cpu, arch: fix the type used for the request flags
[gem5.git] / src / cpu / simple / atomic.cc
1 /*
2 * Copyright 2014 Google, Inc.
3 * Copyright (c) 2012-2013,2015 ARM Limited
4 * All rights reserved.
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder. You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2002-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Steve Reinhardt
42 */
43
44 #include "arch/locked_mem.hh"
45 #include "arch/mmapped_ipr.hh"
46 #include "arch/utility.hh"
47 #include "base/bigint.hh"
48 #include "base/output.hh"
49 #include "config/the_isa.hh"
50 #include "cpu/simple/atomic.hh"
51 #include "cpu/exetrace.hh"
52 #include "debug/Drain.hh"
53 #include "debug/ExecFaulting.hh"
54 #include "debug/SimpleCPU.hh"
55 #include "mem/packet.hh"
56 #include "mem/packet_access.hh"
57 #include "mem/physical.hh"
58 #include "params/AtomicSimpleCPU.hh"
59 #include "sim/faults.hh"
60 #include "sim/system.hh"
61 #include "sim/full_system.hh"
62
63 using namespace std;
64 using namespace TheISA;
65
66 AtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c)
67 : Event(CPU_Tick_Pri), cpu(c)
68 {
69 }
70
71
72 void
73 AtomicSimpleCPU::TickEvent::process()
74 {
75 cpu->tick();
76 }
77
78 const char *
79 AtomicSimpleCPU::TickEvent::description() const
80 {
81 return "AtomicSimpleCPU tick";
82 }
83
84 void
85 AtomicSimpleCPU::init()
86 {
87 BaseSimpleCPU::init();
88
89 int cid = threadContexts[0]->contextId();
90 ifetch_req.setContext(cid);
91 data_read_req.setContext(cid);
92 data_write_req.setContext(cid);
93 }
94
95 AtomicSimpleCPU::AtomicSimpleCPU(AtomicSimpleCPUParams *p)
96 : BaseSimpleCPU(p), tickEvent(this), width(p->width), locked(false),
97 simulate_data_stalls(p->simulate_data_stalls),
98 simulate_inst_stalls(p->simulate_inst_stalls),
99 icachePort(name() + ".icache_port", this),
100 dcachePort(name() + ".dcache_port", this),
101 fastmem(p->fastmem), dcache_access(false), dcache_latency(0),
102 ppCommit(nullptr)
103 {
104 _status = Idle;
105 }
106
107
108 AtomicSimpleCPU::~AtomicSimpleCPU()
109 {
110 if (tickEvent.scheduled()) {
111 deschedule(tickEvent);
112 }
113 }
114
115 DrainState
116 AtomicSimpleCPU::drain()
117 {
118 if (switchedOut())
119 return DrainState::Drained;
120
121 if (!isDrained()) {
122 DPRINTF(Drain, "Requesting drain.\n");
123 return DrainState::Draining;
124 } else {
125 if (tickEvent.scheduled())
126 deschedule(tickEvent);
127
128 activeThreads.clear();
129 DPRINTF(Drain, "Not executing microcode, no need to drain.\n");
130 return DrainState::Drained;
131 }
132 }
133
134 void
135 AtomicSimpleCPU::threadSnoop(PacketPtr pkt, ThreadID sender)
136 {
137 DPRINTF(SimpleCPU, "received snoop pkt for addr:%#x %s\n", pkt->getAddr(),
138 pkt->cmdString());
139
140 for (ThreadID tid = 0; tid < numThreads; tid++) {
141 if (tid != sender) {
142 if (getCpuAddrMonitor(tid)->doMonitor(pkt)) {
143 wakeup(tid);
144 }
145
146 TheISA::handleLockedSnoop(threadInfo[tid]->thread,
147 pkt, dcachePort.cacheBlockMask);
148 }
149 }
150 }
151
152 void
153 AtomicSimpleCPU::drainResume()
154 {
155 assert(!tickEvent.scheduled());
156 if (switchedOut())
157 return;
158
159 DPRINTF(SimpleCPU, "Resume\n");
160 verifyMemoryMode();
161
