a big deal.
880 if (completed_inst->isMemRef()) {
881 memDepUnit[completed_inst->threadNumber].wakeDependents(completed_inst);
882 completeMemInst(completed_inst);
883 } else if (completed_inst->isMemBarrier() ||
884 completed_inst->isWriteBarrier()) {
885 memDepUnit[completed_inst->threadNumber].completeBarrier(completed_inst);
886 }
887
888 for (int dest_reg_idx = 0;
889 dest_reg_idx < completed_inst->numDestRegs();
890 dest_reg_idx++)
891 {
892 PhysRegIndex dest_reg =
893 completed_inst->renamedDestRegIdx(dest_reg_idx);
894
895 // Special case of uniq or control registers. They are not
896 // handled by the IQ and thus have no dependency graph entry.
897 // @todo Figure out a cleaner way to handle this.
898 if (dest_reg >= numPhysRegs) {
899 continue;
900 }
901
902 DPRINTF(IQ, "Waking any dependents on register %i.\n",
903 (int) dest_reg);
904
905 //Go through the dependency chain, marking the registers as
906 //ready within the waiting instructions.
907 DynInstPtr dep_inst = dependGraph.pop(dest_reg);
908
909 while (dep_inst) {
910 DPRINTF(IQ, "Waking up a dependent instruction, PC%#x.\n",
911 dep_inst->readPC());
912
913 // Might want to give more information to the instruction
914 // so that it knows which of its source registers is
915 // ready. However that would mean that the dependency
916 // graph entries would need to hold the src_reg_idx.
917 dep_inst->markSrcRegReady();
918
919 addIfReady(dep_inst);
920
921 dep_inst = dependGraph.pop(dest_reg);
922
923 ++dependents;
924 }
925
926 // Reset the head node now that all of its dependents have
927 // been woken up.
928 assert(dependGraph.empty(dest_reg));
929 dependGraph.clearInst(dest_reg);
930
931 // Mark the scoreboard as having that register ready.
932 regScoreboard[dest_reg] = true;
933 }
934 return dependents;
935 }
936
937 template <class Impl>
938 void
939 InstructionQueue<Impl>::addReadyMemInst(DynInstPtr &ready_inst)
940 {
941 OpClass op_class = ready_inst->opClass();
942
943 readyInsts[op_class].push(ready_inst);
944
945 // Will need to reorder the list if either a queue is not on the list,
946 // or it has an older instruction than last time.
947 if (!queueOnList[op_class]) {
948 addToOrderList(op_class);
949 } else if (readyInsts[op_class].top()->seqNum <
950 (*readyIt[op_class]).oldestInst) {
951 listOrder.erase(readyIt[op_class]);
952 addToOrderList(op_class);
953 }
954
955 DPRINTF(IQ, "Instruction is ready to issue, putting it onto "
956 "the ready list, PC %#x opclass:%i [sn:%lli].\n",
957 ready_inst->readPC(), op_class, ready_inst->seqNum);
958 }
959
960 template <class Impl>
961 void
962 InstructionQueue<Impl>::rescheduleMemInst(DynInstPtr &resched_inst)
963 {
964 DPRINTF(IQ, "Rescheduling mem inst [sn:%lli]\n", resched_inst->seqNum);
965 resched_inst->clearCanIssue();
966 memDepUnit[resched_inst->threadNumber].reschedule(resched_inst);
967 }
968
969 template <class Impl>
970 void
971 InstructionQueue<Impl>::replayMemInst(DynInstPtr &replay_inst)
972 {
973 memDepUnit[replay_inst->threadNumber].replay(replay_inst);
974 }
975
976 template <class Impl>
977 void
978 InstructionQueue<Impl>::completeMemInst(DynInstPtr &completed_inst)
979 {
980 int tid = completed_inst->threadNumber;
981
982 DPRINTF(IQ, "Completing mem instruction PC:%#x [sn:%lli]\n",
983 completed_inst->readPC(), completed_inst->seqNum);
984
985 ++freeEntries;
986
987 completed_inst->memOpDone = true;
988
989 memDepUnit[tid].completed(completed_inst);
990 count[tid]--;
991 }
992
993 template <class Impl>
994 void
995 InstructionQueue<Impl>::violation(DynInstPtr &store,
996 DynInstPtr &faulting_load)
997 {
998 memDepUnit[store->threadNumber].violation(store, faulting_load);
999 }
1000
1001 template <class Impl>
1002 void
1003 InstructionQueue<Impl>::squash(unsigned tid)
1004 {
1005 DPRINTF(IQ, "[tid:%i]: Starting to squash instructions in "
1006 "the IQ.\n", tid);
1007
1008 // Read instruction sequence number of last instruction out of the
1009 // time buffer.
