cpu: O3 add a header declaring the DerivO3CPU
[gem5.git] / src / cpu / o3 / rename_impl.hh
1 /*
2 * Copyright (c) 2010 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 * Korey Sewell
42 */
43
44 #include <list>
45
46 #include "arch/isa_traits.hh"
47 #include "arch/registers.hh"
48 #include "config/the_isa.hh"
49 #include "cpu/o3/rename.hh"
50 #include "debug/Activity.hh"
51 #include "debug/Rename.hh"
52 #include "params/DerivO3CPU.hh"
53
54 using namespace std;
55
56 template <class Impl>
57 DefaultRename<Impl>::DefaultRename(O3CPU *_cpu, DerivO3CPUParams *params)
58 : cpu(_cpu),
59 iewToRenameDelay(params->iewToRenameDelay),
60 decodeToRenameDelay(params->decodeToRenameDelay),
61 commitToRenameDelay(params->commitToRenameDelay),
62 renameWidth(params->renameWidth),
63 commitWidth(params->commitWidth),
64 resumeSerialize(false),
65 resumeUnblocking(false),
66 numThreads(params->numThreads),
67 maxPhysicalRegs(params->numPhysIntRegs + params->numPhysFloatRegs)
68 {
69 _status = Inactive;
70
71 for (ThreadID tid = 0; tid < numThreads; tid++) {
72 renameStatus[tid] = Idle;
73
74 freeEntries[tid].iqEntries = 0;
75 freeEntries[tid].lsqEntries = 0;
76 freeEntries[tid].robEntries = 0;
77
78 stalls[tid].iew = false;
79 stalls[tid].commit = false;
80 serializeInst[tid] = NULL;
81
82 instsInProgress[tid] = 0;
83
84 emptyROB[tid] = true;
85
86 serializeOnNextInst[tid] = false;
87 }
88
89 // @todo: Make into a parameter.
90 skidBufferMax = (2 * (decodeToRenameDelay * params->decodeWidth)) + renameWidth;
91 }
92
93 template <class Impl>
94 std::string
95 DefaultRename<Impl>::name() const
96 {
97 return cpu->name() + ".rename";
98 }
99
100 template <class Impl>
101 void
102 DefaultRename<Impl>::regStats()
103 {
104 renameSquashCycles
105 .name(name() + ".SquashCycles")
106 .desc("Number of cycles rename is squashing")
107 .prereq(renameSquashCycles);
108 renameIdleCycles
109 .name(name() + ".IdleCycles")
110 .desc("Number of cycles rename is idle")
111 .prereq(renameIdleCycles);
112 renameBlockCycles
113 .name(name() + ".BlockCycles")
114 .desc("Number of cycles rename is blocking")
115 .prereq(renameBlockCycles);
116 renameSerializeStallCycles
117 .name(name() + ".serializeStallCycles")
118 .desc("count of cycles rename stalled for serializing inst")
119 .flags(Stats::total);
120 renameRunCycles
121 .name(name() + ".RunCycles")
122 .desc("Number of cycles rename is running")
123 .prereq(renameIdleCycles);
124 renameUnblockCycles
125 .name(name() + ".UnblockCycles")
126 .desc("Number of cycles rename is unblocking")
127 .prereq(renameUnblockCycles);
128 renameRenamedInsts
129 .name(name() + ".RenamedInsts")
130 .desc("Number of instructions processed by rename")
131 .prereq(renameRenamedInsts);
132 renameSquashedInsts
133 .name(name() + ".SquashedInsts")
134 .desc("Number of squashed instructions processed by rename")
135 .prereq(renameSquashedInsts);
136 renameROBFullEvents
137 .name(name() + ".ROBFullEvents")
138 .desc("Number of times rename has blocked due to ROB full")
139 .prereq(renameROBFullEvents);
140 renameIQFullEvents
141 .name(name() + ".IQFullEvents")
142 .desc("Number of times rename has blocked due to IQ full")
143 .prereq(renameIQFullEvents);
144 renameLSQFullEvents
145 .name(name() + ".LSQFullEvents")
146 .desc("Number of times rename has blocked due to LSQ full")
147 .prereq(renameLSQFullEvents);
148 renameFullRegistersEvents
149 .name(name() + ".FullRegisterEvents")
150 .desc("Number of times there has been no free registers")
151 .prereq(renameFullRegistersEvents);
152 renameRenamedOperands
153 .name(name() + ".RenamedOperands")
154 .desc("Number of destination operands rename has renamed")
155 .prereq(renameRenamedOperands);
156 renameRenameLookups
157 .name(name() + ".RenameLookups")
158 .desc("Number of register rename lookups that rename has made")
159 .prereq(renameRenameLookups);
160 renameCommittedMaps
161 .name(name() + ".CommittedMaps")
162 .desc("Number of HB maps that are committed")
163 .prereq(renameCommittedMaps);
164 renameUndoneMaps
165 .name(name() + ".UndoneMaps")
166 .desc("Number of HB maps that are undone due to squashing")
167 .prereq(renameUndoneMaps);
168 renamedSerializing
169 .name(name() + ".serializingInsts")
170 .desc("count of serializing insts renamed")
171 .flags(Stats::total)
172 ;
173 renamedTempSerializing
174 .name(name() + ".tempSerializingInsts")
175 .desc("count of temporary serializing insts renamed")
176 .flags(Stats::total)
177 ;
178 renameSkidInsts
179 .name(name() + ".skidInsts")
180 .desc("count of insts added to the skid buffer")
181 .flags(Stats::total)
182 ;
183 intRenameLookups
184 .name(name() + ".int_rename_lookups")
185 .desc("Number of integer rename lookups")
186 .prereq(intRenameLookups);
187 fpRenameLookups
188 .name(name() + ".fp_rename_lookups")
189 .desc("Number of floating rename lookups")
190 .prereq(fpRenameLookups);
191 }
192
193 template <class Impl>
194 void
195 DefaultRename<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
196 {
197 timeBuffer = tb_ptr;
198
199 // Setup wire to read information from time buffer, from IEW stage.
