553c903e79e148e1636d1b866b663718efaae289
[gem5.git] / src / cpu / o3 / lsq_unit_impl.hh
1
2 /*
3 * Copyright (c) 2010-2014, 2017-2019 ARM Limited
4 * Copyright (c) 2013 Advanced Micro Devices, Inc.
5 * All rights reserved
6 *
7 * The license below extends only to copyright in the software and shall
8 * not be construed as granting a license to any other intellectual
9 * property including but not limited to intellectual property relating
10 * to a hardware implementation of the functionality of the software
11 * licensed hereunder. You may use the software subject to the license
12 * terms below provided that you ensure that this notice is replicated
13 * unmodified and in its entirety in all distributions of the software,
14 * modified or unmodified, in source code or in binary form.
15 *
16 * Copyright (c) 2004-2005 The Regents of The University of Michigan
17 * All rights reserved.
18 *
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions are
21 * met: redistributions of source code must retain the above copyright
22 * notice, this list of conditions and the following disclaimer;
23 * redistributions in binary form must reproduce the above copyright
24 * notice, this list of conditions and the following disclaimer in the
25 * documentation and/or other materials provided with the distribution;
26 * neither the name of the copyright holders nor the names of its
27 * contributors may be used to endorse or promote products derived from
28 * this software without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
31 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
32 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
33 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
34 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
35 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
36 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
37 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
38 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
39 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
40 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41 *
42 * Authors: Kevin Lim
43 * Korey Sewell
44 */
45
46 #ifndef __CPU_O3_LSQ_UNIT_IMPL_HH__
47 #define __CPU_O3_LSQ_UNIT_IMPL_HH__
48
49 #include "arch/generic/debugfaults.hh"
50 #include "arch/locked_mem.hh"
51 #include "base/str.hh"
52 #include "config/the_isa.hh"
53 #include "cpu/checker/cpu.hh"
54 #include "cpu/o3/lsq.hh"
55 #include "cpu/o3/lsq_unit.hh"
56 #include "debug/Activity.hh"
57 #include "debug/IEW.hh"
58 #include "debug/LSQUnit.hh"
59 #include "debug/O3PipeView.hh"
60 #include "mem/packet.hh"
61 #include "mem/request.hh"
62
63 template<class Impl>
64 LSQUnit<Impl>::WritebackEvent::WritebackEvent(const DynInstPtr &_inst,
65 PacketPtr _pkt, LSQUnit *lsq_ptr)
66 : Event(Default_Pri, AutoDelete),
67 inst(_inst), pkt(_pkt), lsqPtr(lsq_ptr)
68 {
69 assert(_inst->savedReq);
70 _inst->savedReq->writebackScheduled();
71 }
72
73 template<class Impl>
74 void
75 LSQUnit<Impl>::WritebackEvent::process()
76 {
77 assert(!lsqPtr->cpu->switchedOut());
78
79 lsqPtr->writeback(inst, pkt);
80
81 assert(inst->savedReq);
82 inst->savedReq->writebackDone();
83 delete pkt;
84 }
85
86 template<class Impl>
87 const char *
88 LSQUnit<Impl>::WritebackEvent::description() const
89 {
90 return "Store writeback";
91 }
92
93 template <class Impl>
94 bool
95 LSQUnit<Impl>::recvTimingResp(PacketPtr pkt)
96 {
97 auto senderState = dynamic_cast<LSQSenderState*>(pkt->senderState);
98 LSQRequest* req = senderState->request();
99 assert(req != nullptr);
100 bool ret = true;
101 /* Check that the request is still alive before any further action. */
102 if (senderState->alive()) {
103 ret = req->recvTimingResp(pkt);
104 } else {
105 senderState->outstanding--;
106 }
107 return ret;
108
109 }
110
111 template<class Impl>
112 void
113 LSQUnit<Impl>::completeDataAccess(PacketPtr pkt)
114 {
115 LSQSenderState *state = dynamic_cast<LSQSenderState *>(pkt->senderState);
116 DynInstPtr inst = state->inst;
117
118 cpu->ppDataAccessComplete->notify(std::make_pair(inst, pkt));
119
120 /* Notify the sender state that the access is complete (for ownership
121 * tracking). */
122 state->complete();
123
124 assert(!cpu->switchedOut());
125 if (!inst->isSquashed()) {
126 if (state->needWB) {
127 // Only loads, store conditionals and atomics perform the writeback
128 // after receving the response from the memory
129 assert(inst->isLoad() || inst->isStoreConditional() ||
130 inst->isAtomic());
131 writeback(inst, state->request()->mainPacket());
132 if (inst->isStore() || inst->isAtomic()) {
