cpu: Replace empty byteEnable check with Request::isMasked
[gem5.git] / src / cpu / simple / atomic.cc
1 /*
2 * Copyright 2014 Google, Inc.
3 * Copyright (c) 2012-2013,2015,2017-2019 ARM Limited
4 * All rights reserved.
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder. You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2002-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Steve Reinhardt
42 */
43
44 #include "cpu/simple/atomic.hh"
45
46 #include "arch/locked_mem.hh"
47 #include "arch/mmapped_ipr.hh"
48 #include "arch/utility.hh"
49 #include "base/output.hh"
50 #include "config/the_isa.hh"
51 #include "cpu/exetrace.hh"
52 #include "cpu/utils.hh"
53 #include "debug/Drain.hh"
54 #include "debug/ExecFaulting.hh"
55 #include "debug/SimpleCPU.hh"
56 #include "mem/packet.hh"
57 #include "mem/packet_access.hh"
58 #include "mem/physical.hh"
59 #include "params/AtomicSimpleCPU.hh"
60 #include "sim/faults.hh"
61 #include "sim/full_system.hh"
62 #include "sim/system.hh"
63
64 using namespace std;
65 using namespace TheISA;
66
67 void
68 AtomicSimpleCPU::init()
69 {
70 BaseSimpleCPU::init();
71
72 int cid = threadContexts[0]->contextId();
73 ifetch_req->setContext(cid);
74 data_read_req->setContext(cid);
75 data_write_req->setContext(cid);
76 data_amo_req->setContext(cid);
77 }
78
79 AtomicSimpleCPU::AtomicSimpleCPU(AtomicSimpleCPUParams *p)
80 : BaseSimpleCPU(p),
81 tickEvent([this]{ tick(); }, "AtomicSimpleCPU tick",
82 false, Event::CPU_Tick_Pri),
83 width(p->width), locked(false),
84 simulate_data_stalls(p->simulate_data_stalls),
85 simulate_inst_stalls(p->simulate_inst_stalls),
86 icachePort(name() + ".icache_port", this),
87 dcachePort(name() + ".dcache_port", this),
88 dcache_access(false), dcache_latency(0),
89 ppCommit(nullptr)
90 {
91 _status = Idle;
92 ifetch_req = std::make_shared<Request>();
93 data_read_req = std::make_shared<Request>();
94 data_write_req = std::make_shared<Request>();
95 data_amo_req = std::make_shared<Request>();
96 }
97
98
99 AtomicSimpleCPU::~AtomicSimpleCPU()
100 {
101 if (tickEvent.scheduled()) {
102 deschedule(tickEvent);
103 }
104 }
105
106 DrainState
107 AtomicSimpleCPU::drain()
108 {
109 // Deschedule any power gating event (if any)
110 deschedulePowerGatingEvent();
111
112 if (switchedOut())
113 return DrainState::Drained;
114
115 if (!isCpuDrained()) {
116 DPRINTF(Drain, "Requesting drain.\n");
117 return DrainState::Draining;
118 } else {
119 if (tickEvent.scheduled())
120 deschedule(tickEvent);
121
122 activeThreads.clear();
123 DPRINTF(Drain, "Not executing microcode, no need to drain.\n");
124 return DrainState::Drained;
125 }
126 }
127
128 void
129 AtomicSimpleCPU::threadSnoop(PacketPtr pkt, ThreadID sender)
130 {
131 DPRINTF(SimpleCPU, "received snoop pkt for addr:%#x %s\n", pkt->getAddr(),
132 pkt->cmdString());
133
134 for (ThreadID tid = 0; tid < numThreads; tid++) {
135 if (tid != sender) {
136 if (getCpuAddrMonitor(tid)->doMonitor(pkt)) {
137 wakeup(tid);
138 }
139
140 TheISA::handleLockedSnoop(threadInfo[tid]->thread,
141 pkt, dcachePort.cacheBlockMask);
142 }
143 }
144 }
145
146 void
147 AtomicSimpleCPU::drainResume()
148 {
149 assert(!tickEvent.scheduled());
150 if (switchedOut())
151 return;
152
153 DPRINTF(SimpleCPU, "Resume\n");
154 verifyMemoryMode();
155
156 assert(!threadContexts.empty());
157
158 _status = BaseSimpleCPU::Idle;
159