200 fromIEW = timeBuffer->getWire(-iewToRenameDelay);
201
202 // Setup wire to read infromation from time buffer, from commit stage.
203 fromCommit = timeBuffer->getWire(-commitToRenameDelay);
204
205 // Setup wire to write information to previous stages.
206 toDecode = timeBuffer->getWire(0);
207 }
208
209 template <class Impl>
210 void
211 DefaultRename<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr)
212 {
213 renameQueue = rq_ptr;
214
215 // Setup wire to write information to future stages.
216 toIEW = renameQueue->getWire(0);
217 }
218
219 template <class Impl>
220 void
221 DefaultRename<Impl>::setDecodeQueue(TimeBuffer<DecodeStruct> *dq_ptr)
222 {
223 decodeQueue = dq_ptr;
224
225 // Setup wire to get information from decode.
226 fromDecode = decodeQueue->getWire(-decodeToRenameDelay);
227 }
228
229 template <class Impl>
230 void
231 DefaultRename<Impl>::initStage()
232 {
233 // Grab the number of free entries directly from the stages.
234 for (ThreadID tid = 0; tid < numThreads; tid++) {
235 freeEntries[tid].iqEntries = iew_ptr->instQueue.numFreeEntries(tid);
236 freeEntries[tid].lsqEntries = iew_ptr->ldstQueue.numFreeEntries(tid);
237 freeEntries[tid].robEntries = commit_ptr->numROBFreeEntries(tid);
238 emptyROB[tid] = true;
239 }
240 }
241
242 template<class Impl>
243 void
244 DefaultRename<Impl>::setActiveThreads(list<ThreadID> *at_ptr)
245 {
246 activeThreads = at_ptr;
247 }
248
249
250 template <class Impl>
251 void
252 DefaultRename<Impl>::setRenameMap(RenameMap rm_ptr[])
253 {
254 for (ThreadID tid = 0; tid < numThreads; tid++)
255 renameMap[tid] = &rm_ptr[tid];
256 }
257
258 template <class Impl>
259 void
260 DefaultRename<Impl>::setFreeList(FreeList *fl_ptr)
261 {
262 freeList = fl_ptr;
263 }
264
265 template<class Impl>
266 void
267 DefaultRename<Impl>::setScoreboard(Scoreboard *_scoreboard)
268 {
269 scoreboard = _scoreboard;
270 }
271
272 template <class Impl>
273 bool
274 DefaultRename<Impl>::drain()
275 {
276 // Rename is ready to switch out at any time.
277 cpu->signalDrained();
278 return true;
279 }
280
281 template <class Impl>
282 void
283 DefaultRename<Impl>::switchOut()
284 {
285 // Clear any state, fix up the rename map.
286 for (ThreadID tid = 0; tid < numThreads; tid++) {
287 typename std::list<RenameHistory>::iterator hb_it =
288 historyBuffer[tid].begin();
289
290 while (!historyBuffer[tid].empty()) {
291 assert(hb_it != historyBuffer[tid].end());
292
293 DPRINTF(Rename, "[tid:%u]: Removing history entry with sequence "
294 "number %i.\n", tid, (*hb_it).instSeqNum);
295
296 // Tell the rename map to set the architected register to the
297 // previous physical register that it was renamed to.
298 renameMap[tid]->setEntry(hb_it->archReg, hb_it->prevPhysReg);
299
300 // Put the renamed physical register back on the free list.
301 freeList->addReg(hb_it->newPhysReg);
302
303 // Be sure to mark its register as ready if it's a misc register.
304 if (hb_it->newPhysReg >= maxPhysicalRegs) {
305 scoreboard->setReg(hb_it->newPhysReg);
306 }
307
308 historyBuffer[tid].erase(hb_it++);
309 }
310 insts[tid].clear();
311 skidBuffer[tid].clear();
312 }
313 }
314
315 template <class Impl>
316 void
317 DefaultRename<Impl>::takeOverFrom()
318 {
319 _status = Inactive;
320 initStage();
321
322 // Reset all state prior to taking over from the other CPU.
323 for (ThreadID tid = 0; tid < numThreads; tid++) {
324 renameStatus[tid] = Idle;
325
326 stalls[tid].iew = false;
327 stalls[tid].commit = false;
328 serializeInst[tid] = NULL;
329
330 instsInProgress[tid] = 0;
331
332 emptyROB[tid] = true;
333
334 serializeOnNextInst[tid] = false;
335 }
336 }
337
338 template <class Impl>
339 void
340 DefaultRename<Impl>::squash(const InstSeqNum &squash_seq_num, ThreadID tid)
341 {
342 DPRINTF(Rename, "[tid:%u]: Squashing instructions.\n",tid);
343
344 // Clear the stall signal if rename was blocked or unblocking before.
345 // If it still needs to block, the blocking should happen the next
346 // cycle and there should be space to hold everything due to the squash.
347 if (renameStatus[tid] == Blocked ||
348 renameStatus[tid] == Unblocking) {
349 toDecode->renameUnblock[tid] = 1;
350
351 resumeSerialize = false;
352 serializeInst[tid] = NULL;
353 } else if (renameStatus[tid] == SerializeStall) {
354 if (serializeInst[tid]->seqNum <= squash_seq_num) {
355 DPRINTF(Rename, "Rename will resume serializing after squash\n");
356 resumeSerialize = true;
357 assert(serializeInst[tid]);
358 } else {
359 resumeSerialize = false;
360 toDecode->renameUnblock[tid] = 1;
361
362 serializeInst[tid] = NULL;
363 }
364 }
365
366 // Set the status to Squashing.
367 renameStatus[tid] = Squashing;
368
369 // Squash any instructions from decode.
370 unsigned squashCount = 0;
371
372 for (int i=0; i<fromDecode->size; i++) {
373 if (fromDecode->insts[i]->threadNumber == tid &&
374 fromDecode->insts[i]->seqNum > squash_seq_num) {
375 fromDecode->insts[i]->setSquashed();
376 wroteToTimeBuffer = true;
377 squashCount++;
378 }
379
380 }
381
382 // Clear the instruction list and skid buffer in case they have any
383 // insts in them.
384 insts[tid].clear();
385
386 // Clear the skid buffer in case it has any data in it.