133 auto ss = dynamic_cast<SQSenderState*>(state);
134 ss->writebackDone();
135 completeStore(ss->idx);
136 }
137 } else if (inst->isStore()) {
138 // This is a regular store (i.e., not store conditionals and
139 // atomics), so it can complete without writing back
140 completeStore(dynamic_cast<SQSenderState*>(state)->idx);
141 }
142 }
143 }
144
145 template <class Impl>
146 LSQUnit<Impl>::LSQUnit(uint32_t lqEntries, uint32_t sqEntries)
147 : lsqID(-1), storeQueue(sqEntries+1), loadQueue(lqEntries+1),
148 loads(0), stores(0), storesToWB(0), cacheBlockMask(0), stalled(false),
149 isStoreBlocked(false), storeInFlight(false), hasPendingRequest(false),
150 pendingRequest(nullptr)
151 {
152 }
153
154 template<class Impl>
155 void
156 LSQUnit<Impl>::init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params,
157 LSQ *lsq_ptr, unsigned id)
158 {
159 lsqID = id;
160
161 cpu = cpu_ptr;
162 iewStage = iew_ptr;
163
164 lsq = lsq_ptr;
165
166 DPRINTF(LSQUnit, "Creating LSQUnit%i object.\n",lsqID);
167
168 depCheckShift = params->LSQDepCheckShift;
169 checkLoads = params->LSQCheckLoads;
170 needsTSO = params->needsTSO;
171
172 resetState();
173 }
174
175
176 template<class Impl>
177 void
178 LSQUnit<Impl>::resetState()
179 {
180 loads = stores = storesToWB = 0;
181
182
183 storeWBIt = storeQueue.begin();
184
185 retryPkt = NULL;
186 memDepViolator = NULL;
187
188 stalled = false;
189
190 cacheBlockMask = ~(cpu->cacheLineSize() - 1);
191 }
192
193 template<class Impl>
194 std::string
195 LSQUnit<Impl>::name() const
196 {
197 if (Impl::MaxThreads == 1) {
198 return iewStage->name() + ".lsq";
199 } else {
200 return iewStage->name() + ".lsq.thread" + std::to_string(lsqID);
201 }
202 }
203
204 template<class Impl>
205 void
206 LSQUnit<Impl>::regStats()
207 {
208 lsqForwLoads
209 .name(name() + ".forwLoads")
210 .desc("Number of loads that had data forwarded from stores");
211
212 invAddrLoads
213 .name(name() + ".invAddrLoads")
214 .desc("Number of loads ignored due to an invalid address");
215
216 lsqSquashedLoads
217 .name(name() + ".squashedLoads")
218 .desc("Number of loads squashed");
219
220 lsqIgnoredResponses
221 .name(name() + ".ignoredResponses")
222 .desc("Number of memory responses ignored because the instruction is squashed");
223
224 lsqMemOrderViolation
225 .name(name() + ".memOrderViolation")
226 .desc("Number of memory ordering violations");
227
228 lsqSquashedStores
229 .name(name() + ".squashedStores")
230 .desc("Number of stores squashed");
231
232 invAddrSwpfs
233 .name(name() + ".invAddrSwpfs")
234 .desc("Number of software prefetches ignored due to an invalid address");
235
236 lsqBlockedLoads
237 .name(name() + ".blockedLoads")
238 .desc("Number of blocked loads due to partial load-store forwarding");
239
240 lsqRescheduledLoads
241 .name(name() + ".rescheduledLoads")
242 .desc("Number of loads that were rescheduled");
243
244 lsqCacheBlocked
245 .name(name() + ".cacheBlocked")
246 .desc("Number of times an access to memory failed due to the cache being blocked");
247 }
248
249 template<class Impl>
250 void
251 LSQUnit<Impl>::setDcachePort(MasterPort *dcache_port)
252 {
253 dcachePort = dcache_port;
254 }
255
256 template<class Impl>
257 void
258 LSQUnit<Impl>::drainSanityCheck() const
259 {
260 for (int i = 0; i < loadQueue.capacity(); ++i)
261 assert(!loadQueue[i].valid());
262
263 assert(storesToWB == 0);
264 assert(!retryPkt);
265 }
266
267 template<class Impl>
268 void
269 LSQUnit<Impl>::takeOverFrom()
270 {
271 resetState();
272 }
273
274 template <class Impl>
275 void
276 LSQUnit<Impl>::insert(const DynInstPtr &inst)
277 {
278 assert(inst->isMemRef());
279
280 assert(inst->isLoad() || inst->isStore() || inst->isAtomic());
281
282 if (inst->isLoad()) {
283 insertLoad(inst);
284 } else {
285 insertStore(inst);
286 }
287
288 inst->setInLSQ();
289 }
290
291 template <class Impl>
292 void
293 LSQUnit<Impl>::insertLoad(const DynInstPtr &load_inst)
294 {
295 assert(!loadQueue.full());
296 assert(loads < loadQueue.capacity());
297
298 DPRINTF(LSQUnit, "Inserting load PC %s, idx:%i [sn:%lli]\n",
299 load_inst->pcState(), loadQueue.tail(), load_inst->seqNum);
300
301 /* Grow the queue. */
302 loadQueue.advance_tail();
303
304 load_inst->sqIt = storeQueue.end();
305
306 assert(!loadQueue.back().valid());
307 loadQueue.back().set(load_inst);
308 load_inst->lqIdx = loadQueue.tail();
309 load_inst->lqIt = loadQueue.getIterator(load_inst->lqIdx);
310
311 ++loads;
312 }
313
314 template <class Impl>
315 void
316 LSQUnit<Impl>::insertStore(const DynInstPtr& store_inst)
317 {
318 // Make sure it is not full before inserting an instruction.