1010 #if ISA_HAS_DELAY_SLOT
1011 squashedSeqNum[tid] = fromCommit->commitInfo[tid].bdelayDoneSeqNum;
1012 #else
1013 squashedSeqNum[tid] = fromCommit->commitInfo[tid].doneSeqNum;
1014 #endif
1015
1016 // Call doSquash if there are insts in the IQ
1017 if (count[tid] > 0) {
1018 doSquash(tid);
1019 }
1020
1021 // Also tell the memory dependence unit to squash.
1022 memDepUnit[tid].squash(squashedSeqNum[tid], tid);
1023 }
1024
1025 template <class Impl>
1026 void
1027 InstructionQueue<Impl>::doSquash(unsigned tid)
1028 {
1029 // Start at the tail.
1030 ListIt squash_it = instList[tid].end();
1031 --squash_it;
1032
1033 DPRINTF(IQ, "[tid:%i]: Squashing until sequence number %i!\n",
1034 tid, squashedSeqNum[tid]);
1035
1036 // Squash any instructions younger than the squashed sequence number
1037 // given.
1038 while (squash_it != instList[tid].end() &&
1039 (*squash_it)->seqNum > squashedSeqNum[tid]) {
1040
1041 DynInstPtr squashed_inst = (*squash_it);
1042
1043 // Only handle the instruction if it actually is in the IQ and
1044 // hasn't already been squashed in the IQ.
1045 if (squashed_inst->threadNumber != tid ||
1046 squashed_inst->isSquashedInIQ()) {
1047 --squash_it;
1048 continue;
1049 }
1050
1051 if (!squashed_inst->isIssued() ||
1052 (squashed_inst->isMemRef() &&
1053 !squashed_inst->memOpDone)) {
1054
1055 DPRINTF(IQ, "[tid:%i]: Instruction [sn:%lli] PC %#x "
1056 "squashed.\n",
1057 tid, squashed_inst->seqNum, squashed_inst->readPC());
1058
1059 // Remove the instruction from the dependency list.
1060 if (!squashed_inst->isNonSpeculative() &&
1061 !squashed_inst->isStoreConditional() &&
1062 !squashed_inst->isMemBarrier() &&
1063 !squashed_inst->isWriteBarrier()) {
1064
1065 for (int src_reg_idx = 0;
1066 src_reg_idx < squashed_inst->numSrcRegs();
1067 src_reg_idx++)
1068 {
1069 PhysRegIndex src_reg =
1070 squashed_inst->renamedSrcRegIdx(src_reg_idx);
1071
1072 // Only remove it from the dependency graph if it
1073 // was placed there in the first place.
1074
1075 // Instead of doing a linked list traversal, we
1076 // can just remove these squashed instructions
1077 // either at issue time, or when the register is
1078 // overwritten. The only downside to this is it
1079 // leaves more room for error.