387 skidBuffer[tid].clear();
388
389 doSquash(squash_seq_num, tid);
390 }
391
392 template <class Impl>
393 void
394 DefaultRename<Impl>::tick()
395 {
396 wroteToTimeBuffer = false;
397
398 blockThisCycle = false;
399
400 bool status_change = false;
401
402 toIEWIndex = 0;
403
404 sortInsts();
405
406 list<ThreadID>::iterator threads = activeThreads->begin();
407 list<ThreadID>::iterator end = activeThreads->end();
408
409 // Check stall and squash signals.
410 while (threads != end) {
411 ThreadID tid = *threads++;
412
413 DPRINTF(Rename, "Processing [tid:%i]\n", tid);
414
415 status_change = checkSignalsAndUpdate(tid) || status_change;
416
417 rename(status_change, tid);
418 }
419
420 if (status_change) {
421 updateStatus();
422 }
423
424 if (wroteToTimeBuffer) {
425 DPRINTF(Activity, "Activity this cycle.\n");
426 cpu->activityThisCycle();
427 }
428
429 threads = activeThreads->begin();
430
431 while (threads != end) {
432 ThreadID tid = *threads++;
433
434 // If we committed this cycle then doneSeqNum will be > 0
435 if (fromCommit->commitInfo[tid].doneSeqNum != 0 &&
436 !fromCommit->commitInfo[tid].squash &&
437 renameStatus[tid] != Squashing) {
438
439 removeFromHistory(fromCommit->commitInfo[tid].doneSeqNum,
440 tid);
441 }
442 }
443
444 // @todo: make into updateProgress function
445 for (ThreadID tid = 0; tid < numThreads; tid++) {
446 instsInProgress[tid] -= fromIEW->iewInfo[tid].dispatched;
447
448 assert(instsInProgress[tid] >=0);
449 }
450
451 }
452
453 template<class Impl>
454 void
455 DefaultRename<Impl>::rename(bool &status_change, ThreadID tid)
456 {
457 // If status is Running or idle,
458 // call renameInsts()
459 // If status is Unblocking,
460 // buffer any instructions coming from decode
461 // continue trying to empty skid buffer
462 // check if stall conditions have passed
463
464 if (renameStatus[tid] == Blocked) {
465 ++renameBlockCycles;
466 } else if (renameStatus[tid] == Squashing) {
467 ++renameSquashCycles;
468 } else if (renameStatus[tid] == SerializeStall) {
469 ++renameSerializeStallCycles;
470 // If we are currently in SerializeStall and resumeSerialize
471 // was set, then that means that we are resuming serializing
472 // this cycle. Tell the previous stages to block.
473 if (resumeSerialize) {
474 resumeSerialize = false;
475 block(tid);
476 toDecode->renameUnblock[tid] = false;
477 }
478 } else if (renameStatus[tid] == Unblocking) {
479 if (resumeUnblocking) {
480 block(tid);
481 resumeUnblocking = false;
482 toDecode->renameUnblock[tid] = false;
483 }
484 }
485
486 if (renameStatus[tid] == Running ||
487 renameStatus[tid] == Idle) {
488 DPRINTF(Rename, "[tid:%u]: Not blocked, so attempting to run "
489 "stage.\n", tid);
490
491 renameInsts(tid);
492 } else if (renameStatus[tid] == Unblocking) {
493 renameInsts(tid);
494
495 if (validInsts()) {
496 // Add the current inputs to the skid buffer so they can be
497 // reprocessed when this stage unblocks.
498 skidInsert(tid);
499 }
500
501 // If we switched over to blocking, then there's a potential for
502 // an overall status change.
503 status_change = unblock(tid) || status_change || blockThisCycle;
504 }
505 }
506
507 template <class Impl>
508 void
509 DefaultRename<Impl>::renameInsts(ThreadID tid)
510 {
511 // Instructions can be either in the skid buffer or the queue of
512 // instructions coming from decode, depending on the status.
513 int insts_available = renameStatus[tid] == Unblocking ?
514 skidBuffer[tid].size() : insts[tid].size();
515
516 // Check the decode queue to see if instructions are available.
517 // If there are no available instructions to rename, then do nothing.
518 if (insts_available == 0) {
519 DPRINTF(Rename, "[tid:%u]: Nothing to do, breaking out early.\n",
520 tid);
521 // Should I change status to idle?
522 ++renameIdleCycles;
523 return;
524 } else if (renameStatus[tid] == Unblocking) {
525 ++renameUnblockCycles;
526 } else if (renameStatus[tid] == Running) {
527 ++renameRunCycles;
528 }
529
530 DynInstPtr inst;
531
532 // Will have to do a different calculation for the number of free
533 // entries.
534 int free_rob_entries = calcFreeROBEntries(tid);
535 int free_iq_entries = calcFreeIQEntries(tid);
536 int free_lsq_entries = calcFreeLSQEntries(tid);
537 int min_free_entries = free_rob_entries;
538
539 FullSource source = ROB;
540
541 if (free_iq_entries < min_free_entries) {
542 min_free_entries = free_iq_entries;
543 source = IQ;
544 }
545
546 if (free_lsq_entries < min_free_entries) {
547 min_free_entries = free_lsq_entries;
548 source = LSQ;
549 }
550
551 // Check if there's any space left.
552 if (min_free_entries <= 0) {
553 DPRINTF(Rename, "[tid:%u]: Blocking due to no free ROB/IQ/LSQ "
554 "entries.\n"
555 "ROB has %i free entries.\n"
556 "IQ has %i free entries.\n"
557 "LSQ has %i free entries.\n",
558 tid,
559 free_rob_entries,
560 free_iq_entries,
561 free_lsq_entries);
562
563 blockThisCycle = true;
564
565 block(tid);
566
567 incrFullStat(source);
568
569 return;
570 } else if (min_free_entries < insts_available) {
571 DPRINTF(Rename, "[tid:%u]: Will have to block this cycle."
572 "%i insts available, but only %i insts can be "
573 "renamed due to ROB/IQ/LSQ limits.\n",
574 tid, insts_available, min_free_entries);
575
576 insts_available = min_free_entries;
577
578 blockThisCycle = true;
579
580 incrFullStat(source);
581 }
582
583 InstQueue &insts_to_rename = renameStatus[tid] == Unblocking ?
584 skidBuffer[tid] : insts[tid];
585
586 DPRINTF(Rename, "[tid:%u]: %i available instructions to "
587 "send iew.\n", tid, insts_available);
588
589 DPRINTF(Rename, "[tid:%u]: %i insts pipelining from Rename | %i insts "
590 "dispatched to IQ last cycle.\n",
591 tid, instsInProgress[tid], fromIEW->iewInfo[tid].dispatched);
592
593 // Handle serializing the next instruction if necessary.