319 assert(!storeQueue.full());
320 assert(stores < storeQueue.capacity());
321
322 DPRINTF(LSQUnit, "Inserting store PC %s, idx:%i [sn:%lli]\n",
323 store_inst->pcState(), storeQueue.tail(), store_inst->seqNum);
324 storeQueue.advance_tail();
325
326 store_inst->sqIdx = storeQueue.tail();
327 store_inst->lqIdx = loadQueue.moduloAdd(loadQueue.tail(), 1);
328 store_inst->lqIt = loadQueue.end();
329
330 storeQueue.back().set(store_inst);
331
332 ++stores;
333 }
334
335 template <class Impl>
336 typename Impl::DynInstPtr
337 LSQUnit<Impl>::getMemDepViolator()
338 {
339 DynInstPtr temp = memDepViolator;
340
341 memDepViolator = NULL;
342
343 return temp;
344 }
345
346 template <class Impl>
347 unsigned
348 LSQUnit<Impl>::numFreeLoadEntries()
349 {
350 //LQ has an extra dummy entry to differentiate
351 //empty/full conditions. Subtract 1 from the free entries.
352 DPRINTF(LSQUnit, "LQ size: %d, #loads occupied: %d\n",
353 1 + loadQueue.capacity(), loads);
354 return loadQueue.capacity() - loads;
355 }
356
357 template <class Impl>
358 unsigned
359 LSQUnit<Impl>::numFreeStoreEntries()
360 {
361 //SQ has an extra dummy entry to differentiate
362 //empty/full conditions. Subtract 1 from the free entries.
363 DPRINTF(LSQUnit, "SQ size: %d, #stores occupied: %d\n",
364 1 + storeQueue.capacity(), stores);
365 return storeQueue.capacity() - stores;
366
367 }
368
369 template <class Impl>
370 void
371 LSQUnit<Impl>::checkSnoop(PacketPtr pkt)
372 {
373 // Should only ever get invalidations in here
374 assert(pkt->isInvalidate());
375
376 DPRINTF(LSQUnit, "Got snoop for address %#x\n", pkt->getAddr());
377
378 for (int x = 0; x < cpu->numContexts(); x++) {
379 ThreadContext *tc = cpu->getContext(x);
380 bool no_squash = cpu->thread[x]->noSquashFromTC;
381 cpu->thread[x]->noSquashFromTC = true;
382 TheISA::handleLockedSnoop(tc, pkt, cacheBlockMask);
383 cpu->thread[x]->noSquashFromTC = no_squash;
384 }
385
386 if (loadQueue.empty())
387 return;
388
389 auto iter = loadQueue.begin();
390
391 Addr invalidate_addr = pkt->getAddr() & cacheBlockMask;
392
393 DynInstPtr ld_inst = iter->instruction();
394 assert(ld_inst);
395 LSQRequest *req = iter->request();
396
397 // Check that this snoop didn't just invalidate our lock flag
398 if (ld_inst->effAddrValid() &&
399 req->isCacheBlockHit(invalidate_addr, cacheBlockMask)
400 && ld_inst->memReqFlags & Request::LLSC)
401 TheISA::handleLockedSnoopHit(ld_inst.get());
402
403 bool force_squash = false;
404
405 while (++iter != loadQueue.end()) {
406 ld_inst = iter->instruction();
407 assert(ld_inst);
408 req = iter->request();
409 if (!ld_inst->effAddrValid() || ld_inst->strictlyOrdered())
410 continue;
411
412 DPRINTF(LSQUnit, "-- inst [sn:%lli] to pktAddr:%#x\n",
413 ld_inst->seqNum, invalidate_addr);
414
415 if (force_squash ||
416 req->isCacheBlockHit(invalidate_addr, cacheBlockMask)) {
417 if (needsTSO) {
418 // If we have a TSO system, as all loads must be ordered with
419 // all other loads, this load as well as *all* subsequent loads
420 // need to be squashed to prevent possible load reordering.
