Merge with head, hopefully the last time for this batch.
[gem5.git] / src / cpu / o3 / lsq_unit.hh
1 /*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 * Korey Sewell
30 */
31
32 #ifndef __CPU_O3_LSQ_UNIT_HH__
33 #define __CPU_O3_LSQ_UNIT_HH__
34
35 #include <algorithm>
36 #include <cstring>
37 #include <map>
38 #include <queue>
39
40 #include "arch/faults.hh"
41 #include "arch/generic/debugfaults.hh"
42 #include "arch/isa_traits.hh"
43 #include "arch/locked_mem.hh"
44 #include "arch/mmapped_ipr.hh"
45 #include "base/fast_alloc.hh"
46 #include "base/hashmap.hh"
47 #include "config/the_isa.hh"
48 #include "cpu/inst_seq.hh"
49 #include "cpu/timebuf.hh"
50 #include "debug/LSQUnit.hh"
51 #include "mem/packet.hh"
52 #include "mem/port.hh"
53
54 struct DerivO3CPUParams;
55
56 /**
57 * Class that implements the actual LQ and SQ for each specific
58 * thread. Both are circular queues; load entries are freed upon
59 * committing, while store entries are freed once they writeback. The
60 * LSQUnit tracks if there are memory ordering violations, and also
61 * detects partial load to store forwarding cases (a store only has
62 * part of a load's data) that requires the load to wait until the
63 * store writes back. In the former case it holds onto the instruction
64 * until the dependence unit looks at it, and in the latter it stalls
65 * the LSQ until the store writes back. At that point the load is
66 * replayed.
67 */
68 template <class Impl>
69 class LSQUnit {
70 public:
71 typedef typename Impl::O3CPU O3CPU;
72 typedef typename Impl::DynInstPtr DynInstPtr;
73 typedef typename Impl::CPUPol::IEW IEW;
74 typedef typename Impl::CPUPol::LSQ LSQ;
75 typedef typename Impl::CPUPol::IssueStruct IssueStruct;
76
77 public:
78 /** Constructs an LSQ unit. init() must be called prior to use. */
79 LSQUnit();
80
81 /** Initializes the LSQ unit with the specified number of entries. */
82 void init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params,
83 LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries,
84 unsigned id);
85
86 /** Returns the name of the LSQ unit. */
87 std::string name() const;
88
89 /** Registers statistics. */
90 void regStats();
91
92 /** Sets the pointer to the dcache port. */
93 void setDcachePort(Port *dcache_port);
94
95 /** Switches out LSQ unit. */
96 void switchOut();
97
98 /** Takes over from another CPU's thread. */
99 void takeOverFrom();
100
101 /** Returns if the LSQ is switched out. */
102 bool isSwitchedOut() { return switchedOut; }
103
104 /** Ticks the LSQ unit, which in this case only resets the number of
105 * used cache ports.
106 * @todo: Move the number of used ports up to the LSQ level so it can
107 * be shared by all LSQ units.
108 */
109 void tick() { usedPorts = 0; }
110
111 /** Inserts an instruction. */
112 void insert(DynInstPtr &inst);
113 /** Inserts a load instruction. */
114 void insertLoad(DynInstPtr &load_inst);
115 /** Inserts a store instruction. */
116 void insertStore(DynInstPtr &store_inst);
117
118 /** Check for ordering violations in the LSQ. For a store squash if we
119 * ever find a conflicting load. For a load, only squash if we
120 * an external snoop invalidate has been seen for that load address
121 * @param load_idx index to start checking at
122 * @param inst the instruction to check
123 */
124 Fault checkViolations(int load_idx, DynInstPtr &inst);
125
126 /** Check if an incoming invalidate hits in the lsq on a load
127 * that might have issued out of order wrt another load beacuse
128 * of the intermediate invalidate.
