42b0e9783d00c5606faa347ec14ba507cdf75a95
[gem5.git] / src / cpu / simple / atomic.cc
1 /*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31 #include "arch/locked_mem.hh"
32 #include "arch/utility.hh"
33 #include "cpu/exetrace.hh"
34 #include "cpu/simple/atomic.hh"
35 #include "mem/packet_impl.hh"
36 #include "sim/builder.hh"
37 #include "sim/system.hh"
38
39 using namespace std;
40 using namespace TheISA;
41
42 AtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c)
43 : Event(&mainEventQueue, CPU_Tick_Pri), cpu(c)
44 {
45 }
46
47
48 void
49 AtomicSimpleCPU::TickEvent::process()
50 {
51 cpu->tick();
52 }
53
54 const char *
55 AtomicSimpleCPU::TickEvent::description()
56 {
57 return "AtomicSimpleCPU tick event";
58 }
59
60 Port *
61 AtomicSimpleCPU::getPort(const std::string &if_name, int idx)
62 {
63 if (if_name == "dcache_port")
64 return &dcachePort;
65 else if (if_name == "icache_port")
66 return &icachePort;
67 else
68 panic("No Such Port\n");
69 }
70
71 void
72 AtomicSimpleCPU::init()
73 {
74 //Create Memory Ports (conect them up)
75 // Port *mem_dport = mem->getPort("");
76 // dcachePort.setPeer(mem_dport);
77 // mem_dport->setPeer(&dcachePort);
78
79 // Port *mem_iport = mem->getPort("");
80 // icachePort.setPeer(mem_iport);
81 // mem_iport->setPeer(&icachePort);
82
83 BaseCPU::init();
84 #if FULL_SYSTEM
85 for (int i = 0; i < threadContexts.size(); ++i) {
86 ThreadContext *tc = threadContexts[i];
87
88 // initialize CPU, including PC
89 TheISA::initCPU(tc, tc->readCpuId());
90 }
91 #endif
92 }
93
94 bool
95 AtomicSimpleCPU::CpuPort::recvTiming(Packet *pkt)
96 {
97 panic("AtomicSimpleCPU doesn't expect recvAtomic callback!");
98 return true;
99 }
100
101 Tick
102 AtomicSimpleCPU::CpuPort::recvAtomic(Packet *pkt)
103 {
104 panic("AtomicSimpleCPU doesn't expect recvAtomic callback!");
105 return curTick;
106 }
107
108 void
109 AtomicSimpleCPU::CpuPort::recvFunctional(Packet *pkt)
110 {
111 panic("AtomicSimpleCPU doesn't expect recvFunctional callback!");
112 }
113
114 void
115 AtomicSimpleCPU::CpuPort::recvStatusChange(Status status)
116 {
117 if (status == RangeChange)
118 return;
119
120 panic("AtomicSimpleCPU doesn't expect recvStatusChange callback!");
121 }
122
123 void
124 AtomicSimpleCPU::CpuPort::recvRetry()
125 {
126 panic("AtomicSimpleCPU doesn't expect recvRetry callback!");
127 }
128
129
130 AtomicSimpleCPU::AtomicSimpleCPU(Params *p)
131 : BaseSimpleCPU(p), tickEvent(this),
132 width(p->width), simulate_stalls(p->simulate_stalls),
133 icachePort(name() + "-iport", this), dcachePort(name() + "-iport", this)
134 {
135 _status = Idle;
136
137 ifetch_req = new Request();
138 ifetch_req->setThreadContext(p->cpu_id, 0); // Add thread ID if we add MT
139 ifetch_pkt = new Packet(ifetch_req, Packet::ReadReq, Packet::Broadcast);
140 ifetch_pkt->dataStatic(&inst);
141
142 data_read_req = new Request();
143 data_read_req->setThreadContext(p->cpu_id, 0); // Add thread ID here too
144 data_read_pkt = new Packet(data_read_req, Packet::ReadReq,
145 Packet::Broadcast);
146 data_read_pkt->dataStatic(&dataReg);
147
148 data_write_req = new Request();
149 data_write_req->setThreadContext(p->cpu_id, 0); // Add thread ID here too