421 force_squash = true;
422 }
423 if (ld_inst->possibleLoadViolation() || force_squash) {
424 DPRINTF(LSQUnit, "Conflicting load at addr %#x [sn:%lli]\n",
425 pkt->getAddr(), ld_inst->seqNum);
426
427 // Mark the load for re-execution
428 ld_inst->fault = std::make_shared<ReExec>();
429 req->setStateToFault();
430 } else {
431 DPRINTF(LSQUnit, "HitExternal Snoop for addr %#x [sn:%lli]\n",
432 pkt->getAddr(), ld_inst->seqNum);
433
434 // Make sure that we don't lose a snoop hitting a LOCKED
435 // address since the LOCK* flags don't get updated until
436 // commit.
437 if (ld_inst->memReqFlags & Request::LLSC)
438 TheISA::handleLockedSnoopHit(ld_inst.get());
439
440 // If a older load checks this and it's true
441 // then we might have missed the snoop
442 // in which case we need to invalidate to be sure
443 ld_inst->hitExternalSnoop(true);
444 }
445 }
446 }
447 return;
448 }
449
450 template <class Impl>
451 Fault
452 LSQUnit<Impl>::checkViolations(typename LoadQueue::iterator& loadIt,
453 const DynInstPtr& inst)
454 {
455 Addr inst_eff_addr1 = inst->effAddr >> depCheckShift;
456 Addr inst_eff_addr2 = (inst->effAddr + inst->effSize - 1) >> depCheckShift;
457
458 /** @todo in theory you only need to check an instruction that has executed
459 * however, there isn't a good way in the pipeline at the moment to check
460 * all instructions that will execute before the store writes back. Thus,
461 * like the implementation that came before it, we're overly conservative.
462 */
463 while (loadIt != loadQueue.end()) {
464 DynInstPtr ld_inst = loadIt->instruction();
465 if (!ld_inst->effAddrValid() || ld_inst->strictlyOrdered()) {
466 ++loadIt;
467 continue;
468 }
469
470 Addr ld_eff_addr1 = ld_inst->effAddr >> depCheckShift;
471 Addr ld_eff_addr2 =
472 (ld_inst->effAddr + ld_inst->effSize - 1) >> depCheckShift;
473
474 if (inst_eff_addr2 >= ld_eff_addr1 && inst_eff_addr1 <= ld_eff_addr2) {
475 if (inst->isLoad()) {
476 // If this load is to the same block as an external snoop
477 // invalidate that we've observed then the load needs to be
478 // squashed as it could have newer data
479 if (ld_inst->hitExternalSnoop()) {
480 if (!memDepViolator ||
481 ld_inst->seqNum < memDepViolator->seqNum) {
482 DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] "
483 "and [sn:%lli] at address %#x\n",
484 inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
485 memDepViolator = ld_inst;
486
487 ++lsqMemOrderViolation;
488
489 return std::make_shared<GenericISA::M5PanicFault>(
490 "Detected fault with inst [sn:%lli] and "
491 "[sn:%lli] at address %#x\n",
492 inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
493 }
494 }
495
496 // Otherwise, mark the load has a possible load violation
497 // and if we see a snoop before it's commited, we need to squash
498 ld_inst->possibleLoadViolation(true);
499 DPRINTF(LSQUnit, "Found possible load violation at addr: %#x"
500 " between instructions [sn:%lli] and [sn:%lli]\n",
501 inst_eff_addr1, inst->seqNum, ld_inst->seqNum);
502 } else {
503 // A load/store incorrectly passed this store.
504 // Check if we already have a violator, or if it's newer
505 // squash and refetch.
506 if (memDepViolator && ld_inst->seqNum > memDepViolator->seqNum)
507 break;
508
509 DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] and "
510 "[sn:%lli] at address %#x\n",
511 inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
512 memDepViolator = ld_inst;
513
514 ++lsqMemOrderViolation;
515
516 return std::make_shared<GenericISA::M5PanicFault>(
517 "Detected fault with "
518 "inst [sn:%lli] and [sn:%lli] at address %#x\n",
519 inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
520 }
521 }
522
523 ++loadIt;
524 }
525 return NoFault;
526 }
527
528
529
530
531 template <class Impl>
532 Fault
533 LSQUnit<Impl>::executeLoad(const DynInstPtr &inst)
534 {
535 using namespace TheISA;
536 // Execute a specific load.
537 Fault load_fault = NoFault;
538
539 DPRINTF(LSQUnit, "Executing load PC %s, [sn:%lli]\n",
540 inst->pcState(), inst->seqNum);
541
542 assert(!inst->isSquashed());
543
544 load_fault = inst->initiateAcc();
545
546 if (load_fault == NoFault && !inst->readMemAccPredicate()) {
547 assert(inst->readPredicate());
548 inst->setExecuted();
549 inst->completeAcc(nullptr);
550 iewStage->instToCommit(inst);
551 iewStage->activityThisCycle();
552 return NoFault;
553 }
554
555 if (inst->isTranslationDelayed() && load_fault == NoFault)
556 return load_fault;
557
558 if (load_fault != NoFault && inst->translationCompleted() &&
559 inst->savedReq->isPartialFault() && !inst->savedReq->isComplete()) {
560 assert(inst->savedReq->isSplit());
561 // If we have a partial fault where the mem access is not complete yet
562 // then the cache must have been blocked. This load will be re-executed
563 // when the cache gets unblocked. We will handle the fault when the
564 // mem access is complete.