129 */
130 void checkSnoop(PacketPtr pkt);
131
132 /** Executes a load instruction. */
133 Fault executeLoad(DynInstPtr &inst);
134
135 Fault executeLoad(int lq_idx) { panic("Not implemented"); return NoFault; }
136 /** Executes a store instruction. */
137 Fault executeStore(DynInstPtr &inst);
138
139 /** Commits the head load. */
140 void commitLoad();
141 /** Commits loads older than a specific sequence number. */
142 void commitLoads(InstSeqNum &youngest_inst);
143
144 /** Commits stores older than a specific sequence number. */
145 void commitStores(InstSeqNum &youngest_inst);
146
147 /** Writes back stores. */
148 void writebackStores();
149
150 /** Completes the data access that has been returned from the
151 * memory system. */
152 void completeDataAccess(PacketPtr pkt);
153
154 /** Clears all the entries in the LQ. */
155 void clearLQ();
156
157 /** Clears all the entries in the SQ. */
158 void clearSQ();
159
160 /** Resizes the LQ to a given size. */
161 void resizeLQ(unsigned size);
162
163 /** Resizes the SQ to a given size. */
164 void resizeSQ(unsigned size);
165
166 /** Squashes all instructions younger than a specific sequence number. */
167 void squash(const InstSeqNum &squashed_num);
168
169 /** Returns if there is a memory ordering violation. Value is reset upon
170 * call to getMemDepViolator().
171 */
172 bool violation() { return memDepViolator; }
173
174 /** Returns the memory ordering violator. */
175 DynInstPtr getMemDepViolator();
176
177 /** Returns if a load became blocked due to the memory system. */
178 bool loadBlocked()
179 { return isLoadBlocked; }
180
181 /** Clears the signal that a load became blocked. */
182 void clearLoadBlocked()
183 { isLoadBlocked = false; }
184
185 /** Returns if the blocked load was handled. */
186 bool isLoadBlockedHandled()
187 { return loadBlockedHandled; }
188
189 /** Records the blocked load as being handled. */
190 void setLoadBlockedHandled()
191 { loadBlockedHandled = true; }
192
193 /** Returns the number of free entries (min of free LQ and SQ entries). */
194 unsigned numFreeEntries();
195
196 /** Returns the number of loads ready to execute. */
197 int numLoadsReady();
198
199 /** Returns the number of loads in the LQ. */
200 int numLoads() { return loads; }
201
202 /** Returns the number of stores in the SQ. */
203 int numStores() { return stores; }
204
205 /** Returns if either the LQ or SQ is full. */
206 bool isFull() { return lqFull() || sqFull(); }
207
208 /** Returns if the LQ is full. */
209 bool lqFull() { return loads >= (LQEntries - 1); }
210
211 /** Returns if the SQ is full. */
212 bool sqFull() { return stores >= (SQEntries - 1); }
213
214 /** Returns the number of instructions in the LSQ. */
215 unsigned getCount() { return loads + stores; }
216
217 /** Returns if there are any stores to writeback. */
218 bool hasStoresToWB() { return storesToWB; }
219
220 /** Returns the number of stores to writeback. */
221 int numStoresToWB() { return storesToWB; }
222
223 /** Returns if the LSQ unit will writeback on this cycle. */
224 bool willWB() { return storeQueue[storeWBIdx].canWB &&
225 !storeQueue[storeWBIdx].completed &&
226 !isStoreBlocked; }
227
228 /** Handles doing the retry. */
229 void recvRetry();
230
231 private:
232 /** Writes back the instruction, sending it to IEW. */
233 void writeback(DynInstPtr &inst, PacketPtr pkt);
234
235 /** Writes back a store that couldn't be completed the previous cycle. */
236 void writebackPendingStore();
237
238 /** Handles completing the send of a store to memory. */
239 void storePostSend(PacketPtr pkt);
240
241 /** Completes the store at the specified index. */
242 void completeStore(int store_idx);
243
244 /** Attempts to send a store to the cache. */
245 bool sendStore(PacketPtr data_pkt);
246
247 /** Increments the given store index (circular queue). */
248 inline void incrStIdx(int &store_idx);