162 assert(!threadContexts.empty());
163
164 _status = BaseSimpleCPU::Idle;
165
166 for (ThreadID tid = 0; tid < numThreads; tid++) {
167 if (threadInfo[tid]->thread->status() == ThreadContext::Active) {
168 threadInfo[tid]->notIdleFraction = 1;
169 activeThreads.push_back(tid);
170 _status = BaseSimpleCPU::Running;
171
172 // Tick if any threads active
173 if (!tickEvent.scheduled()) {
174 schedule(tickEvent, nextCycle());
175 }
176 } else {
177 threadInfo[tid]->notIdleFraction = 0;
178 }
179 }
180 }
181
182 bool
183 AtomicSimpleCPU::tryCompleteDrain()
184 {
185 if (drainState() != DrainState::Draining)
186 return false;
187
188 DPRINTF(Drain, "tryCompleteDrain.\n");
189 if (!isDrained())
190 return false;
191
192 DPRINTF(Drain, "CPU done draining, processing drain event\n");
193 signalDrainDone();
194
195 return true;
196 }
197
198
199 void
200 AtomicSimpleCPU::switchOut()
201 {
202 BaseSimpleCPU::switchOut();
203
204 assert(!tickEvent.scheduled());
205 assert(_status == BaseSimpleCPU::Running || _status == Idle);
206 assert(isDrained());
207 }
208
209
210 void
211 AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
212 {
213 BaseSimpleCPU::takeOverFrom(oldCPU);
214
215 // The tick event should have been descheduled by drain()
216 assert(!tickEvent.scheduled());
217 }
218
219 void
220 AtomicSimpleCPU::verifyMemoryMode() const
221 {
222 if (!system->isAtomicMode()) {
223 fatal("The atomic CPU requires the memory system to be in "
224 "'atomic' mode.\n");
225 }
226 }
227
228 void
229 AtomicSimpleCPU::activateContext(ThreadID thread_num)
230 {
231 DPRINTF(SimpleCPU, "ActivateContext %d\n", thread_num);
232
233 assert(thread_num < numThreads);
234
235 threadInfo[thread_num]->notIdleFraction = 1;
236 Cycles delta = ticksToCycles(threadInfo[thread_num]->thread->lastActivate -
237 threadInfo[thread_num]->thread->lastSuspend);
238 numCycles += delta;
239 ppCycles->notify(delta);
240
241 if (!tickEvent.scheduled()) {
242 //Make sure ticks are still on multiples of cycles
243 schedule(tickEvent, clockEdge(Cycles(0)));
244 }
245 _status = BaseSimpleCPU::Running;
246 if (std::find(activeThreads.begin(), activeThreads.end(), thread_num)
247 == activeThreads.end()) {
248 activeThreads.push_back(thread_num);
249 }
250
251 BaseCPU::activateContext(thread_num);
252 }
253
254
255 void
256 AtomicSimpleCPU::suspendContext(ThreadID thread_num)
257 {
258 DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
259
260 assert(thread_num < numThreads);
261 activeThreads.remove(thread_num);
262
263 if (_status == Idle)
264 return;
265
266 assert(_status == BaseSimpleCPU::Running);
267
268 threadInfo[thread_num]->notIdleFraction = 0;
269
270 if (activeThreads.empty()) {
271 _status = Idle;
272
273 if (tickEvent.scheduled()) {
274 deschedule(tickEvent);
275 }
276 }
277
278 BaseCPU::suspendContext(thread_num);
279 }
280
281
282 Tick
283 AtomicSimpleCPU::AtomicCPUDPort::recvAtomicSnoop(PacketPtr pkt)
284 {
285 DPRINTF(SimpleCPU, "received snoop pkt for addr:%#x %s\n", pkt->getAddr(),
286 pkt->cmdString());
287
288 // X86 ISA: Snooping an invalidation for monitor/mwait
289 AtomicSimpleCPU *cpu = (AtomicSimpleCPU *)(&owner);
290
291 for (ThreadID tid = 0; tid < cpu->numThreads; tid++) {