565 return NoFault;
566 }
567
568 // If the instruction faulted or predicated false, then we need to send it
569 // along to commit without the instruction completing.
570 if (load_fault != NoFault || !inst->readPredicate()) {
571 // Send this instruction to commit, also make sure iew stage
572 // realizes there is activity. Mark it as executed unless it
573 // is a strictly ordered load that needs to hit the head of
574 // commit.
575 if (!inst->readPredicate())
576 inst->forwardOldRegs();
577 DPRINTF(LSQUnit, "Load [sn:%lli] not executed from %s\n",
578 inst->seqNum,
579 (load_fault != NoFault ? "fault" : "predication"));
580 if (!(inst->hasRequest() && inst->strictlyOrdered()) ||
581 inst->isAtCommit()) {
582 inst->setExecuted();
583 }
584 iewStage->instToCommit(inst);
585 iewStage->activityThisCycle();
586 } else {
587 if (inst->effAddrValid()) {
588 auto it = inst->lqIt;
589 ++it;
590
591 if (checkLoads)
592 return checkViolations(it, inst);
593 }
594 }
595
596 return load_fault;
597 }
598
599 template <class Impl>
600 Fault
601 LSQUnit<Impl>::executeStore(const DynInstPtr &store_inst)
602 {
603 using namespace TheISA;
604 // Make sure that a store exists.
605 assert(stores != 0);
606
607 int store_idx = store_inst->sqIdx;
608
609 DPRINTF(LSQUnit, "Executing store PC %s [sn:%lli]\n",
610 store_inst->pcState(), store_inst->seqNum);
611
612 assert(!store_inst->isSquashed());
613
614 // Check the recently completed loads to see if any match this store's
615 // address. If so, then we have a memory ordering violation.
616 typename LoadQueue::iterator loadIt = store_inst->lqIt;
617
618 Fault store_fault = store_inst->initiateAcc();
619
620 if (store_inst->isTranslationDelayed() &&
621 store_fault == NoFault)
622 return store_fault;
623
624 if (!store_inst->readPredicate()) {
625 DPRINTF(LSQUnit, "Store [sn:%lli] not executed from predication\n",
626 store_inst->seqNum);
627 store_inst->forwardOldRegs();
628 return store_fault;
629 }
630
631 if (storeQueue[store_idx].size() == 0) {
632 DPRINTF(LSQUnit,"Fault on Store PC %s, [sn:%lli], Size = 0\n",
633 store_inst->pcState(), store_inst->seqNum);
634
635 return store_fault;
636 }
637
638 assert(store_fault == NoFault);
639
640 if (store_inst->isStoreConditional() || store_inst->isAtomic()) {
641 // Store conditionals and Atomics need to set themselves as able to
642 // writeback if we haven't had a fault by here.
643 storeQueue[store_idx].canWB() = true;
644
645 ++storesToWB;
646 }
647
648 return checkViolations(loadIt, store_inst);
649
650 }
651
652 template <class Impl>
653 void
654 LSQUnit<Impl>::commitLoad()
655 {
656 assert(loadQueue.front().valid());
657
658 DPRINTF(LSQUnit, "Committing head load instruction, PC %s\n",
659 loadQueue.front().instruction()->pcState());
660
661 loadQueue.front().clear();
662 loadQueue.pop_front();
663
664 --loads;
665 }
666
667 template <class Impl>
668 void
669 LSQUnit<Impl>::commitLoads(InstSeqNum &youngest_inst)
670 {
671 assert(loads == 0 || loadQueue.front().valid());
672
673 while (loads != 0 && loadQueue.front().instruction()->seqNum
674 <= youngest_inst) {
675 commitLoad();
676 }
677 }
678
679 template <class Impl>
680 void
681 LSQUnit<Impl>::commitStores(InstSeqNum &youngest_inst)
682 {
683 assert(stores == 0 || storeQueue.front().valid());
684
685 /* Forward iterate the store queue (age order). */
686 for (auto& x : storeQueue) {
687 assert(x.valid());
688 // Mark any stores that are now committed and have not yet
689 // been marked as able to write back.