249 /** Decrements the given store index (circular queue). */
250 inline void decrStIdx(int &store_idx);
251 /** Increments the given load index (circular queue). */
252 inline void incrLdIdx(int &load_idx);
253 /** Decrements the given load index (circular queue). */
254 inline void decrLdIdx(int &load_idx);
255
256 public:
257 /** Debugging function to dump instructions in the LSQ. */
258 void dumpInsts();
259
260 private:
261 /** Pointer to the CPU. */
262 O3CPU *cpu;
263
264 /** Pointer to the IEW stage. */
265 IEW *iewStage;
266
267 /** Pointer to the LSQ. */
268 LSQ *lsq;
269
270 /** Pointer to the dcache port. Used only for sending. */
271 Port *dcachePort;
272
273 /** Derived class to hold any sender state the LSQ needs. */
274 class LSQSenderState : public Packet::SenderState, public FastAlloc
275 {
276 public:
277 /** Default constructor. */
278 LSQSenderState()
279 : noWB(false), isSplit(false), pktToSend(false), outstanding(1),
280 mainPkt(NULL), pendingPacket(NULL)
281 { }
282
283 /** Instruction who initiated the access to memory. */
284 DynInstPtr inst;
285 /** Whether or not it is a load. */
286 bool isLoad;
287 /** The LQ/SQ index of the instruction. */
288 int idx;
289 /** Whether or not the instruction will need to writeback. */
290 bool noWB;
291 /** Whether or not this access is split in two. */
292 bool isSplit;
293 /** Whether or not there is a packet that needs sending. */
294 bool pktToSend;
295 /** Number of outstanding packets to complete. */
296 int outstanding;
297 /** The main packet from a split load, used during writeback. */
298 PacketPtr mainPkt;
299 /** A second packet from a split store that needs sending. */
300 PacketPtr pendingPacket;
301
302 /** Completes a packet and returns whether the access is finished. */
303 inline bool complete() { return --outstanding == 0; }
304 };
305
306 /** Writeback event, specifically for when stores forward data to loads. */
307 class WritebackEvent : public Event {
308 public:
309 /** Constructs a writeback event. */
310 WritebackEvent(DynInstPtr &_inst, PacketPtr pkt, LSQUnit *lsq_ptr);
311
312 /** Processes the writeback event. */
313 void process();
314
315 /** Returns the description of this event. */
316 const char *description() const;
317
318 private:
319 /** Instruction whose results are being written back. */
320 DynInstPtr inst;
321
322 /** The packet that would have been sent to memory. */
323 PacketPtr pkt;
324
325 /** The pointer to the LSQ unit that issued the store. */
326 LSQUnit<Impl> *lsqPtr;
327 };
328
329 public:
330 struct SQEntry {
331 /** Constructs an empty store queue entry. */
332 SQEntry()
333 : inst(NULL), req(NULL), size(0),
334 canWB(0), committed(0), completed(0)
335 {
336 std::memset(data, 0, sizeof(data));
337 }
338
339 /** Constructs a store queue entry for a given instruction. */
340 SQEntry(DynInstPtr &_inst)
341 : inst(_inst), req(NULL), sreqLow(NULL), sreqHigh(NULL), size(0),
342 isSplit(0), canWB(0), committed(0), completed(0)
343 {
344 std::memset(data, 0, sizeof(data));
345 }
346
347 /** The store instruction. */
348 DynInstPtr inst;
349 /** The request for the store. */
350 RequestPtr req;
351 /** The split requests for the store. */
352 RequestPtr sreqLow;
353 RequestPtr sreqHigh;
354 /** The size of the store. */
355 int size;
356 /** The store data. */
357 char data[16];
358 /** Whether or not the store is split into two requests. */
359 bool isSplit;
360 /** Whether or not the store can writeback. */
361 bool canWB;
362 /** Whether or not the store is committed. */
363 bool committed;
364 /** Whether or not the store is completed. */
365 bool completed;
366 };
367
368 private:
369 /** The LSQUnit thread id. */
370 ThreadID lsqID;
371
372 /** The store queue. */
373 std::vector<SQEntry> storeQueue;
374
375 /** The load queue. */
376 std::vector<DynInstPtr> loadQueue;
377
378 /** The number of LQ entries, plus a sentinel entry (circular queue).