160 for (ThreadID tid = 0; tid < numThreads; tid++) {
161 if (threadInfo[tid]->thread->status() == ThreadContext::Active) {
162 threadInfo[tid]->notIdleFraction = 1;
163 activeThreads.push_back(tid);
164 _status = BaseSimpleCPU::Running;
165
166 // Tick if any threads active
167 if (!tickEvent.scheduled()) {
168 schedule(tickEvent, nextCycle());
169 }
170 } else {
171 threadInfo[tid]->notIdleFraction = 0;
172 }
173 }
174
175 // Reschedule any power gating event (if any)
176 schedulePowerGatingEvent();
177 }
178
179 bool
180 AtomicSimpleCPU::tryCompleteDrain()
181 {
182 if (drainState() != DrainState::Draining)
183 return false;
184
185 DPRINTF(Drain, "tryCompleteDrain.\n");
186 if (!isCpuDrained())
187 return false;
188
189 DPRINTF(Drain, "CPU done draining, processing drain event\n");
190 signalDrainDone();
191
192 return true;
193 }
194
195
196 void
197 AtomicSimpleCPU::switchOut()
198 {
199 BaseSimpleCPU::switchOut();
200
201 assert(!tickEvent.scheduled());
202 assert(_status == BaseSimpleCPU::Running || _status == Idle);
203 assert(isCpuDrained());
204 }
205
206
207 void
208 AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
209 {
210 BaseSimpleCPU::takeOverFrom(oldCPU);
211
212 // The tick event should have been descheduled by drain()
213 assert(!tickEvent.scheduled());
214 }
215
216 void
217 AtomicSimpleCPU::verifyMemoryMode() const
218 {
219 if (!system->isAtomicMode()) {
220 fatal("The atomic CPU requires the memory system to be in "
221 "'atomic' mode.\n");
222 }
223 }
224
225 void
226 AtomicSimpleCPU::activateContext(ThreadID thread_num)
227 {
228 DPRINTF(SimpleCPU, "ActivateContext %d\n", thread_num);
229
230 assert(thread_num < numThreads);
231
232 threadInfo[thread_num]->notIdleFraction = 1;
233 Cycles delta = ticksToCycles(threadInfo[thread_num]->thread->lastActivate -
234 threadInfo[thread_num]->thread->lastSuspend);
235 numCycles += delta;
236
237 if (!tickEvent.scheduled()) {
238 //Make sure ticks are still on multiples of cycles
239 schedule(tickEvent, clockEdge(Cycles(0)));
240 }
241 _status = BaseSimpleCPU::Running;
242 if (std::find(activeThreads.begin(), activeThreads.end(), thread_num)
243 == activeThreads.end()) {
244 activeThreads.push_back(thread_num);
245 }
246
247 BaseCPU::activateContext(thread_num);
248 }
249
250
251 void
252 AtomicSimpleCPU::suspendContext(ThreadID thread_num)
253 {
254 DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
255
256 assert(thread_num < numThreads);
257 activeThreads.remove(thread_num);
258
259 if (_status == Idle)
260 return;
261
262 assert(_status == BaseSimpleCPU::Running);
263
264 threadInfo[thread_num]->notIdleFraction = 0;
265
266 if (activeThreads.empty()) {
267 _status = Idle;
268
269 if (tickEvent.scheduled()) {
270 deschedule(tickEvent);
271 }
272 }
273
274 BaseCPU::suspendContext(thread_num);
275 }
276
277 Tick
278 AtomicSimpleCPU::sendPacket(MasterPort &port, const PacketPtr &pkt)
279 {
280 return port.sendAtomic(pkt);
281 }
282
283 Tick
284 AtomicSimpleCPU::AtomicCPUDPort::recvAtomicSnoop(PacketPtr pkt)
285 {
286 DPRINTF(SimpleCPU, "received snoop pkt for addr:%#x %s\n", pkt->getAddr(),
287 pkt->cmdString());
288
289 // X86 ISA: Snooping an invalidation for monitor/mwait
290 AtomicSimpleCPU *cpu = (AtomicSimpleCPU *)(&owner);
291
292 for (ThreadID tid = 0; tid < cpu->numThreads; tid++) {
293 if (cpu->getCpuAddrMonitor(tid)->doMonitor(pkt)) {