690 if (!x.canWB()) {
691 if (x.instruction()->seqNum > youngest_inst) {
692 break;
693 }
694 DPRINTF(LSQUnit, "Marking store as able to write back, PC "
695 "%s [sn:%lli]\n",
696 x.instruction()->pcState(),
697 x.instruction()->seqNum);
698
699 x.canWB() = true;
700
701 ++storesToWB;
702 }
703 }
704 }
705
706 template <class Impl>
707 void
708 LSQUnit<Impl>::writebackBlockedStore()
709 {
710 assert(isStoreBlocked);
711 storeWBIt->request()->sendPacketToCache();
712 if (storeWBIt->request()->isSent()){
713 storePostSend();
714 }
715 }
716
717 template <class Impl>
718 void
719 LSQUnit<Impl>::writebackStores()
720 {
721 if (isStoreBlocked) {
722 DPRINTF(LSQUnit, "Writing back blocked store\n");
723 writebackBlockedStore();
724 }
725
726 while (storesToWB > 0 &&
727 storeWBIt.dereferenceable() &&
728 storeWBIt->valid() &&
729 storeWBIt->canWB() &&
730 ((!needsTSO) || (!storeInFlight)) &&
731 lsq->cachePortAvailable(false)) {
732
733 if (isStoreBlocked) {
734 DPRINTF(LSQUnit, "Unable to write back any more stores, cache"
735 " is blocked!\n");
736 break;
737 }
738
739 // Store didn't write any data so no need to write it back to
740 // memory.
741 if (storeWBIt->size() == 0) {
742 /* It is important that the preincrement happens at (or before)
743 * the call, as the the code of completeStore checks
744 * storeWBIt. */
745 completeStore(storeWBIt++);
746 continue;
747 }
748
749 if (storeWBIt->instruction()->isDataPrefetch()) {
750 storeWBIt++;
751 continue;
752 }
753
754 assert(storeWBIt->hasRequest());
755 assert(!storeWBIt->committed());
756
757 DynInstPtr inst = storeWBIt->instruction();
758 LSQRequest* req = storeWBIt->request();
759 storeWBIt->committed() = true;
760
761 assert(!inst->memData);
762 inst->memData = new uint8_t[req->_size];
763
764 if (storeWBIt->isAllZeros())
765 memset(inst->memData, 0, req->_size);
766 else
767 memcpy(inst->memData, storeWBIt->data(), req->_size);
768
769
770 if (req->senderState() == nullptr) {
771 SQSenderState *state = new SQSenderState(storeWBIt);
772 state->isLoad = false;
773 state->needWB = false;
774 state->inst = inst;
775
776 req->senderState(state);
777 if (inst->isStoreConditional() || inst->isAtomic()) {
778 /* Only store conditionals and atomics need a writeback. */
779 state->needWB = true;
780 }
781 }
782 req->buildPackets();
783
784 DPRINTF(LSQUnit, "D-Cache: Writing back store idx:%i PC:%s "
785 "to Addr:%#x, data:%#x [sn:%lli]\n",
786 storeWBIt.idx(), inst->pcState(),
787 req->request()->getPaddr(), (int)*(inst->memData),
788 inst->seqNum);
789
790 // @todo: Remove this SC hack once the memory system handles it.
791 if (inst->isStoreConditional()) {
792 // Disable recording the result temporarily. Writing to
793 // misc regs normally updates the result, but this is not
794 // the desired behavior when handling store conditionals.
795 inst->recordResult(false);
796 bool success = TheISA::handleLockedWrite(inst.get(),
797 req->request(), cacheBlockMask);
798 inst->recordResult(true);
799 req->packetSent();
800
801 if (!success) {
802 req->complete();
803 // Instantly complete this store.
804 DPRINTF(LSQUnit, "Store conditional [sn:%lli] failed. "
805 "Instantly completing it.\n",
806 inst->seqNum);
807 PacketPtr new_pkt = new Packet(*req->packet());
808 WritebackEvent *wb = new WritebackEvent(inst,
809 new_pkt, this);
810 cpu->schedule(wb, curTick() + 1);
811 completeStore(storeWBIt);
812 if (!storeQueue.empty())
813 storeWBIt++;
814 else
815 storeWBIt = storeQueue.end();
816 continue;
817 }
818 }
819
820 if (req->request()->isMmappedIpr()) {
821 assert(!inst->isStoreConditional());
822 ThreadContext *thread = cpu->tcBase(lsqID);
823 PacketPtr main_pkt = new Packet(req->mainRequest(),
824 MemCmd::WriteReq);
825 main_pkt->dataStatic(inst->memData);
826 req->handleIprWrite(thread, main_pkt);
827 delete main_pkt;
828 completeStore(storeWBIt);
829 storeWBIt++;
830 continue;
831 }
832 /* Send to cache */
833 req->sendPacketToCache();
834
835 /* If successful, do the post send */
836 if (req->isSent()) {
837 storePostSend();
838 } else {
839 DPRINTF(LSQUnit, "D-Cache became blocked when writing [sn:%lli], "
840 "will retry later\n",
841 inst->seqNum);
842 }
843 }
844 assert(stores >= 0 && storesToWB >= 0);