379 * @todo: Consider having var that records the true number of LQ entries.
380 */
381 unsigned LQEntries;
382 /** The number of SQ entries, plus a sentinel entry (circular queue).
383 * @todo: Consider having var that records the true number of SQ entries.
384 */
385 unsigned SQEntries;
386
387 /** The number of places to shift addresses in the LSQ before checking
388 * for dependency violations
389 */
390 unsigned depCheckShift;
391
392 /** Should loads be checked for dependency issues */
393 bool checkLoads;
394
395 /** The number of load instructions in the LQ. */
396 int loads;
397 /** The number of store instructions in the SQ. */
398 int stores;
399 /** The number of store instructions in the SQ waiting to writeback. */
400 int storesToWB;
401
402 /** The index of the head instruction in the LQ. */
403 int loadHead;
404 /** The index of the tail instruction in the LQ. */
405 int loadTail;
406
407 /** The index of the head instruction in the SQ. */
408 int storeHead;
409 /** The index of the first instruction that may be ready to be
410 * written back, and has not yet been written back.
411 */
412 int storeWBIdx;
413 /** The index of the tail instruction in the SQ. */
414 int storeTail;
415
416 /// @todo Consider moving to a more advanced model with write vs read ports
417 /** The number of cache ports available each cycle. */
418 int cachePorts;
419
420 /** The number of used cache ports in this cycle. */
421 int usedPorts;
422
423 /** Is the LSQ switched out. */
424 bool switchedOut;
425
426 //list<InstSeqNum> mshrSeqNums;
427
428 /** Address Mask for a cache block (e.g. ~(cache_block_size-1)) */
429 Addr cacheBlockMask;
430
431 /** Wire to read information from the issue stage time queue. */
432 typename TimeBuffer<IssueStruct>::wire fromIssue;
433
434 /** Whether or not the LSQ is stalled. */
435 bool stalled;
436 /** The store that causes the stall due to partial store to load
437 * forwarding.
438 */
439 InstSeqNum stallingStoreIsn;
440 /** The index of the above store. */
441 int stallingLoadIdx;
442
443 /** The packet that needs to be retried. */
444 PacketPtr retryPkt;
445
446 /** Whehter or not a store is blocked due to the memory system. */
447 bool isStoreBlocked;
448
449 /** Whether or not a load is blocked due to the memory system. */
450 bool isLoadBlocked;
451
452 /** Has the blocked load been handled. */
453 bool loadBlockedHandled;
454
455 /** Whether or not a store is in flight. */
456 bool storeInFlight;
457
458 /** The sequence number of the blocked load. */
459 InstSeqNum blockedLoadSeqNum;
460
461 /** The oldest load that caused a memory ordering violation. */
462 DynInstPtr memDepViolator;
463
464 /** Whether or not there is a packet that couldn't be sent because of
465 * a lack of cache ports. */
466 bool hasPendingPkt;
467
468 /** The packet that is pending free cache ports. */
469 PacketPtr pendingPkt;
470
471 /** Flag for memory model. */
472 bool needsTSO;
473
474 // Will also need how many read/write ports the Dcache has. Or keep track
475 // of that in stage that is one level up, and only call executeLoad/Store
476 // the appropriate number of times.