292 if (cpu->getCpuAddrMonitor(tid)->doMonitor(pkt)) {
293 cpu->wakeup(tid);
294 }
295 }
296
297 // if snoop invalidates, release any associated locks
298 // When run without caches, Invalidation packets will not be received
299 // hence we must check if the incoming packets are writes and wakeup
300 // the processor accordingly
301 if (pkt->isInvalidate() || pkt->isWrite()) {
302 DPRINTF(SimpleCPU, "received invalidation for addr:%#x\n",
303 pkt->getAddr());
304 for (auto &t_info : cpu->threadInfo) {
305 TheISA::handleLockedSnoop(t_info->thread, pkt, cacheBlockMask);
306 }
307 }
308
309 return 0;
310 }
311
312 void
313 AtomicSimpleCPU::AtomicCPUDPort::recvFunctionalSnoop(PacketPtr pkt)
314 {
315 DPRINTF(SimpleCPU, "received snoop pkt for addr:%#x %s\n", pkt->getAddr(),
316 pkt->cmdString());
317
318 // X86 ISA: Snooping an invalidation for monitor/mwait
319 AtomicSimpleCPU *cpu = (AtomicSimpleCPU *)(&owner);
320 for (ThreadID tid = 0; tid < cpu->numThreads; tid++) {
321 if (cpu->getCpuAddrMonitor(tid)->doMonitor(pkt)) {
322 cpu->wakeup(tid);
323 }
324 }
325
326 // if snoop invalidates, release any associated locks
327 if (pkt->isInvalidate()) {
328 DPRINTF(SimpleCPU, "received invalidation for addr:%#x\n",
329 pkt->getAddr());
330 for (auto &t_info : cpu->threadInfo) {
331 TheISA::handleLockedSnoop(t_info->thread, pkt, cacheBlockMask);
332 }
333 }
334 }
335
336 Fault
337 AtomicSimpleCPU::readMem(Addr addr, uint8_t * data, unsigned size,
338 Request::Flags flags)
339 {
340 SimpleExecContext& t_info = *threadInfo[curThread];
341 SimpleThread* thread = t_info.thread;
342
343 // use the CPU's statically allocated read request and packet objects
344 Request *req = &data_read_req;
345
346 if (traceData)
347 traceData->setMem(addr, size, flags);
348
349 //The size of the data we're trying to read.
350 int fullSize = size;
351
352 //The address of the second part of this access if it needs to be split
353 //across a cache line boundary.
354 Addr secondAddr = roundDown(addr + size - 1, cacheLineSize());
355
356 if (secondAddr > addr)
357 size = secondAddr - addr;
358
359 dcache_latency = 0;
360
361 req->taskId(taskId());
362 while (1) {
363 req->setVirt(0, addr, size, flags, dataMasterId(), thread->pcState().instAddr());
364
365 // translate to physical address
366 Fault fault = thread->dtb->translateAtomic(req, thread->getTC(),
367 BaseTLB::Read);
368
369 // Now do the access.
370 if (fault == NoFault && !req->getFlags().isSet(Request::NO_ACCESS)) {
371 Packet pkt(req, Packet::makeReadCmd(req));
372 pkt.dataStatic(data);
373
374 if (req->isMmappedIpr())
375 dcache_latency += TheISA::handleIprRead(thread->getTC(), &pkt);
376 else {
377 if (fastmem && system->isMemAddr(pkt.getAddr()))
378 system->getPhysMem().access(&pkt);
379 else
380 dcache_latency += dcachePort.sendAtomic(&pkt);
381 }
382 dcache_access = true;
383
384 assert(!pkt.isError());
385
386 if (req->isLLSC()) {
387 TheISA::handleLockedRead(thread, req);
388 }
389 }
390
391 //If there's a fault, return it
392 if (fault != NoFault) {
393 if (req->isPrefetch()) {
394 return NoFault;
395 } else {
396 return fault;
397 }
398 }
399
400 //If we don't need to access a second cache line, stop now.