294 cpu->wakeup(tid);
295 }
296 }
297
298 // if snoop invalidates, release any associated locks
299 // When run without caches, Invalidation packets will not be received
300 // hence we must check if the incoming packets are writes and wakeup
301 // the processor accordingly
302 if (pkt->isInvalidate() || pkt->isWrite()) {
303 DPRINTF(SimpleCPU, "received invalidation for addr:%#x\n",
304 pkt->getAddr());
305 for (auto &t_info : cpu->threadInfo) {
306 TheISA::handleLockedSnoop(t_info->thread, pkt, cacheBlockMask);
307 }
308 }
309
310 return 0;
311 }
312
313 void
314 AtomicSimpleCPU::AtomicCPUDPort::recvFunctionalSnoop(PacketPtr pkt)
315 {
316 DPRINTF(SimpleCPU, "received snoop pkt for addr:%#x %s\n", pkt->getAddr(),
317 pkt->cmdString());
318
319 // X86 ISA: Snooping an invalidation for monitor/mwait
320 AtomicSimpleCPU *cpu = (AtomicSimpleCPU *)(&owner);
321 for (ThreadID tid = 0; tid < cpu->numThreads; tid++) {
322 if (cpu->getCpuAddrMonitor(tid)->doMonitor(pkt)) {
323 cpu->wakeup(tid);
324 }
325 }
326
327 // if snoop invalidates, release any associated locks
328 if (pkt->isInvalidate()) {
329 DPRINTF(SimpleCPU, "received invalidation for addr:%#x\n",
330 pkt->getAddr());
331 for (auto &t_info : cpu->threadInfo) {
332 TheISA::handleLockedSnoop(t_info->thread, pkt, cacheBlockMask);
333 }
334 }
335 }
336
337 bool
338 AtomicSimpleCPU::genMemFragmentRequest(const RequestPtr& req, Addr frag_addr,
339 int size, Request::Flags flags,
340 const std::vector<bool>& byte_enable,
341 int& frag_size, int& size_left) const
342 {
343 bool predicate = true;
344 Addr inst_addr = threadInfo[curThread]->thread->pcState().instAddr();
345
346 frag_size = std::min(
347 cacheLineSize() - addrBlockOffset(frag_addr, cacheLineSize()),
348 (Addr) size_left);
349 size_left -= frag_size;
350
351 if (!byte_enable.empty()) {
352 // Set up byte-enable mask for the current fragment
353 auto it_start = byte_enable.begin() + (size - (frag_size + size_left));
354 auto it_end = byte_enable.begin() + (size - size_left);
355 if (isAnyActiveElement(it_start, it_end)) {
356 req->setVirt(0, frag_addr, frag_size, flags, dataMasterId(),
357 inst_addr);
358 req->setByteEnable(std::vector<bool>(it_start, it_end));
359 } else {
360 predicate = false;
361 }
362 } else {
363 req->setVirt(0, frag_addr, frag_size, flags, dataMasterId(),
364 inst_addr);
365 req->setByteEnable(std::vector<bool>());
366 }
367
368 return predicate;
369 }
370
371 Fault
372 AtomicSimpleCPU::readMem(Addr addr, uint8_t * data, unsigned size,
373 Request::Flags flags,
374 const std::vector<bool>& byte_enable)
375 {
376 SimpleExecContext& t_info = *threadInfo[curThread];
377 SimpleThread* thread = t_info.thread;
378
379 // use the CPU's statically allocated read request and packet objects
380 const RequestPtr &req = data_read_req;
381
382 if (traceData)
383 traceData->setMem(addr, size, flags);
384
385 dcache_latency = 0;
386
387 req->taskId(taskId());
388
389 Addr frag_addr = addr;
390 int frag_size = 0;
391 int size_left = size;
392 bool predicate;
393 Fault fault = NoFault;
394
395 while (1) {
396 predicate = genMemFragmentRequest(req, frag_addr, size, flags,
397 byte_enable, frag_size, size_left);
398
399 // translate to physical address
400 if (predicate) {
401 fault = thread->dtb->translateAtomic(req, thread->getTC(),
402 BaseTLB::Read);
403 }
404
405 // Now do the access.