477 /** Total number of loads forwaded from LSQ stores. */
478 Stats::Scalar lsqForwLoads;
479
480 /** Total number of loads ignored due to invalid addresses. */
481 Stats::Scalar invAddrLoads;
482
483 /** Total number of squashed loads. */
484 Stats::Scalar lsqSquashedLoads;
485
486 /** Total number of responses from the memory system that are
487 * ignored due to the instruction already being squashed. */
488 Stats::Scalar lsqIgnoredResponses;
489
490 /** Tota number of memory ordering violations. */
491 Stats::Scalar lsqMemOrderViolation;
492
493 /** Total number of squashed stores. */
494 Stats::Scalar lsqSquashedStores;
495
496 /** Total number of software prefetches ignored due to invalid addresses. */
497 Stats::Scalar invAddrSwpfs;
498
499 /** Ready loads blocked due to partial store-forwarding. */
500 Stats::Scalar lsqBlockedLoads;
501
502 /** Number of loads that were rescheduled. */
503 Stats::Scalar lsqRescheduledLoads;
504
505 /** Number of times the LSQ is blocked due to the cache. */
506 Stats::Scalar lsqCacheBlocked;
507
508 public:
509 /** Executes the load at the given index. */
510 Fault read(Request *req, Request *sreqLow, Request *sreqHigh,
511 uint8_t *data, int load_idx);
512
513 /** Executes the store at the given index. */
514 Fault write(Request *req, Request *sreqLow, Request *sreqHigh,
515 uint8_t *data, int store_idx);
516
517 /** Returns the index of the head load instruction. */
518 int getLoadHead() { return loadHead; }
519 /** Returns the sequence number of the head load instruction. */
520 InstSeqNum getLoadHeadSeqNum()
521 {
522 if (loadQueue[loadHead]) {
523 return loadQueue[loadHead]->seqNum;
524 } else {
525 return 0;
526 }
527
528 }
529
530 /** Returns the index of the head store instruction. */
531 int getStoreHead() { return storeHead; }
532 /** Returns the sequence number of the head store instruction. */
533 InstSeqNum getStoreHeadSeqNum()
534 {
535 if (storeQueue[storeHead].inst) {
536 return storeQueue[storeHead].inst->seqNum;
537 } else {
538 return 0;
539 }
540
541 }
542
543 /** Returns whether or not the LSQ unit is stalled. */
544 bool isStalled() { return stalled; }
545 };
546
547 template <class Impl>
548 Fault
549 LSQUnit<Impl>::read(Request *req, Request *sreqLow, Request *sreqHigh,
550 uint8_t *data, int load_idx)
551 {
552 DynInstPtr load_inst = loadQueue[load_idx];
553
554 assert(load_inst);
555
556 assert(!load_inst->isExecuted());
557
558 // Make sure this isn't an uncacheable access
559 // A bit of a hackish way to get uncached accesses to work only if they're
560 // at the head of the LSQ and are ready to commit (at the head of the ROB
561 // too).
562 if (req->isUncacheable() &&
563 (load_idx != loadHead || !load_inst->isAtCommit())) {
564 iewStage->rescheduleMemInst(load_inst);
565 ++lsqRescheduledLoads;
566 DPRINTF(LSQUnit, "Uncachable load [sn:%lli] PC %s\n",
567 load_inst->seqNum, load_inst->pcState());
568
569 // Must delete request now that it wasn't handed off to
570 // memory. This is quite ugly. @todo: Figure out the proper
571 // place to really handle request deletes.
572 delete req;
573 if (TheISA::HasUnalignedMemAcc && sreqLow) {
574 delete sreqLow;
575 delete sreqHigh;
576 }
577 return new GenericISA::M5PanicFault(
578 "Uncachable load [sn:%llx] PC %s\n",
579 load_inst->seqNum, load_inst->pcState());
580 }
581
582 // Check the SQ for any previous stores that might lead to forwarding
583 int store_idx = load_inst->sqIdx;
584
585 int store_size = 0;
586
587 DPRINTF(LSQUnit, "Read called, load idx: %i, store idx: %i, "
588 "storeHead: %i addr: %#x%s\n",
589 load_idx, store_idx, storeHead, req->getPaddr(),
590 sreqLow ? " split" : "");
591
592 if (req->isLLSC()) {
593 assert(!sreqLow);
594 // Disable recording the result temporarily. Writing to misc
595 // regs normally updates the result, but this is not the
596 // desired behavior when handling store conditionals.