150 data_write_pkt = new Packet(data_write_req, Packet::WriteReq,
151 Packet::Broadcast);
152 }
153
154
155 AtomicSimpleCPU::~AtomicSimpleCPU()
156 {
157 }
158
159 void
160 AtomicSimpleCPU::serialize(ostream &os)
161 {
162 SimObject::State so_state = SimObject::getState();
163 SERIALIZE_ENUM(so_state);
164 BaseSimpleCPU::serialize(os);
165 nameOut(os, csprintf("%s.tickEvent", name()));
166 tickEvent.serialize(os);
167 }
168
169 void
170 AtomicSimpleCPU::unserialize(Checkpoint *cp, const string &section)
171 {
172 SimObject::State so_state;
173 UNSERIALIZE_ENUM(so_state);
174 BaseSimpleCPU::unserialize(cp, section);
175 tickEvent.unserialize(cp, csprintf("%s.tickEvent", section));
176 }
177
178 void
179 AtomicSimpleCPU::resume()
180 {
181 assert(system->getMemoryMode() == System::Atomic);
182 changeState(SimObject::Running);
183 if (thread->status() == ThreadContext::Active) {
184 if (!tickEvent.scheduled())
185 tickEvent.schedule(curTick);
186 }
187 }
188
189 void
190 AtomicSimpleCPU::switchOut()
191 {
192 assert(status() == Running || status() == Idle);
193 _status = SwitchedOut;
194
195 tickEvent.squash();
196 }
197
198
199 void
200 AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
201 {
202 BaseCPU::takeOverFrom(oldCPU);
203
204 assert(!tickEvent.scheduled());
205
206 // if any of this CPU's ThreadContexts are active, mark the CPU as
207 // running and schedule its tick event.
208 for (int i = 0; i < threadContexts.size(); ++i) {
209 ThreadContext *tc = threadContexts[i];
210 if (tc->status() == ThreadContext::Active && _status != Running) {
211 _status = Running;
212 tickEvent.schedule(curTick);
213 break;
214 }
215 }
216 }
217
218
219 void
220 AtomicSimpleCPU::activateContext(int thread_num, int delay)
221 {
222 assert(thread_num == 0);
223 assert(thread);
224
225 assert(_status == Idle);
226 assert(!tickEvent.scheduled());
227
228 notIdleFraction++;
229 tickEvent.schedule(curTick + cycles(delay));
230 _status = Running;
231 }
232
233
234 void
235 AtomicSimpleCPU::suspendContext(int thread_num)
236 {
237 assert(thread_num == 0);
238 assert(thread);
239
240 assert(_status == Running);
241
242 // tick event may not be scheduled if this gets called from inside
243 // an instruction's execution, e.g. "quiesce"
244 if (tickEvent.scheduled())
245 tickEvent.deschedule();
246
247 notIdleFraction--;
248 _status = Idle;
249 }
250
251
252 template <class T>
253 Fault
254 AtomicSimpleCPU::read(Addr addr, T &data, unsigned flags)
255 {
256 // use the CPU's statically allocated read request and packet objects
257 Request *req = data_read_req;
258 Packet *pkt = data_read_pkt;
259
260 req->setVirt(0, addr, sizeof(T), flags, thread->readPC());
261
262 if (traceData) {
263 traceData->setAddr(addr);
264 }
265
266 // translate to physical address
267 Fault fault = thread->translateDataReadReq(req);
268
269 // Now do the access.
270 if (fault == NoFault) {
271 pkt->reinitFromRequest();
272
273 dcache_latency = dcachePort.sendAtomic(pkt);
274 dcache_access = true;
275
276 assert(pkt->result == Packet::Success);
277 data = pkt->get<T>();
278
279 if (req->isLocked()) {
280 TheISA::handleLockedRead(thread, req);
281 }
282 }
283
284 // This will need a new way to tell if it has a dcache attached.