406 if (predicate && fault == NoFault &&
407 !req->getFlags().isSet(Request::NO_ACCESS)) {
408 Packet pkt(req, Packet::makeReadCmd(req));
409 pkt.dataStatic(data);
410
411 if (req->isMmappedIpr()) {
412 dcache_latency += TheISA::handleIprRead(thread->getTC(), &pkt);
413 } else {
414 dcache_latency += sendPacket(dcachePort, &pkt);
415 }
416 dcache_access = true;
417
418 assert(!pkt.isError());
419
420 if (req->isLLSC()) {
421 TheISA::handleLockedRead(thread, req);
422 }
423 }
424
425 //If there's a fault, return it
426 if (fault != NoFault) {
427 if (req->isPrefetch()) {
428 return NoFault;
429 } else {
430 return fault;
431 }
432 }
433
434 // If we don't need to access further cache lines, stop now.
435 if (size_left == 0) {
436 if (req->isLockedRMW() && fault == NoFault) {
437 assert(!locked);
438 locked = true;
439 }
440 return fault;
441 }
442
443 /*
444 * Set up for accessing the next cache line.
445 */
446 frag_addr += frag_size;
447
448 //Move the pointer we're reading into to the correct location.
449 data += frag_size;
450 }
451 }
452
453 Fault
454 AtomicSimpleCPU::writeMem(uint8_t *data, unsigned size, Addr addr,
455 Request::Flags flags, uint64_t *res,
456 const std::vector<bool>& byte_enable)
457 {
458 SimpleExecContext& t_info = *threadInfo[curThread];
459 SimpleThread* thread = t_info.thread;
460 static uint8_t zero_array[64] = {};
461
462 if (data == NULL) {
463 assert(size <= 64);
464 assert(flags & Request::STORE_NO_DATA);
465 // This must be a cache block cleaning request
466 data = zero_array;
467 }
468
469 // use the CPU's statically allocated write request and packet objects
470 const RequestPtr &req = data_write_req;
471
472 if (traceData)
473 traceData->setMem(addr, size, flags);
474
475 dcache_latency = 0;
476
477 req->taskId(taskId());
478
479 Addr frag_addr = addr;
480 int frag_size = 0;
481 int size_left = size;
482 int curr_frag_id = 0;
483 bool predicate;
484 Fault fault = NoFault;
485
486 while (1) {
487 predicate = genMemFragmentRequest(req, frag_addr, size, flags,
488 byte_enable, frag_size, size_left);
489
490 // translate to physical address
491 if (predicate)
492 fault = thread->dtb->translateAtomic(req, thread->getTC(),
493 BaseTLB::Write);
494
495 // Now do the access.
496 if (predicate && fault == NoFault) {
497 bool do_access = true; // flag to suppress cache access
498
499 if (req->isLLSC()) {
500 assert(curr_frag_id == 0);
501 do_access =
502 TheISA::handleLockedWrite(thread, req,
503 dcachePort.cacheBlockMask);
504 } else if (req->isSwap()) {
505 assert(curr_frag_id == 0);
506 if (req->isCondSwap()) {
507 assert(res);
508 req->setExtraData(*res);
509 }
510 }
511
512 if (do_access && !req->getFlags().isSet(Request::NO_ACCESS)) {
513 Packet pkt(req, Packet::makeWriteCmd(req));
514 pkt.dataStatic(data);
515
516 if (req->isMmappedIpr()) {
517 dcache_latency +=
518 TheISA::handleIprWrite(thread->getTC(), &pkt);
519 } else {
520 dcache_latency += sendPacket(dcachePort, &pkt);
521
522 // Notify other threads on this CPU of write
523 threadSnoop(&pkt, curThread);
524 }
525 dcache_access = true;
526 assert(!pkt.isError());
527
528 if (req->isSwap()) {
529 assert(res && curr_frag_id == 0);
530 memcpy(res, pkt.getConstPtr<uint8_t>(), size);
531 }
532 }
533
534 if (res && !req->isSwap()) {
535 *res = req->getExtraData();
536 }
537 }
538
539 //If there's a fault or we don't need to access a second cache line,
540 //stop now.