597 load_inst->recordResult = false;
598 TheISA::handleLockedRead(load_inst.get(), req);
599 load_inst->recordResult = true;
600 }
601
602 if (req->isMmappedIpr()) {
603 assert(!load_inst->memData);
604 load_inst->memData = new uint8_t[64];
605
606 ThreadContext *thread = cpu->tcBase(lsqID);
607 Tick delay;
608 PacketPtr data_pkt =
609 new Packet(req, MemCmd::ReadReq, Packet::Broadcast);
610
611 if (!TheISA::HasUnalignedMemAcc || !sreqLow) {
612 data_pkt->dataStatic(load_inst->memData);
613 delay = TheISA::handleIprRead(thread, data_pkt);
614 } else {
615 assert(sreqLow->isMmappedIpr() && sreqHigh->isMmappedIpr());
616 PacketPtr fst_data_pkt =
617 new Packet(sreqLow, MemCmd::ReadReq, Packet::Broadcast);
618 PacketPtr snd_data_pkt =
619 new Packet(sreqHigh, MemCmd::ReadReq, Packet::Broadcast);
620
621 fst_data_pkt->dataStatic(load_inst->memData);
622 snd_data_pkt->dataStatic(load_inst->memData + sreqLow->getSize());
623
624 delay = TheISA::handleIprRead(thread, fst_data_pkt);
625 unsigned delay2 = TheISA::handleIprRead(thread, snd_data_pkt);
626 if (delay2 > delay)
627 delay = delay2;
628
629 delete sreqLow;
630 delete sreqHigh;
631 delete fst_data_pkt;
632 delete snd_data_pkt;
633 }
634 WritebackEvent *wb = new WritebackEvent(load_inst, data_pkt, this);
635 cpu->schedule(wb, curTick() + delay);
636 return NoFault;
637 }
638
639 while (store_idx != -1) {
640 // End once we've reached the top of the LSQ
641 if (store_idx == storeWBIdx) {
642 break;
643 }
644
645 // Move the index to one younger
646 if (--store_idx < 0)
647 store_idx += SQEntries;
648
649 assert(storeQueue[store_idx].inst);
650
651 store_size = storeQueue[store_idx].size;
652
653 if (store_size == 0)
654 continue;
655 else if (storeQueue[store_idx].inst->uncacheable())
656 continue;
657
658 assert(storeQueue[store_idx].inst->effAddrValid);
659
660 // Check if the store data is within the lower and upper bounds of
661 // addresses that the request needs.
662 bool store_has_lower_limit =
663 req->getVaddr() >= storeQueue[store_idx].inst->effAddr;
664 bool store_has_upper_limit =
665 (req->getVaddr() + req->getSize()) <=
666 (storeQueue[store_idx].inst->effAddr + store_size);
667 bool lower_load_has_store_part =
668 req->getVaddr() < (storeQueue[store_idx].inst->effAddr +
669 store_size);
670 bool upper_load_has_store_part =
671 (req->getVaddr() + req->getSize()) >
672 storeQueue[store_idx].inst->effAddr;
673
674 // If the store's data has all of the data needed, we can forward.
675 if ((store_has_lower_limit && store_has_upper_limit)) {
676 // Get shift amount for offset into the store's data.
677 int shift_amt = req->getVaddr() - storeQueue[store_idx].inst->effAddr;
678
679 memcpy(data, storeQueue[store_idx].data + shift_amt,
680 req->getSize());
681
682 assert(!load_inst->memData);
683 load_inst->memData = new uint8_t[64];
684
685 memcpy(load_inst->memData,
686 storeQueue[store_idx].data + shift_amt, req->getSize());
687
688 DPRINTF(LSQUnit, "Forwarding from store idx %i to load to "
689 "addr %#x, data %#x\n",
690 store_idx, req->getVaddr(), data);
691
692 PacketPtr data_pkt = new Packet(req, MemCmd::ReadReq,
693 Packet::Broadcast);
694 data_pkt->dataStatic(load_inst->memData);
695
696 WritebackEvent *wb = new WritebackEvent(load_inst, data_pkt, this);
697
698 // We'll say this has a 1 cycle load-store forwarding latency
699 // for now.