594 if (serializeOnNextInst[tid]) {
595 if (emptyROB[tid] && instsInProgress[tid] == 0) {
596 // ROB already empty; no need to serialize.
597 serializeOnNextInst[tid] = false;
598 } else if (!insts_to_rename.empty()) {
599 insts_to_rename.front()->setSerializeBefore();
600 }
601 }
602
603 int renamed_insts = 0;
604
605 while (insts_available > 0 && toIEWIndex < renameWidth) {
606 DPRINTF(Rename, "[tid:%u]: Sending instructions to IEW.\n", tid);
607
608 assert(!insts_to_rename.empty());
609
610 inst = insts_to_rename.front();
611
612 insts_to_rename.pop_front();
613
614 if (renameStatus[tid] == Unblocking) {
615 DPRINTF(Rename,"[tid:%u]: Removing [sn:%lli] PC:%s from rename "
616 "skidBuffer\n", tid, inst->seqNum, inst->pcState());
617 }
618
619 if (inst->isSquashed()) {
620 DPRINTF(Rename, "[tid:%u]: instruction %i with PC %s is "
621 "squashed, skipping.\n", tid, inst->seqNum,
622 inst->pcState());
623
624 ++renameSquashedInsts;
625
626 // Decrement how many instructions are available.
627 --insts_available;
628
629 continue;
630 }
631
632 DPRINTF(Rename, "[tid:%u]: Processing instruction [sn:%lli] with "
633 "PC %s.\n", tid, inst->seqNum, inst->pcState());
634
635 // Handle serializeAfter/serializeBefore instructions.
636 // serializeAfter marks the next instruction as serializeBefore.
637 // serializeBefore makes the instruction wait in rename until the ROB
638 // is empty.
639
640 // In this model, IPR accesses are serialize before
641 // instructions, and store conditionals are serialize after
642 // instructions. This is mainly due to lack of support for
643 // out-of-order operations of either of those classes of
644 // instructions.
645 if ((inst->isIprAccess() || inst->isSerializeBefore()) &&
646 !inst->isSerializeHandled()) {
647 DPRINTF(Rename, "Serialize before instruction encountered.\n");
648
649 if (!inst->isTempSerializeBefore()) {
650 renamedSerializing++;
651 inst->setSerializeHandled();
652 } else {
653 renamedTempSerializing++;
654 }
655
656 // Change status over to SerializeStall so that other stages know
657 // what this is blocked on.
658 renameStatus[tid] = SerializeStall;
659
660 serializeInst[tid] = inst;
661
662 blockThisCycle = true;
663
664 break;
665 } else if ((inst->isStoreConditional() || inst->isSerializeAfter()) &&
666 !inst->isSerializeHandled()) {
667 DPRINTF(Rename, "Serialize after instruction encountered.\n");
668
669 renamedSerializing++;
670
671 inst->setSerializeHandled();
672
673 serializeAfter(insts_to_rename, tid);
674 }
675
676 // Check here to make sure there are enough destination registers
677 // to rename to. Otherwise block.
678 if (renameMap[tid]->numFreeEntries() < inst->numDestRegs()) {
679 DPRINTF(Rename, "Blocking due to lack of free "
680 "physical registers to rename to.\n");
681 blockThisCycle = true;
682 insts_to_rename.push_front(inst);
683 ++renameFullRegistersEvents;
684
685 break;
686 }
687
688 renameSrcRegs(inst, inst->threadNumber);
689
690 renameDestRegs(inst, inst->threadNumber);
691
692 ++renamed_insts;
693
694 #if TRACING_ON
695 inst->renameTick = curTick() - inst->fetchTick;
696 #endif
697
698 // Put instruction in rename queue.
699 toIEW->insts[toIEWIndex] = inst;
700 ++(toIEW->size);
701
702 // Increment which instruction we're on.
703 ++toIEWIndex;
704
705 // Decrement how many instructions are available.
706 --insts_available;
707 }
708
709 instsInProgress[tid] += renamed_insts;
710 renameRenamedInsts += renamed_insts;
711
712 // If we wrote to the time buffer, record this.
713 if (toIEWIndex) {
714 wroteToTimeBuffer = true;
715 }
716
717 // Check if there's any instructions left that haven't yet been renamed.
718 // If so then block.