1080
1081 if (!squashed_inst->isReadySrcRegIdx(src_reg_idx) &&
1082 src_reg < numPhysRegs) {
1083 dependGraph.remove(src_reg, squashed_inst);
1084 }
1085
1086
1087 ++iqSquashedOperandsExamined;
1088 }
1089 } else if (!squashed_inst->isStoreConditional() ||
1090 !squashed_inst->isCompleted()) {
1091 NonSpecMapIt ns_inst_it =
1092 nonSpecInsts.find(squashed_inst->seqNum);
1093 assert(ns_inst_it != nonSpecInsts.end());
1094 if (ns_inst_it == nonSpecInsts.end()) {
1095 assert(squashed_inst->getFault() != NoFault);
1096 } else {
1097
1098 (*ns_inst_it).second = NULL;
1099
1100 nonSpecInsts.erase(ns_inst_it);
1101
1102 ++iqSquashedNonSpecRemoved;
1103 }
1104 }
1105
1106 // Might want to also clear out the head of the dependency graph.
1107
1108 // Mark it as squashed within the IQ.
1109 squashed_inst->setSquashedInIQ();
1110
1111 // @todo: Remove this hack where several statuses are set so the
1112 // inst will flow through the rest of the pipeline.
1113 squashed_inst->setIssued();
1114 squashed_inst->setCanCommit();
1115 squashed_inst->clearInIQ();
1116
1117 //Update Thread IQ Count
1118 count[squashed_inst->threadNumber]--;
1119
1120 ++freeEntries;
1121 }
1122
1123 instList[tid].erase(squash_it--);
1124 ++iqSquashedInstsExamined;
1125 }
1126 }
1127
1128 template <class Impl>
1129 bool
1130 InstructionQueue<Impl>::addToDependents(DynInstPtr &new_inst)
1131 {
1132 // Loop through the instruction's source registers, adding
1133 // them to the dependency list if they are not ready.
1134 int8_t total_src_regs = new_inst->numSrcRegs();
1135 bool return_val = false;
1136
1137 for (int src_reg_idx = 0;
1138 src_reg_idx < total_src_regs;
1139 src_reg_idx++)
1140 {
1141 // Only add it to the dependency graph if it's not ready.
1142 if (!new_inst->isReadySrcRegIdx(src_reg_idx)) {
1143 PhysRegIndex src_reg = new_inst->renamedSrcRegIdx(src_reg_idx);
1144
1145 // Check the IQ's scoreboard to make sure the register
1146 // hasn't become ready while the instruction was in flight
1147 // between stages. Only if it really isn't ready should
1148 // it be added to the dependency graph.
1149 if (src_reg >= numPhysRegs) {
1150 continue;
1151 } else if (regScoreboard[src_reg] == false) {
1152 DPRINTF(IQ, "Instruction PC %#x has src reg %i that "
1153 "is being added to the dependency chain.\n",
1154 new_inst->readPC(), src_reg);
1155
1156 dependGraph.insert(src_reg, new_inst);
1157
1158 // Change the return value to indicate that something
1159 // was added to the dependency graph.
1160 return_val = true;
1161 } else {
1162 DPRINTF(IQ, "Instruction PC %#x has src reg %i that "
1163 "became ready before it reached the IQ.\n",
1164 new_inst->readPC(), src_reg);
1165 // Mark a register ready within the instruction.
1166 new_inst->markSrcRegReady(src_reg_idx);
1167 }
1168 }
1169 }
1170
1171 return return_val;
1172 }
1173
1174 template <class Impl>
1175 void
1176 InstructionQueue<Impl>::addToProducers(DynInstPtr &new_inst)
1177 {
1178 // Nothing really needs to be marked when an instruction becomes
1179 // the producer of a register's value, but for convenience a ptr
1180 // to the producing instruction will be placed in the head node of
1181 // the dependency links.
1182 int8_t total_dest_regs = new_inst->numDestRegs();
1183
1184 for (int dest_reg_idx = 0;
1185 dest_reg_idx < total_dest_regs;
1186 dest_reg_idx++)
1187 {
1188 PhysRegIndex dest_reg = new_inst->renamedDestRegIdx(dest_reg_idx);
1189
1190 // Instructions that use the misc regs will have a reg number
1191 // higher than the normal physical registers. In this case these
1192 // registers are not renamed, and there is no need to track
1193 // dependencies as these instructions must be executed at commit.