700 // @todo: Need to make this a parameter.
701 cpu->schedule(wb, curTick());
702
703 // Don't need to do anything special for split loads.
704 if (TheISA::HasUnalignedMemAcc && sreqLow) {
705 delete sreqLow;
706 delete sreqHigh;
707 }
708
709 ++lsqForwLoads;
710 return NoFault;
711 } else if ((store_has_lower_limit && lower_load_has_store_part) ||
712 (store_has_upper_limit && upper_load_has_store_part) ||
713 (lower_load_has_store_part && upper_load_has_store_part)) {
714 // This is the partial store-load forwarding case where a store
715 // has only part of the load's data.
716
717 // If it's already been written back, then don't worry about
718 // stalling on it.
719 if (storeQueue[store_idx].completed) {
720 panic("Should not check one of these");
721 continue;
722 }
723
724 // Must stall load and force it to retry, so long as it's the oldest
725 // load that needs to do so.
726 if (!stalled ||
727 (stalled &&
728 load_inst->seqNum <
729 loadQueue[stallingLoadIdx]->seqNum)) {
730 stalled = true;
731 stallingStoreIsn = storeQueue[store_idx].inst->seqNum;
732 stallingLoadIdx = load_idx;
733 }
734
735 // Tell IQ/mem dep unit that this instruction will need to be
736 // rescheduled eventually
737 iewStage->rescheduleMemInst(load_inst);
738 iewStage->decrWb(load_inst->seqNum);
739 load_inst->clearIssued();
740 ++lsqRescheduledLoads;
741
742 // Do not generate a writeback event as this instruction is not
743 // complete.
744 DPRINTF(LSQUnit, "Load-store forwarding mis-match. "
745 "Store idx %i to load addr %#x\n",
746 store_idx, req->getVaddr());
747
748 // Must delete request now that it wasn't handed off to
749 // memory. This is quite ugly. @todo: Figure out the
750 // proper place to really handle request deletes.
751 delete req;
752 if (TheISA::HasUnalignedMemAcc && sreqLow) {
753 delete sreqLow;
754 delete sreqHigh;
755 }
756
757 return NoFault;
758 }
759 }
760
761 // If there's no forwarding case, then go access memory
762 DPRINTF(LSQUnit, "Doing memory access for inst [sn:%lli] PC %s\n",
763 load_inst->seqNum, load_inst->pcState());
764
765 assert(!load_inst->memData);
766 load_inst->memData = new uint8_t[64];
767
768 ++usedPorts;
769
770 // if we the cache is not blocked, do cache access
771 bool completedFirst = false;
772 if (!lsq->cacheBlocked()) {
773 MemCmd command =
774 req->isLLSC() ? MemCmd::LoadLockedReq : MemCmd::ReadReq;
775 PacketPtr data_pkt = new Packet(req, command, Packet::Broadcast);
776 PacketPtr fst_data_pkt = NULL;
777 PacketPtr snd_data_pkt = NULL;
778
779 data_pkt->dataStatic(load_inst->memData);
780
781 LSQSenderState *state = new LSQSenderState;
782 state->isLoad = true;
783 state->idx = load_idx;
784 state->inst = load_inst;
785 data_pkt->senderState = state;
786
787 if (!TheISA::HasUnalignedMemAcc || !sreqLow) {
788
789 // Point the first packet at the main data packet.
790 fst_data_pkt = data_pkt;
791 } else {
792
793 // Create the split packets.
794 fst_data_pkt = new Packet(sreqLow, command, Packet::Broadcast);
795 snd_data_pkt = new Packet(sreqHigh, command, Packet::Broadcast);
796
797 fst_data_pkt->dataStatic(load_inst->memData);
798 snd_data_pkt->dataStatic(load_inst->memData + sreqLow->getSize());
799
800 fst_data_pkt->senderState = state;
801 snd_data_pkt->senderState = state;
802
803 state->isSplit = true;
804 state->outstanding = 2;
805 state->mainPkt = data_pkt;
806 }
807
808 if (!dcachePort->sendTiming(fst_data_pkt)) {
809 // Delete state and data packet because a load retry
810 // initiates a pipeline restart; it does not retry.