719 if (insts_available) {
720 blockThisCycle = true;
721 }
722
723 if (blockThisCycle) {
724 block(tid);
725 toDecode->renameUnblock[tid] = false;
726 }
727 }
728
729 template<class Impl>
730 void
731 DefaultRename<Impl>::skidInsert(ThreadID tid)
732 {
733 DynInstPtr inst = NULL;
734
735 while (!insts[tid].empty()) {
736 inst = insts[tid].front();
737
738 insts[tid].pop_front();
739
740 assert(tid == inst->threadNumber);
741
742 DPRINTF(Rename, "[tid:%u]: Inserting [sn:%lli] PC: %s into Rename "
743 "skidBuffer\n", tid, inst->seqNum, inst->pcState());
744
745 ++renameSkidInsts;
746
747 skidBuffer[tid].push_back(inst);
748 }
749
750 if (skidBuffer[tid].size() > skidBufferMax)
751 {
752 typename InstQueue::iterator it;
753 warn("Skidbuffer contents:\n");
754 for(it = skidBuffer[tid].begin(); it != skidBuffer[tid].end(); it++)
755 {
756 warn("[tid:%u]: %s [sn:%i].\n", tid,
757 (*it)->staticInst->disassemble(inst->instAddr()),
758 (*it)->seqNum);
759 }
760 panic("Skidbuffer Exceeded Max Size");
761 }
762 }
763
764 template <class Impl>
765 void
766 DefaultRename<Impl>::sortInsts()
767 {
768 int insts_from_decode = fromDecode->size;
769 for (int i = 0; i < insts_from_decode; ++i) {
770 DynInstPtr inst = fromDecode->insts[i];
771 insts[inst->threadNumber].push_back(inst);
772 }
773 }
774
775 template<class Impl>
776 bool
777 DefaultRename<Impl>::skidsEmpty()
778 {
779 list<ThreadID>::iterator threads = activeThreads->begin();
780 list<ThreadID>::iterator end = activeThreads->end();
781
782 while (threads != end) {
783 ThreadID tid = *threads++;
784
785 if (!skidBuffer[tid].empty())
786 return false;
787 }
788
789 return true;
790 }
791
792 template<class Impl>
793 void
794 DefaultRename<Impl>::updateStatus()
795 {
796 bool any_unblocking = false;
797
798 list<ThreadID>::iterator threads = activeThreads->begin();
799 list<ThreadID>::iterator end = activeThreads->end();
800
801 while (threads != end) {
802 ThreadID tid = *threads++;
803
804 if (renameStatus[tid] == Unblocking) {
805 any_unblocking = true;
806 break;
807 }
808 }
809
810 // Rename will have activity if it's unblocking.
811 if (any_unblocking) {
812 if (_status == Inactive) {
813 _status = Active;
814
815 DPRINTF(Activity, "Activating stage.\n");
816
817 cpu->activateStage(O3CPU::RenameIdx);
818 }
819 } else {
820 // If it's not unblocking, then rename will not have any internal
821 // activity. Switch it to inactive.
822 if (_status == Active) {
823 _status = Inactive;
824 DPRINTF(Activity, "Deactivating stage.\n");
825
826 cpu->deactivateStage(O3CPU::RenameIdx);
827 }
828 }
829 }
830
831 template <class Impl>
832 bool
833 DefaultRename<Impl>::block(ThreadID tid)
834 {
835 DPRINTF(Rename, "[tid:%u]: Blocking.\n", tid);
836
837 // Add the current inputs onto the skid buffer, so they can be
838 // reprocessed when this stage unblocks.
839 skidInsert(tid);
840
841 // Only signal backwards to block if the previous stages do not think
842 // rename is already blocked.
843 if (renameStatus[tid] != Blocked) {
844 // If resumeUnblocking is set, we unblocked during the squash,
845 // but now we're have unblocking status. We need to tell earlier
846 // stages to block.
847 if (resumeUnblocking || renameStatus[tid] != Unblocking) {
848 toDecode->renameBlock[tid] = true;
849 toDecode->renameUnblock[tid] = false;
850 wroteToTimeBuffer = true;
851 }
852
853 // Rename can not go from SerializeStall to Blocked, otherwise
854 // it would not know to complete the serialize stall.
855 if (renameStatus[tid] != SerializeStall) {
856 // Set status to Blocked.
857 renameStatus[tid] = Blocked;
858 return true;
859 }
860 }
861
862 return false;
863 }
864
865 template <class Impl>
866 bool
867 DefaultRename<Impl>::unblock(ThreadID tid)
868 {
869 DPRINTF(Rename, "[tid:%u]: Trying to unblock.\n", tid);
870
871 // Rename is done unblocking if the skid buffer is empty.
872 if (skidBuffer[tid].empty() && renameStatus[tid] != SerializeStall) {
873
874 DPRINTF(Rename, "[tid:%u]: Done unblocking.\n", tid);
875
876 toDecode->renameUnblock[tid] = true;
877 wroteToTimeBuffer = true;
878
879 renameStatus[tid] = Running;
880 return true;
881 }
882
883 return false;
884 }
885
886 template <class Impl>
887 void
888 DefaultRename<Impl>::doSquash(const InstSeqNum &squashed_seq_num, ThreadID tid)
889 {
890 typename std::list<RenameHistory>::iterator hb_it =
891 historyBuffer[tid].begin();
892
893 // After a syscall squashes everything, the history buffer may be empty
894 // but the ROB may still be squashing instructions.
895 if (historyBuffer[tid].empty()) {
896 return;
897 }
898
899 // Go through the most recent instructions, undoing the mappings
900 // they did and freeing up the registers.
901 while (!historyBuffer[tid].empty() &&
902 (*hb_it).instSeqNum > squashed_seq_num) {
903 assert(hb_it != historyBuffer[tid].end());
904
905 DPRINTF(Rename, "[tid:%u]: Removing history entry with sequence "
906 "number %i.\n", tid, (*hb_it).instSeqNum);
907
908 // Tell the rename map to set the architected register to the
909 // previous physical register that it was renamed to.
910 renameMap[tid]->setEntry(hb_it->archReg, hb_it->prevPhysReg);
911
912 // Put the renamed physical register back on the free list.
913 freeList->addReg(hb_it->newPhysReg);
914
915 // Be sure to mark its register as ready if it's a misc register.
916 if (hb_it->newPhysReg >= maxPhysicalRegs) {
917 scoreboard->setReg(hb_it->newPhysReg);
918 }
919
920 historyBuffer[tid].erase(hb_it++);
921
922 ++renameUndoneMaps;
923 }
924 }
925
926 template<class Impl>
927 void
928 DefaultRename<Impl>::removeFromHistory(InstSeqNum inst_seq_num, ThreadID tid)
929 {
930 DPRINTF(Rename, "[tid:%u]: Removing a committed instruction from the "
931 "history buffer %u (size=%i), until [sn:%lli].\n",
932 tid, tid, historyBuffer[tid].size(), inst_seq_num);
933
934 typename std::list<RenameHistory>::iterator hb_it =
935 historyBuffer[tid].end();
936
937 --hb_it;
938
939 if (historyBuffer[tid].empty()) {
940 DPRINTF(Rename, "[tid:%u]: History buffer is empty.\n", tid);
941 return;
942 } else if (hb_it->instSeqNum > inst_seq_num) {
943 DPRINTF(Rename, "[tid:%u]: Old sequence number encountered. Ensure "
944 "that a syscall happened recently.\n", tid);
945 return;
946 }
947
948 // Commit all the renames up until (and including) the committed sequence
949 // number. Some or even all of the committed instructions may not have
950 // rename histories if they did not have destination registers that were
951 // renamed.