1194 if (dest_reg >= numPhysRegs) {
1195 continue;
1196 }
1197
1198 if (!dependGraph.empty(dest_reg)) {
1199 dependGraph.dump();
1200 panic("Dependency graph %i not empty!", dest_reg);
1201 }
1202
1203 dependGraph.setInst(dest_reg, new_inst);
1204
1205 // Mark the scoreboard to say it's not yet ready.
1206 regScoreboard[dest_reg] = false;
1207 }
1208 }
1209
1210 template <class Impl>
1211 void
1212 InstructionQueue<Impl>::addIfReady(DynInstPtr &inst)
1213 {
1214 // If the instruction now has all of its source registers
1215 // available, then add it to the list of ready instructions.
1216 if (inst->readyToIssue()) {
1217
1218 //Add the instruction to the proper ready list.
1219 if (inst->isMemRef()) {
1220
1221 DPRINTF(IQ, "Checking if memory instruction can issue.\n");
1222
1223 // Message to the mem dependence unit that this instruction has
1224 // its registers ready.
1225 memDepUnit[inst->threadNumber].regsReady(inst);
1226
1227 return;
1228 }
1229
1230 OpClass op_class = inst->opClass();
1231
1232 DPRINTF(IQ, "Instruction is ready to issue, putting it onto "
1233 "the ready list, PC %#x opclass:%i [sn:%lli].\n",
1234 inst->readPC(), op_class, inst->seqNum);
1235
1236 readyInsts[op_class].push(inst);
1237
1238 // Will need to reorder the list if either a queue is not on the list,
1239 // or it has an older instruction than last time.
1240 if (!queueOnList[op_class]) {
1241 addToOrderList(op_class);
1242 } else if (readyInsts[op_class].top()->seqNum <
1243 (*readyIt[op_class]).oldestInst) {
1244 listOrder.erase(readyIt[op_class]);
1245 addToOrderList(op_class);
1246 }
1247 }
1248 }
1249
1250 template <class Impl>
1251 int
1252 InstructionQueue<Impl>::countInsts()
1253 {
1254 #if 0
1255 //ksewell:This works but definitely could use a cleaner write
1256 //with a more intuitive way of counting. Right now it's
1257 //just brute force ....
1258 // Change the #if if you want to use this method.
1259 int total_insts = 0;
1260
1261 for (int i = 0; i < numThreads; ++i) {
1262 ListIt count_it = instList[i].begin();
1263
1264 while (count_it != instList[i].end()) {
1265 if (!(*count_it)->isSquashed() && !(*count_it)->isSquashedInIQ()) {
1266 if (!(*count_it)->isIssued()) {
1267 ++total_insts;
1268 } else if ((*count_it)->isMemRef() &&
1269 !(*count_it)->memOpDone) {
1270 // Loads that have not been marked as executed still count
1271 // towards the total instructions.