285 if (req->isUncacheable())
286 recordEvent("Uncached Read");
287
288 return fault;
289 }
290
291 #ifndef DOXYGEN_SHOULD_SKIP_THIS
292
293 template
294 Fault
295 AtomicSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
296
297 template
298 Fault
299 AtomicSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
300
301 template
302 Fault
303 AtomicSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
304
305 template
306 Fault
307 AtomicSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
308
309 #endif //DOXYGEN_SHOULD_SKIP_THIS
310
311 template<>
312 Fault
313 AtomicSimpleCPU::read(Addr addr, double &data, unsigned flags)
314 {
315 return read(addr, *(uint64_t*)&data, flags);
316 }
317
318 template<>
319 Fault
320 AtomicSimpleCPU::read(Addr addr, float &data, unsigned flags)
321 {
322 return read(addr, *(uint32_t*)&data, flags);
323 }
324
325
326 template<>
327 Fault
328 AtomicSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
329 {
330 return read(addr, (uint32_t&)data, flags);
331 }
332
333
334 template <class T>
335 Fault
336 AtomicSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
337 {
338 // use the CPU's statically allocated write request and packet objects
339 Request *req = data_write_req;
340 Packet *pkt = data_write_pkt;
341
342 req->setVirt(0, addr, sizeof(T), flags, thread->readPC());
343
344 if (traceData) {
345 traceData->setAddr(addr);
346 }
347
348 // translate to physical address
349 Fault fault = thread->translateDataWriteReq(req);
350
351 // Now do the access.
352 if (fault == NoFault) {
353 bool do_access = true; // flag to suppress cache access
354
355 if (req->isLocked()) {
356 do_access = TheISA::handleLockedWrite(thread, req);
357 }
358
359 if (do_access) {
360 data = htog(data);
361 pkt->reinitFromRequest();
362 pkt->dataStatic(&data);
363
364 dcache_latency = dcachePort.sendAtomic(pkt);
365 dcache_access = true;
366
367 assert(pkt->result == Packet::Success);
368 }
369
370 if (req->isLocked()) {
371 uint64_t scResult = req->getScResult();
372 if (scResult != 0) {
373 // clear failure counter
374 thread->setStCondFailures(0);
375 }
376 if (res) {
377 *res = req->getScResult();
378 }
379 }
380 }
381
382 // This will need a new way to tell if it's hooked up to a cache or not.
383 if (req->isUncacheable())
384 recordEvent("Uncached Write");
385
386 // If the write needs to have a fault on the access, consider calling
387 // changeStatus() and changing it to "bad addr write" or something.
388 return fault;
389 }
390
391
392 #ifndef DOXYGEN_SHOULD_SKIP_THIS
393 template
394 Fault
395 AtomicSimpleCPU::write(uint64_t data, Addr addr,
396 unsigned flags, uint64_t *res);
397
398 template
399 Fault
400 AtomicSimpleCPU::write(uint32_t data, Addr addr,
401 unsigned flags, uint64_t *res);
402
403 template
404 Fault
405 AtomicSimpleCPU::write(uint16_t data, Addr addr,
406 unsigned flags, uint64_t *res);
407
408 template
409 Fault
410 AtomicSimpleCPU::write(uint8_t data, Addr addr,
411 unsigned flags, uint64_t *res);
412
413 #endif //DOXYGEN_SHOULD_SKIP_THIS
414
415 template<>
416 Fault
417 AtomicSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
418 {
419 return write(*(uint64_t*)&data, addr, flags, res);
420 }
421
422 template<>
423 Fault
424 AtomicSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
425 {
426 return write(*(uint32_t*)&data, addr, flags, res);
427 }
428
429
430 template<>
431 Fault
432 AtomicSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
433 {
434 return write((uint32_t)data, addr, flags, res);
435 }
436
437
438 void
439 AtomicSimpleCPU::tick()
440 {
441 Tick latency = cycles(1); // instruction takes one cycle by default
442
443 for (int i = 0; i < width; ++i) {
444 numCycles++;
445
446 checkForInterrupts();
447
448 Fault fault = setupFetchRequest(ifetch_req);
449
450 if (fault == NoFault) {
451 ifetch_pkt->reinitFromRequest();
452
453 Tick icache_latency = icachePort.sendAtomic(ifetch_pkt);
454 // ifetch_req is initialized to read the instruction directly
455 // into the CPU object's inst field.