952 while (!historyBuffer[tid].empty() &&
953 hb_it != historyBuffer[tid].end() &&
954 (*hb_it).instSeqNum <= inst_seq_num) {
955
956 DPRINTF(Rename, "[tid:%u]: Freeing up older rename of reg %i, "
957 "[sn:%lli].\n",
958 tid, (*hb_it).prevPhysReg, (*hb_it).instSeqNum);
959
960 freeList->addReg((*hb_it).prevPhysReg);
961 ++renameCommittedMaps;
962
963 historyBuffer[tid].erase(hb_it--);
964 }
965 }
966
967 template <class Impl>
968 inline void
969 DefaultRename<Impl>::renameSrcRegs(DynInstPtr &inst, ThreadID tid)
970 {
971 assert(renameMap[tid] != 0);
972
973 unsigned num_src_regs = inst->numSrcRegs();
974
975 // Get the architectual register numbers from the source and
976 // destination operands, and redirect them to the right register.
977 // Will need to mark dependencies though.
978 for (int src_idx = 0; src_idx < num_src_regs; src_idx++) {
979 RegIndex src_reg = inst->srcRegIdx(src_idx);
980 RegIndex flat_src_reg = src_reg;
981 if (src_reg < TheISA::FP_Base_DepTag) {
982 flat_src_reg = inst->tcBase()->flattenIntIndex(src_reg);
983 DPRINTF(Rename, "Flattening index %d to %d.\n",
984 (int)src_reg, (int)flat_src_reg);
985 } else if (src_reg < TheISA::Ctrl_Base_DepTag) {
986 src_reg = src_reg - TheISA::FP_Base_DepTag;
987 flat_src_reg = inst->tcBase()->flattenFloatIndex(src_reg);
988 DPRINTF(Rename, "Flattening index %d to %d.\n",
989 (int)src_reg, (int)flat_src_reg);
990 flat_src_reg += TheISA::NumIntRegs;
991 } else if (src_reg < TheISA::Max_DepTag) {
992 flat_src_reg = src_reg - TheISA::Ctrl_Base_DepTag +
993 TheISA::NumFloatRegs + TheISA::NumIntRegs;
994 DPRINTF(Rename, "Adjusting reg index from %d to %d.\n",
995 src_reg, flat_src_reg);
996 } else {
997 panic("Reg index is out of bound: %d.", src_reg);
998 }
999
1000 // Look up the source registers to get the phys. register they've
1001 // been renamed to, and set the sources to those registers.
1002 PhysRegIndex renamed_reg = renameMap[tid]->lookup(flat_src_reg);
1003
1004 DPRINTF(Rename, "[tid:%u]: Looking up arch reg %i, got "
1005 "physical reg %i.\n", tid, (int)flat_src_reg,
1006 (int)renamed_reg);
1007
1008 inst->renameSrcReg(src_idx, renamed_reg);
1009
1010 // See if the register is ready or not.
1011 if (scoreboard->getReg(renamed_reg) == true) {
1012 DPRINTF(Rename, "[tid:%u]: Register %d is ready.\n",
1013 tid, renamed_reg);
1014
1015 inst->markSrcRegReady(src_idx);
1016 } else {
1017 DPRINTF(Rename, "[tid:%u]: Register %d is not ready.\n",
1018 tid, renamed_reg);
1019 }
1020
1021 ++renameRenameLookups;
1022 inst->isFloating() ? fpRenameLookups++ : intRenameLookups++;
1023 }
1024 }
1025
1026 template <class Impl>
1027 inline void
1028 DefaultRename<Impl>::renameDestRegs(DynInstPtr &inst, ThreadID tid)
1029 {
1030 typename RenameMap::RenameInfo rename_result;
1031
1032 unsigned num_dest_regs = inst->numDestRegs();
1033
1034 // Rename the destination registers.
1035 for (int dest_idx = 0; dest_idx < num_dest_regs; dest_idx++) {
1036 RegIndex dest_reg = inst->destRegIdx(dest_idx);
1037 RegIndex flat_dest_reg = dest_reg;
1038 if (dest_reg < TheISA::FP_Base_DepTag) {
1039 // Integer registers are flattened.
1040 flat_dest_reg = inst->tcBase()->flattenIntIndex(dest_reg);
1041 DPRINTF(Rename, "Flattening index %d to %d.\n",
1042 (int)dest_reg, (int)flat_dest_reg);
1043 } else if (dest_reg < TheISA::Ctrl_Base_DepTag) {
1044 dest_reg = dest_reg - TheISA::FP_Base_DepTag;
1045 flat_dest_reg = inst->tcBase()->flattenFloatIndex(dest_reg);
1046 DPRINTF(Rename, "Flattening index %d to %d.\n",
1047 (int)dest_reg, (int)flat_dest_reg);
1048 flat_dest_reg += TheISA::NumIntRegs;
1049 } else if (dest_reg < TheISA::Max_DepTag) {
1050 // Floating point and Miscellaneous registers need their indexes
1051 // adjusted to account for the expanded number of flattened int regs.
1052 flat_dest_reg = dest_reg - TheISA::Ctrl_Base_DepTag +
1053 TheISA::NumIntRegs + TheISA::NumFloatRegs;
1054 DPRINTF(Rename, "Adjusting reg index from %d to %d.\n",
1055 dest_reg, flat_dest_reg);
1056 } else {
1057 panic("Reg index is out of bound: %d.", dest_reg);
1058 }
1059
1060 inst->flattenDestReg(dest_idx, flat_dest_reg);
1061
1062 // Get the physical register that the destination will be
1063 // renamed to.