541 if (fault != NoFault || size_left == 0)
542 {
543 if (req->isLockedRMW() && fault == NoFault) {
544 assert(!req->isMasked());
545 locked = false;
546 }
547
548 if (fault != NoFault && req->isPrefetch()) {
549 return NoFault;
550 } else {
551 return fault;
552 }
553 }
554
555 /*
556 * Set up for accessing the next cache line.
557 */
558 frag_addr += frag_size;
559
560 //Move the pointer we're reading into to the correct location.
561 data += frag_size;
562
563 curr_frag_id++;
564 }
565 }
566
567 Fault
568 AtomicSimpleCPU::amoMem(Addr addr, uint8_t* data, unsigned size,
569 Request::Flags flags, AtomicOpFunctorPtr amo_op)
570 {
571 SimpleExecContext& t_info = *threadInfo[curThread];
572 SimpleThread* thread = t_info.thread;
573
574 // use the CPU's statically allocated amo request and packet objects
575 const RequestPtr &req = data_amo_req;
576
577 if (traceData)
578 traceData->setMem(addr, size, flags);
579
580 //The address of the second part of this access if it needs to be split
581 //across a cache line boundary.
582 Addr secondAddr = roundDown(addr + size - 1, cacheLineSize());
583
584 // AMO requests that access across a cache line boundary are not
585 // allowed since the cache does not guarantee AMO ops to be executed
586 // atomically in two cache lines
587 // For ISAs such as x86 that requires AMO operations to work on
588 // accesses that cross cache-line boundaries, the cache needs to be
589 // modified to support locking both cache lines to guarantee the
590 // atomicity.
591 if (secondAddr > addr) {
592 panic("AMO request should not access across a cache line boundary\n");
593 }
594
595 dcache_latency = 0;
596
597 req->taskId(taskId());
598 req->setVirt(0, addr, size, flags, dataMasterId(),
599 thread->pcState().instAddr(), std::move(amo_op));
600
601 // translate to physical address
602 Fault fault = thread->dtb->translateAtomic(req, thread->getTC(),
603 BaseTLB::Write);
604
605 // Now do the access.
606 if (fault == NoFault && !req->getFlags().isSet(Request::NO_ACCESS)) {
607 // We treat AMO accesses as Write accesses with SwapReq command
608 // data will hold the return data of the AMO access
609 Packet pkt(req, Packet::makeWriteCmd(req));
610 pkt.dataStatic(data);
611
612 if (req->isMmappedIpr())
613 dcache_latency += TheISA::handleIprRead(thread->getTC(), &pkt);
614 else {
615 dcache_latency += sendPacket(dcachePort, &pkt);
616 }
617
618 dcache_access = true;
619
620 assert(!pkt.isError());
621 assert(!req->isLLSC());
622 }
623
624 if (fault != NoFault && req->isPrefetch()) {
625 return NoFault;
626 }
627
628 //If there's a fault and we're not doing prefetch, return it
629 return fault;
630 }
631
632 void
633 AtomicSimpleCPU::tick()
634 {
635 DPRINTF(SimpleCPU, "Tick\n");
636
637 // Change thread if multi-threaded
638 swapActiveThread();
639
640 // Set memroy request ids to current thread
641 if (numThreads > 1) {
642 ContextID cid = threadContexts[curThread]->contextId();
643
644 ifetch_req->setContext(cid);
645 data_read_req->setContext(cid);
646 data_write_req->setContext(cid);
647 data_amo_req->setContext(cid);
648 }
649
650 SimpleExecContext& t_info = *threadInfo[curThread];
651 SimpleThread* thread = t_info.thread;
652
653 Tick latency = 0;
654
655 for (int i = 0; i < width || locked; ++i) {
656 numCycles++;
657 updateCycleCounters(BaseCPU::CPU_STATE_ON);
658
659 if (!curStaticInst || !curStaticInst->isDelayedCommit()) {
660 checkForInterrupts();
661 checkPcEventQueue();
662 }
663
664 // We must have just got suspended by a PC event
665 if (_status == Idle) {
666 tryCompleteDrain();
667 return;
668 }
669
670 Fault fault = NoFault;
671
672 TheISA::PCState pcState = thread->pcState();
673
674 bool needToFetch = !isRomMicroPC(pcState.microPC()) &&
675 !curMacroStaticInst;
676 if (needToFetch) {
677 ifetch_req->taskId(taskId());
678 setupFetchRequest(ifetch_req);
679 fault = thread->itb->translateAtomic(ifetch_req, thread->getTC(),
680 BaseTLB::Execute);
681 }
682
683 if (fault == NoFault) {
684 Tick icache_latency = 0;
685 bool icache_access = false;
686 dcache_access = false; // assume no dcache access
687
688 if (needToFetch) {
689 // This is commented out because the decoder would act like
690 // a tiny cache otherwise. It wouldn't be flushed when needed
691 // like the I cache. It should be flushed, and when that works
692 // this code should be uncommented.