811 delete state;
812 delete data_pkt->req;
813 delete data_pkt;
814 if (TheISA::HasUnalignedMemAcc && sreqLow) {
815 delete fst_data_pkt->req;
816 delete fst_data_pkt;
817 delete snd_data_pkt->req;
818 delete snd_data_pkt;
819 sreqLow = NULL;
820 sreqHigh = NULL;
821 }
822
823 req = NULL;
824
825 // If the access didn't succeed, tell the LSQ by setting
826 // the retry thread id.
827 lsq->setRetryTid(lsqID);
828 } else if (TheISA::HasUnalignedMemAcc && sreqLow) {
829 completedFirst = true;
830
831 // The first packet was sent without problems, so send this one
832 // too. If there is a problem with this packet then the whole
833 // load will be squashed, so indicate this to the state object.
834 // The first packet will return in completeDataAccess and be
835 // handled there.
836 ++usedPorts;
837 if (!dcachePort->sendTiming(snd_data_pkt)) {
838
839 // The main packet will be deleted in completeDataAccess.
840 delete snd_data_pkt->req;
841 delete snd_data_pkt;
842
843 state->complete();
844
845 req = NULL;
846 sreqHigh = NULL;
847
848 lsq->setRetryTid(lsqID);
849 }
850 }
851 }
852
853 // If the cache was blocked, or has become blocked due to the access,
854 // handle it.
855 if (lsq->cacheBlocked()) {
856 if (req)
857 delete req;
858 if (TheISA::HasUnalignedMemAcc && sreqLow && !completedFirst) {
859 delete sreqLow;
860 delete sreqHigh;
861 }
862
863 ++lsqCacheBlocked;
864
865 // If the first part of a split access succeeds, then let the LSQ
866 // handle the decrWb when completeDataAccess is called upon return
867 // of the requested first part of data
868 if (!completedFirst)
869 iewStage->decrWb(load_inst->seqNum);
870
871 // There's an older load that's already going to squash.
872 if (isLoadBlocked && blockedLoadSeqNum < load_inst->seqNum)
873 return NoFault;
874
875 // Record that the load was blocked due to memory. This
876 // load will squash all instructions after it, be
877 // refetched, and re-executed.
878 isLoadBlocked = true;
879 loadBlockedHandled = false;
880 blockedLoadSeqNum = load_inst->seqNum;
881 // No fault occurred, even though the interface is blocked.
882 return NoFault;
883 }
884
885 return NoFault;
886 }
887
888 template <class Impl>
889 Fault
890 LSQUnit<Impl>::write(Request *req, Request *sreqLow, Request *sreqHigh,
891 uint8_t *data, int store_idx)
892 {
893 assert(storeQueue[store_idx].inst);
894
895 DPRINTF(LSQUnit, "Doing write to store idx %i, addr %#x data %#x"
896 " | storeHead:%i [sn:%i]\n",
897 store_idx, req->getPaddr(), data, storeHead,
898 storeQueue[store_idx].inst->seqNum);
899
900 storeQueue[store_idx].req = req;
901 storeQueue[store_idx].sreqLow = sreqLow;
902 storeQueue[store_idx].sreqHigh = sreqHigh;
903 unsigned size = req->getSize();
904 storeQueue[store_idx].size = size;
905 assert(size <= sizeof(storeQueue[store_idx].data));
906
907 // Split stores can only occur in ISAs with unaligned memory accesses. If
908 // a store request has been split, sreqLow and sreqHigh will be non-null.
909 if (TheISA::HasUnalignedMemAcc && sreqLow) {
910 storeQueue[store_idx].isSplit = true;
911 }
912
913 memcpy(storeQueue[store_idx].data, data, size);
914
915 // This function only writes the data to the store queue, so no fault
916 // can happen here.
917 return NoFault;
918 }
919
920 #endif // __CPU_O3_LSQ_UNIT_HH__