1272 ++total_insts;
1273 }
1274 }
1275
1276 ++count_it;
1277 }
1278 }
1279
1280 return total_insts;
1281 #else
1282 return numEntries - freeEntries;
1283 #endif
1284 }
1285
1286 template <class Impl>
1287 void
1288 InstructionQueue<Impl>::dumpLists()
1289 {
1290 for (int i = 0; i < Num_OpClasses; ++i) {
1291 cprintf("Ready list %i size: %i\n", i, readyInsts[i].size());
1292
1293 cprintf("\n");
1294 }
1295
1296 cprintf("Non speculative list size: %i\n", nonSpecInsts.size());
1297
1298 NonSpecMapIt non_spec_it = nonSpecInsts.begin();
1299 NonSpecMapIt non_spec_end_it = nonSpecInsts.end();
1300
1301 cprintf("Non speculative list: ");
1302
1303 while (non_spec_it != non_spec_end_it) {
1304 cprintf("%#x [sn:%lli]", (*non_spec_it).second->readPC(),
1305 (*non_spec_it).second->seqNum);
1306 ++non_spec_it;
1307 }
1308
1309 cprintf("\n");
1310
1311 ListOrderIt list_order_it = listOrder.begin();
1312 ListOrderIt list_order_end_it = listOrder.end();
1313 int i = 1;
1314
1315 cprintf("List order: ");
1316
1317 while (list_order_it != list_order_end_it) {
1318 cprintf("%i OpClass:%i [sn:%lli] ", i, (*list_order_it).queueType,
1319 (*list_order_it).oldestInst);
1320
1321 ++list_order_it;
1322 ++i;
1323 }
1324
1325 cprintf("\n");
1326 }
1327
1328
1329 template <class Impl>
1330 void
1331 InstructionQueue<Impl>::dumpInsts()
1332 {
1333 for (int i = 0; i < numThreads; ++i) {
1334 int num = 0;
1335 int valid_num = 0;
1336 ListIt inst_list_it = instList[i].begin();
1337
1338 while (inst_list_it != instList[i].end())
1339 {
1340 cprintf("Instruction:%i\n",
1341 num);
1342 if (!(*inst_list_it)->isSquashed()) {
1343 if (!(*inst_list_it)->isIssued()) {
1344 ++valid_num;
1345 cprintf("Count:%i\n", valid_num);
1346 } else if ((*inst_list_it)->isMemRef() &&
1347 !(*inst_list_it)->memOpDone) {
1348 // Loads that have not been marked as executed
1349 // still count towards the total instructions.
1350 ++valid_num;
1351 cprintf("Count:%i\n", valid_num);
1352 }
1353 }
1354
1355 cprintf("PC:%#x\n[sn:%lli]\n[tid:%i]\n"
1356 "Issued:%i\nSquashed:%i\n",
1357 (*inst_list_it)->readPC(),
1358 (*inst_list_it)->seqNum,
1359 (*inst_list_it)->threadNumber,
1360 (*inst_list_it)->isIssued(),
1361 (*inst_list_it)->isSquashed());
1362
1363 if ((*inst_list_it)->isMemRef()) {
1364 cprintf("MemOpDone:%i\n", (*inst_list_it)->memOpDone);
1365 }
1366
1367 cprintf("\n");
1368
1369 inst_list_it++;
1370 ++num;
1371 }
1372 }
1373
1374 cprintf("Insts to Execute list:\n");
1375
1376 int num = 0;
1377 int valid_num = 0;
1378 ListIt inst_list_it = instsToExecute.begin();
1379
1380 while (inst_list_it != instsToExecute.end())
1381 {
1382 cprintf("Instruction:%i\n",
1383 num);
1384 if (!(*inst_list_it)->isSquashed()) {
1385 if (!(*inst_list_it)->isIssued()) {
1386 ++valid_num;
1387 cprintf("Count:%i\n", valid_num);
1388 } else if ((*inst_list_it)->isMemRef() &&
1389 !(*inst_list_it)->memOpDone) {
1390 // Loads that have not been marked as executed
1391 // still count towards the total instructions.
1392 ++valid_num;
1393 cprintf("Count:%i\n", valid_num);
1394 }
1395 }
1396
1397 cprintf("PC:%#x\n[sn:%lli]\n[tid:%i]\n"
1398 "Issued:%i\nSquashed:%i\n",
1399 (*inst_list_it)->readPC(),
1400 (*inst_list_it)->seqNum,
1401 (*inst_list_it)->threadNumber,
1402 (*inst_list_it)->isIssued(),
1403 (*inst_list_it)->isSquashed());
1404
1405 if ((*inst_list_it)->isMemRef()) {
1406 cprintf("MemOpDone:%i\n", (*inst_list_it)->memOpDone);
1407 }
1408
1409 cprintf("\n");
1410
1411 inst_list_it++;
1412 ++num;
1413 }
1414 }