845 }
846
847 template <class Impl>
848 void
849 LSQUnit<Impl>::squash(const InstSeqNum &squashed_num)
850 {
851 DPRINTF(LSQUnit, "Squashing until [sn:%lli]!"
852 "(Loads:%i Stores:%i)\n", squashed_num, loads, stores);
853
854 while (loads != 0 &&
855 loadQueue.back().instruction()->seqNum > squashed_num) {
856 DPRINTF(LSQUnit,"Load Instruction PC %s squashed, "
857 "[sn:%lli]\n",
858 loadQueue.back().instruction()->pcState(),
859 loadQueue.back().instruction()->seqNum);
860
861 if (isStalled() && loadQueue.tail() == stallingLoadIdx) {
862 stalled = false;
863 stallingStoreIsn = 0;
864 stallingLoadIdx = 0;
865 }
866
867 // Clear the smart pointer to make sure it is decremented.
868 loadQueue.back().instruction()->setSquashed();
869 loadQueue.back().clear();
870
871 --loads;
872
873 loadQueue.pop_back();
874 ++lsqSquashedLoads;
875 }
876
877 if (memDepViolator && squashed_num < memDepViolator->seqNum) {
878 memDepViolator = NULL;
879 }
880
881 while (stores != 0 &&
882 storeQueue.back().instruction()->seqNum > squashed_num) {
883 // Instructions marked as can WB are already committed.
884 if (storeQueue.back().canWB()) {
885 break;
886 }
887
888 DPRINTF(LSQUnit,"Store Instruction PC %s squashed, "
889 "idx:%i [sn:%lli]\n",
890 storeQueue.back().instruction()->pcState(),
891 storeQueue.tail(), storeQueue.back().instruction()->seqNum);
892
893 // I don't think this can happen. It should have been cleared
894 // by the stalling load.
895 if (isStalled() &&
896 storeQueue.back().instruction()->seqNum == stallingStoreIsn) {
897 panic("Is stalled should have been cleared by stalling load!\n");
898 stalled = false;
899 stallingStoreIsn = 0;
900 }
901
902 // Clear the smart pointer to make sure it is decremented.
903 storeQueue.back().instruction()->setSquashed();
904
905 // Must delete request now that it wasn't handed off to
906 // memory. This is quite ugly. @todo: Figure out the proper
907 // place to really handle request deletes.
908 storeQueue.back().clear();
909 --stores;
910
911 storeQueue.pop_back();
912 ++lsqSquashedStores;
913 }
914 }
915
916 template <class Impl>
917 void
918 LSQUnit<Impl>::storePostSend()
919 {
920 if (isStalled() &&
921 storeWBIt->instruction()->seqNum == stallingStoreIsn) {
922 DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
923 "load idx:%i\n",
924 stallingStoreIsn, stallingLoadIdx);
925 stalled = false;
926 stallingStoreIsn = 0;
927 iewStage->replayMemInst(loadQueue[stallingLoadIdx].instruction());
928 }
929
930 if (!storeWBIt->instruction()->isStoreConditional()) {
931 // The store is basically completed at this time. This
932 // only works so long as the checker doesn't try to
933 // verify the value in memory for stores.
934 storeWBIt->instruction()->setCompleted();
935
936 if (cpu->checker) {
937 cpu->checker->verify(storeWBIt->instruction());
938 }
939 }
940
941 if (needsTSO) {
942 storeInFlight = true;
943 }
944
945 storeWBIt++;
946 }
947
948 template <class Impl>
949 void
950 LSQUnit<Impl>::writeback(const DynInstPtr &inst, PacketPtr pkt)
951 {
952 iewStage->wakeCPU();
953
954 // Squashed instructions do not need to complete their access.
955 if (inst->isSquashed()) {
956 assert(!inst->isStore());
957 ++lsqIgnoredResponses;
958 return;
959 }
960
961 if (!inst->isExecuted()) {
962 inst->setExecuted();
963
964 if (inst->fault == NoFault) {
965 // Complete access to copy data to proper place.
966 inst->completeAcc(pkt);
967 } else {
968 // If the instruction has an outstanding fault, we cannot complete
969 // the access as this discards the current fault.
970
971 // If we have an outstanding fault, the fault should only be of
972 // type ReExec or - in case of a SplitRequest - a partial
973 // translation fault
974 assert(dynamic_cast<ReExec*>(inst->fault.get()) != nullptr ||
975 inst->savedReq->isPartialFault());
976
977 DPRINTF(LSQUnit, "Not completing instruction [sn:%lli] access "
978 "due to pending fault.\n", inst->seqNum);
979 }
980 }
981
982 // Need to insert instruction into queue to commit
983 iewStage->instToCommit(inst);
984
985 iewStage->activityThisCycle();
986
987 // see if this load changed the PC
988 iewStage->checkMisprediction(inst);
989 }
990
991 template <class Impl>
992 void
993 LSQUnit<Impl>::completeStore(typename StoreQueue::iterator store_idx)
994 {
995 assert(store_idx->valid());
996 store_idx->completed() = true;
997 --storesToWB;
998 // A bit conservative because a store completion may not free up entries,
999 // but hopefully avoids two store completions in one cycle from making
1000 // the CPU tick twice.