693 //Fetch more instruction memory if necessary
694 //if (decoder.needMoreBytes())
695 //{
696 icache_access = true;
697 Packet ifetch_pkt = Packet(ifetch_req, MemCmd::ReadReq);
698 ifetch_pkt.dataStatic(&inst);
699
700 icache_latency = sendPacket(icachePort, &ifetch_pkt);
701
702 assert(!ifetch_pkt.isError());
703
704 // ifetch_req is initialized to read the instruction directly
705 // into the CPU object's inst field.
706 //}
707 }
708
709 preExecute();
710
711 Tick stall_ticks = 0;
712 if (curStaticInst) {
713 fault = curStaticInst->execute(&t_info, traceData);
714
715 // keep an instruction count
716 if (fault == NoFault) {
717 countInst();
718 ppCommit->notify(std::make_pair(thread, curStaticInst));
719 }
720 else if (traceData && !DTRACE(ExecFaulting)) {
721 delete traceData;
722 traceData = NULL;
723 }
724
725 if (fault != NoFault &&
726 dynamic_pointer_cast<SyscallRetryFault>(fault)) {
727 // Retry execution of system calls after a delay.
728 // Prevents immediate re-execution since conditions which
729 // caused the retry are unlikely to change every tick.
730 stall_ticks += clockEdge(syscallRetryLatency) - curTick();
731 }
732
733 postExecute();
734 }
735
736 // @todo remove me after debugging with legion done
737 if (curStaticInst && (!curStaticInst->isMicroop() ||
738 curStaticInst->isFirstMicroop()))
739 instCnt++;
740
741 if (simulate_inst_stalls && icache_access)
742 stall_ticks += icache_latency;
743
744 if (simulate_data_stalls && dcache_access)
745 stall_ticks += dcache_latency;
746
747 if (stall_ticks) {
748 // the atomic cpu does its accounting in ticks, so
749 // keep counting in ticks but round to the clock
750 // period
751 latency += divCeil(stall_ticks, clockPeriod()) *
752 clockPeriod();
753 }
754
755 }
756 if (fault != NoFault || !t_info.stayAtPC)
757 advancePC(fault);
758 }
759
760 if (tryCompleteDrain())
761 return;
762
763 // instruction takes at least one cycle
764 if (latency < clockPeriod())
765 latency = clockPeriod();
766
767 if (_status != Idle)
768 reschedule(tickEvent, curTick() + latency, true);
769 }
770
771 void
772 AtomicSimpleCPU::regProbePoints()
773 {
774 BaseCPU::regProbePoints();
775
776 ppCommit = new ProbePointArg<pair<SimpleThread*, const StaticInstPtr>>
777 (getProbeManager(), "Commit");
778 }
779
780 void
781 AtomicSimpleCPU::printAddr(Addr a)
782 {
783 dcachePort.printAddr(a);
784 }
785
786 ////////////////////////////////////////////////////////////////////////
787 //
788 // AtomicSimpleCPU Simulation Object
789 //
790 AtomicSimpleCPU *
791 AtomicSimpleCPUParams::create()
792 {
793 return new AtomicSimpleCPU(this);
794 }