1064 rename_result = renameMap[tid]->rename(flat_dest_reg);
1065
1066 //Mark Scoreboard entry as not ready
1067 if (dest_reg < TheISA::Ctrl_Base_DepTag)
1068 scoreboard->unsetReg(rename_result.first);
1069
1070 DPRINTF(Rename, "[tid:%u]: Renaming arch reg %i to physical "
1071 "reg %i.\n", tid, (int)flat_dest_reg,
1072 (int)rename_result.first);
1073
1074 // Record the rename information so that a history can be kept.
1075 RenameHistory hb_entry(inst->seqNum, flat_dest_reg,
1076 rename_result.first,
1077 rename_result.second);
1078
1079 historyBuffer[tid].push_front(hb_entry);
1080
1081 DPRINTF(Rename, "[tid:%u]: Adding instruction to history buffer "
1082 "(size=%i), [sn:%lli].\n",tid,
1083 historyBuffer[tid].size(),
1084 (*historyBuffer[tid].begin()).instSeqNum);
1085
1086 // Tell the instruction to rename the appropriate destination
1087 // register (dest_idx) to the new physical register
1088 // (rename_result.first), and record the previous physical
1089 // register that the same logical register was renamed to
1090 // (rename_result.second).
1091 inst->renameDestReg(dest_idx,
1092 rename_result.first,
1093 rename_result.second);
1094
1095 ++renameRenamedOperands;
1096 }
1097 }
1098
1099 template <class Impl>
1100 inline int
1101 DefaultRename<Impl>::calcFreeROBEntries(ThreadID tid)
1102 {
1103 int num_free = freeEntries[tid].robEntries -
1104 (instsInProgress[tid] - fromIEW->iewInfo[tid].dispatched);
1105
1106 //DPRINTF(Rename,"[tid:%i]: %i rob free\n",tid,num_free);
1107
1108 return num_free;
1109 }
1110
1111 template <class Impl>
1112 inline int
1113 DefaultRename<Impl>::calcFreeIQEntries(ThreadID tid)
1114 {
1115 int num_free = freeEntries[tid].iqEntries -
1116 (instsInProgress[tid] - fromIEW->iewInfo[tid].dispatched);
1117
1118 //DPRINTF(Rename,"[tid:%i]: %i iq free\n",tid,num_free);
1119
1120 return num_free;
1121 }
1122
1123 template <class Impl>
1124 inline int
1125 DefaultRename<Impl>::calcFreeLSQEntries(ThreadID tid)
1126 {
1127 int num_free = freeEntries[tid].lsqEntries -
1128 (instsInProgress[tid] - fromIEW->iewInfo[tid].dispatchedToLSQ);
1129
1130 //DPRINTF(Rename,"[tid:%i]: %i lsq free\n",tid,num_free);
1131
1132 return num_free;
1133 }
1134
1135 template <class Impl>
1136 unsigned
1137 DefaultRename<Impl>::validInsts()
1138 {
1139 unsigned inst_count = 0;
1140
1141 for (int i=0; i<fromDecode->size; i++) {
1142 if (!fromDecode->insts[i]->isSquashed())
1143 inst_count++;
1144 }
1145
1146 return inst_count;
1147 }
1148
1149 template <class Impl>
1150 void
1151 DefaultRename<Impl>::readStallSignals(ThreadID tid)
1152 {
1153 if (fromIEW->iewBlock[tid]) {
1154 stalls[tid].iew = true;
1155 }
1156
1157 if (fromIEW->iewUnblock[tid]) {
1158 assert(stalls[tid].iew);
1159 stalls[tid].iew = false;
1160 }
1161
1162 if (fromCommit->commitBlock[tid]) {
1163 stalls[tid].commit = true;
1164 }
1165
1166 if (fromCommit->commitUnblock[tid]) {
1167 assert(stalls[tid].commit);
1168 stalls[tid].commit = false;
1169 }
1170 }
1171
1172 template <class Impl>
1173 bool
1174 DefaultRename<Impl>::checkStall(ThreadID tid)
1175 {
1176 bool ret_val = false;
1177
1178 if (stalls[tid].iew) {
1179 DPRINTF(Rename,"[tid:%i]: Stall from IEW stage detected.\n", tid);
1180 ret_val = true;
1181 } else if (stalls[tid].commit) {
1182 DPRINTF(Rename,"[tid:%i]: Stall from Commit stage detected.\n", tid);
1183 ret_val = true;
1184 } else if (calcFreeROBEntries(tid) <= 0) {
1185 DPRINTF(Rename,"[tid:%i]: Stall: ROB has 0 free entries.\n", tid);
1186 ret_val = true;
1187 } else if (calcFreeIQEntries(tid) <= 0) {
1188 DPRINTF(Rename,"[tid:%i]: Stall: IQ has 0 free entries.\n", tid);
1189 ret_val = true;
1190 } else if (calcFreeLSQEntries(tid) <= 0) {
1191 DPRINTF(Rename,"[tid:%i]: Stall: LSQ has 0 free entries.\n", tid);
1192 ret_val = true;
1193 } else if (renameMap[tid]->numFreeEntries() <= 0) {
1194 DPRINTF(Rename,"[tid:%i]: Stall: RenameMap has 0 free entries.\n", tid);
1195 ret_val = true;
1196 } else if (renameStatus[tid] == SerializeStall &&
1197 (!emptyROB[tid] || instsInProgress[tid])) {
1198 DPRINTF(Rename,"[tid:%i]: Stall: Serialize stall and ROB is not "
1199 "empty.\n",
1200 tid);
1201 ret_val = true;
1202 }
1203
1204 return ret_val;
1205 }
1206
1207 template <class Impl>
1208 void
1209 DefaultRename<Impl>::readFreeEntries(ThreadID tid)
1210 {
1211 if (fromIEW->iewInfo[tid].usedIQ)
1212 freeEntries[tid].iqEntries = fromIEW->iewInfo[tid].freeIQEntries;
1213
1214 if (fromIEW->iewInfo[tid].usedLSQ)
1215 freeEntries[tid].lsqEntries = fromIEW->iewInfo[tid].freeLSQEntries;
1216
1217 if (fromCommit->commitInfo[tid].usedROB) {
1218 freeEntries[tid].robEntries =
1219 fromCommit->commitInfo[tid].freeROBEntries;
1220 emptyROB[tid] = fromCommit->commitInfo[tid].emptyROB;
1221 }
1222
1223 DPRINTF(Rename, "[tid:%i]: Free IQ: %i, Free ROB: %i, Free LSQ: %i\n",
1224 tid,
1225 freeEntries[tid].iqEntries,
1226 freeEntries[tid].robEntries,
1227 freeEntries[tid].lsqEntries);
1228
1229 DPRINTF(Rename, "[tid:%i]: %i instructions not yet in ROB\n",
1230 tid, instsInProgress[tid]);
1231 }
1232
1233 template <class Impl>
1234 bool
1235 DefaultRename<Impl>::checkSignalsAndUpdate(ThreadID tid)
1236 {
1237 // Check if there's a squash signal, squash if there is
1238 // Check stall signals, block if necessary.