1001 cpu->wakeCPU();
1002 cpu->activityThisCycle();
1003
1004 /* We 'need' a copy here because we may clear the entry from the
1005 * store queue. */
1006 DynInstPtr store_inst = store_idx->instruction();
1007 if (store_idx == storeQueue.begin()) {
1008 do {
1009 storeQueue.front().clear();
1010 storeQueue.pop_front();
1011 --stores;
1012 } while (storeQueue.front().completed() &&
1013 !storeQueue.empty());
1014
1015 iewStage->updateLSQNextCycle = true;
1016 }
1017
1018 DPRINTF(LSQUnit, "Completing store [sn:%lli], idx:%i, store head "
1019 "idx:%i\n",
1020 store_inst->seqNum, store_idx.idx() - 1, storeQueue.head() - 1);
1021
1022 #if TRACING_ON
1023 if (DTRACE(O3PipeView)) {
1024 store_inst->storeTick =
1025 curTick() - store_inst->fetchTick;
1026 }
1027 #endif
1028
1029 if (isStalled() &&
1030 store_inst->seqNum == stallingStoreIsn) {
1031 DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
1032 "load idx:%i\n",
1033 stallingStoreIsn, stallingLoadIdx);
1034 stalled = false;
1035 stallingStoreIsn = 0;
1036 iewStage->replayMemInst(loadQueue[stallingLoadIdx].instruction());
1037 }
1038
1039 store_inst->setCompleted();
1040
1041 if (needsTSO) {
1042 storeInFlight = false;
1043 }
1044
1045 // Tell the checker we've completed this instruction. Some stores
1046 // may get reported twice to the checker, but the checker can
1047 // handle that case.
1048 // Store conditionals cannot be sent to the checker yet, they have
1049 // to update the misc registers first which should take place
1050 // when they commit
1051 if (cpu->checker && !store_inst->isStoreConditional()) {
1052 cpu->checker->verify(store_inst);
1053 }
1054 }
1055
1056 template <class Impl>
1057 bool
1058 LSQUnit<Impl>::trySendPacket(bool isLoad, PacketPtr data_pkt)
1059 {
1060 bool ret = true;
1061 bool cache_got_blocked = false;
1062
1063 auto state = dynamic_cast<LSQSenderState*>(data_pkt->senderState);
1064
1065 if (!lsq->cacheBlocked() &&
1066 lsq->cachePortAvailable(isLoad)) {
1067 if (!dcachePort->sendTimingReq(data_pkt)) {
1068 ret = false;
1069 cache_got_blocked = true;
1070 }
1071 } else {
1072 ret = false;
1073 }
1074
1075 if (ret) {
1076 if (!isLoad) {
1077 isStoreBlocked = false;
1078 }
1079 lsq->cachePortBusy(isLoad);
1080 state->outstanding++;
1081 state->request()->packetSent();
1082 } else {
1083 if (cache_got_blocked) {
1084 lsq->cacheBlocked(true);
1085 ++lsqCacheBlocked;
1086 }
1087 if (!isLoad) {
1088 assert(state->request() == storeWBIt->request());
1089 isStoreBlocked = true;
1090 }
1091 state->request()->packetNotSent();
1092 }
1093 return ret;
1094 }
1095
1096 template <class Impl>
1097 void
1098 LSQUnit<Impl>::recvRetry()
1099 {
1100 if (isStoreBlocked) {
1101 DPRINTF(LSQUnit, "Receiving retry: blocked store\n");
1102 writebackBlockedStore();
1103 }
1104 }
1105
1106 template <class Impl>
1107 void
1108 LSQUnit<Impl>::dumpInsts() const
1109 {
1110 cprintf("Load store queue: Dumping instructions.\n");
1111 cprintf("Load queue size: %i\n", loads);
1112 cprintf("Load queue: ");
1113
1114 for (const auto& e: loadQueue) {
1115 const DynInstPtr &inst(e.instruction());
1116 cprintf("%s.[sn:%llu] ", inst->pcState(), inst->seqNum);
1117 }
1118 cprintf("\n");
1119
1120 cprintf("Store queue size: %i\n", stores);
1121 cprintf("Store queue: ");
1122
1123 for (const auto& e: storeQueue) {
1124 const DynInstPtr &inst(e.instruction());
1125 cprintf("%s.[sn:%llu] ", inst->pcState(), inst->seqNum);
1126 }
1127
1128 cprintf("\n");
1129 }
1130
1131 template <class Impl>
1132 unsigned int
1133 LSQUnit<Impl>::cacheLineSize()
1134 {
1135 return cpu->cacheLineSize();
1136 }
1137
1138 #endif//__CPU_O3_LSQ_UNIT_IMPL_HH__