456
457 dcache_access = false; // assume no dcache access
458 preExecute();
459 fault = curStaticInst->execute(this, traceData);
460 postExecute();
461
462 if (simulate_stalls) {
463 Tick icache_stall = icache_latency - cycles(1);
464 Tick dcache_stall =
465 dcache_access ? dcache_latency - cycles(1) : 0;
466 Tick stall_cycles = (icache_stall + dcache_stall) / cycles(1);
467 if (cycles(stall_cycles) < (icache_stall + dcache_stall))
468 latency += cycles(stall_cycles+1);
469 else
470 latency += cycles(stall_cycles);
471 }
472
473 }
474
475 advancePC(fault);
476 }
477
478 if (_status != Idle)
479 tickEvent.schedule(curTick + latency);
480 }
481
482
483 ////////////////////////////////////////////////////////////////////////
484 //
485 // AtomicSimpleCPU Simulation Object
486 //
487 BEGIN_DECLARE_SIM_OBJECT_PARAMS(AtomicSimpleCPU)
488
489 Param<Counter> max_insts_any_thread;
490 Param<Counter> max_insts_all_threads;
491 Param<Counter> max_loads_any_thread;
492 Param<Counter> max_loads_all_threads;
493 Param<Tick> progress_interval;
494 SimObjectParam<MemObject *> mem;
495 SimObjectParam<System *> system;
496 Param<int> cpu_id;
497
498 #if FULL_SYSTEM
499 SimObjectParam<AlphaITB *> itb;
500 SimObjectParam<AlphaDTB *> dtb;
501 Param<Tick> profile;
502 #else
503 SimObjectParam<Process *> workload;
504 #endif // FULL_SYSTEM
505
506 Param<int> clock;
507
508 Param<bool> defer_registration;
509 Param<int> width;
510 Param<bool> function_trace;
511 Param<Tick> function_trace_start;
512 Param<bool> simulate_stalls;
513
514 END_DECLARE_SIM_OBJECT_PARAMS(AtomicSimpleCPU)
515
516 BEGIN_INIT_SIM_OBJECT_PARAMS(AtomicSimpleCPU)
517
518 INIT_PARAM(max_insts_any_thread,
519 "terminate when any thread reaches this inst count"),
520 INIT_PARAM(max_insts_all_threads,
521 "terminate when all threads have reached this inst count"),
522 INIT_PARAM(max_loads_any_thread,
523 "terminate when any thread reaches this load count"),
524 INIT_PARAM(max_loads_all_threads,
525 "terminate when all threads have reached this load count"),
526 INIT_PARAM(progress_interval, "Progress interval"),
527 INIT_PARAM(mem, "memory"),
528 INIT_PARAM(system, "system object"),
529 INIT_PARAM(cpu_id, "processor ID"),
530
531 #if FULL_SYSTEM
532 INIT_PARAM(itb, "Instruction TLB"),
533 INIT_PARAM(dtb, "Data TLB"),
534 INIT_PARAM(profile, ""),
535 #else
536 INIT_PARAM(workload, "processes to run"),
537 #endif // FULL_SYSTEM
538
539 INIT_PARAM(clock, "clock speed"),
540 INIT_PARAM(defer_registration, "defer system registration (for sampling)"),
541 INIT_PARAM(width, "cpu width"),
542 INIT_PARAM(function_trace, "Enable function trace"),
543 INIT_PARAM(function_trace_start, "Cycle to start function trace"),
544 INIT_PARAM(simulate_stalls, "Simulate cache stall cycles")
545
546 END_INIT_SIM_OBJECT_PARAMS(AtomicSimpleCPU)
547
548
549 CREATE_SIM_OBJECT(AtomicSimpleCPU)
550 {
551 AtomicSimpleCPU::Params *params = new AtomicSimpleCPU::Params();
552 params->name = getInstanceName();
553 params->numberOfThreads = 1;
554 params->max_insts_any_thread = max_insts_any_thread;
555 params->max_insts_all_threads = max_insts_all_threads;
556 params->max_loads_any_thread = max_loads_any_thread;
557 params->max_loads_all_threads = max_loads_all_threads;
558 params->progress_interval = progress_interval;
559 params->deferRegistration = defer_registration;
560 params->clock = clock;
561 params->functionTrace = function_trace;
562 params->functionTraceStart = function_trace_start;
563 params->width = width;
564 params->simulate_stalls = simulate_stalls;
565 params->mem = mem;
566 params->system = system;
567 params->cpu_id = cpu_id;
568
569 #if FULL_SYSTEM
570 params->itb = itb;
571 params->dtb = dtb;
572 params->profile = profile;
573 #else
574 params->process = workload;
575 #endif
576
577 AtomicSimpleCPU *cpu = new AtomicSimpleCPU(params);
578 return cpu;
579 }
580
581 REGISTER_SIM_OBJECT("AtomicSimpleCPU", AtomicSimpleCPU)
582