1239 // If status was blocked
1240 // check if stall conditions have passed
1241 // if so then go to unblocking
1242 // If status was Squashing
1243 // check if squashing is not high. Switch to running this cycle.
1244 // If status was serialize stall
1245 // check if ROB is empty and no insts are in flight to the ROB
1246
1247 readFreeEntries(tid);
1248 readStallSignals(tid);
1249
1250 if (fromCommit->commitInfo[tid].squash) {
1251 DPRINTF(Rename, "[tid:%u]: Squashing instructions due to squash from "
1252 "commit.\n", tid);
1253
1254 squash(fromCommit->commitInfo[tid].doneSeqNum, tid);
1255
1256 return true;
1257 }
1258
1259 if (fromCommit->commitInfo[tid].robSquashing) {
1260 DPRINTF(Rename, "[tid:%u]: ROB is still squashing.\n", tid);
1261
1262 renameStatus[tid] = Squashing;
1263
1264 return true;
1265 }
1266
1267 if (checkStall(tid)) {
1268 return block(tid);
1269 }
1270
1271 if (renameStatus[tid] == Blocked) {
1272 DPRINTF(Rename, "[tid:%u]: Done blocking, switching to unblocking.\n",
1273 tid);
1274
1275 renameStatus[tid] = Unblocking;
1276
1277 unblock(tid);
1278
1279 return true;
1280 }
1281
1282 if (renameStatus[tid] == Squashing) {
1283 // Switch status to running if rename isn't being told to block or
1284 // squash this cycle.
1285 if (resumeSerialize) {
1286 DPRINTF(Rename, "[tid:%u]: Done squashing, switching to serialize.\n",
1287 tid);
1288
1289 renameStatus[tid] = SerializeStall;
1290 return true;
1291 } else if (resumeUnblocking) {
1292 DPRINTF(Rename, "[tid:%u]: Done squashing, switching to unblocking.\n",
1293 tid);
1294 renameStatus[tid] = Unblocking;
1295 return true;
1296 } else {
1297 DPRINTF(Rename, "[tid:%u]: Done squashing, switching to running.\n",
1298 tid);
1299
1300 renameStatus[tid] = Running;
1301 return false;
1302 }
1303 }
1304
1305 if (renameStatus[tid] == SerializeStall) {
1306 // Stall ends once the ROB is free.
1307 DPRINTF(Rename, "[tid:%u]: Done with serialize stall, switching to "
1308 "unblocking.\n", tid);
1309
1310 DynInstPtr serial_inst = serializeInst[tid];
1311
1312 renameStatus[tid] = Unblocking;
1313
1314 unblock(tid);
1315
1316 DPRINTF(Rename, "[tid:%u]: Processing instruction [%lli] with "
1317 "PC %s.\n", tid, serial_inst->seqNum, serial_inst->pcState());
1318
1319 // Put instruction into queue here.
1320 serial_inst->clearSerializeBefore();
1321
1322 if (!skidBuffer[tid].empty()) {
1323 skidBuffer[tid].push_front(serial_inst);
1324 } else {
1325 insts[tid].push_front(serial_inst);
1326 }
1327
1328 DPRINTF(Rename, "[tid:%u]: Instruction must be processed by rename."
1329 " Adding to front of list.\n", tid);
1330
1331 serializeInst[tid] = NULL;
1332
1333 return true;
1334 }
1335
1336 // If we've reached this point, we have not gotten any signals that
1337 // cause rename to change its status. Rename remains the same as before.
1338 return false;
1339 }
1340
1341 template<class Impl>
1342 void
1343 DefaultRename<Impl>::serializeAfter(InstQueue &inst_list, ThreadID tid)
1344 {
1345 if (inst_list.empty()) {
1346 // Mark a bit to say that I must serialize on the next instruction.
1347 serializeOnNextInst[tid] = true;
1348 return;
1349 }
1350
1351 // Set the next instruction as serializing.
1352 inst_list.front()->setSerializeBefore();
1353 }
1354
1355 template <class Impl>
1356 inline void
1357 DefaultRename<Impl>::incrFullStat(const FullSource &source)
1358 {
1359 switch (source) {
1360 case ROB:
1361 ++renameROBFullEvents;
1362 break;
1363 case IQ:
1364 ++renameIQFullEvents;
1365 break;
1366 case LSQ:
1367 ++renameLSQFullEvents;
1368 break;
1369 default:
1370 panic("Rename full stall stat should be incremented for a reason!");
1371 break;
1372 }
1373 }
1374
1375 template <class Impl>
1376 void
1377 DefaultRename<Impl>::dumpHistory()
1378 {
1379 typename std::list<RenameHistory>::iterator buf_it;
1380
1381 for (ThreadID tid = 0; tid < numThreads; tid++) {
1382
1383 buf_it = historyBuffer[tid].begin();
1384
1385 while (buf_it != historyBuffer[tid].end()) {
1386 cprintf("Seq num: %i\nArch reg: %i New phys reg: %i Old phys "
1387 "reg: %i\n", (*buf_it).instSeqNum, (int)(*buf_it).archReg,
1388 (int)(*buf_it).newPhysReg, (int)(*buf_it).prevPhysReg);
1389
1390 buf_it++;
1391 }
1392 }
1393 }