401 if (secondAddr <= addr)
402 {
403 if (req->isLockedRMW() && fault == NoFault) {
404 assert(!locked);
405 locked = true;
406 }
407
408 return fault;
409 }
410
411 /*
412 * Set up for accessing the second cache line.
413 */
414
415 //Move the pointer we're reading into to the correct location.
416 data += size;
417 //Adjust the size to get the remaining bytes.
418 size = addr + fullSize - secondAddr;
419 //And access the right address.
420 addr = secondAddr;
421 }
422 }
423
424 Fault
425 AtomicSimpleCPU::initiateMemRead(Addr addr, unsigned size,
426 Request::Flags flags)
427 {
428 panic("initiateMemRead() is for timing accesses, and should "
429 "never be called on AtomicSimpleCPU.\n");
430 }
431
432 Fault
433 AtomicSimpleCPU::writeMem(uint8_t *data, unsigned size, Addr addr,
434 Request::Flags flags, uint64_t *res)
435 {
436 SimpleExecContext& t_info = *threadInfo[curThread];
437 SimpleThread* thread = t_info.thread;
438 static uint8_t zero_array[64] = {};
439
440 if (data == NULL) {
441 assert(size <= 64);
442 assert(flags & Request::CACHE_BLOCK_ZERO);
443 // This must be a cache block cleaning request
444 data = zero_array;
445 }
446
447 // use the CPU's statically allocated write request and packet objects
448 Request *req = &data_write_req;
449
450 if (traceData)
451 traceData->setMem(addr, size, flags);
452
453 //The size of the data we're trying to read.
454 int fullSize = size;
455
456 //The address of the second part of this access if it needs to be split
457 //across a cache line boundary.
458 Addr secondAddr = roundDown(addr + size - 1, cacheLineSize());
459
460 if (secondAddr > addr)
461 size = secondAddr - addr;
462
463 dcache_latency = 0;
464
465 req->taskId(taskId());
466 while (1) {
467 req->setVirt(0, addr, size, flags, dataMasterId(), thread->pcState().instAddr());
468
469 // translate to physical address
470 Fault fault = thread->dtb->translateAtomic(req, thread->getTC(), BaseTLB::Write);
471
472 // Now do the access.
473 if (fault == NoFault) {
474 MemCmd cmd = MemCmd::WriteReq; // default
475 bool do_access = true; // flag to suppress cache access
476
477 if (req->isLLSC()) {
478 cmd = MemCmd::StoreCondReq;
479 do_access = TheISA::handleLockedWrite(thread, req, dcachePort.cacheBlockMask);
480 } else if (req->isSwap()) {
481 cmd = MemCmd::SwapReq;
482 if (req->isCondSwap()) {
483 assert(res);
484 req->setExtraData(*res);
485 }
486 }
487
488 if (do_access && !req->getFlags().isSet(Request::NO_ACCESS)) {
489 Packet pkt = Packet(req, cmd);
490 pkt.dataStatic(data);
491
492 if (req->isMmappedIpr()) {
493 dcache_latency +=
494 TheISA::handleIprWrite(thread->getTC(), &pkt);
495 } else {
496 if (fastmem && system->isMemAddr(pkt.getAddr()))
497 system->getPhysMem().access(&pkt);
498 else
499 dcache_latency += dcachePort.sendAtomic(&pkt);
500
501 // Notify other threads on this CPU of write
502 threadSnoop(&pkt, curThread);
503 }
504 dcache_access = true;
505 assert(!pkt.isError());
506
507 if (req->isSwap()) {
508 assert(res);
509 memcpy(res, pkt.getConstPtr<uint8_t>(), fullSize);
510 }
511 }
512
513 if (res && !req->isSwap()) {
514 *res = req->getExtraData();
515 }
516 }
517
518 //If there's a fault or we don't need to access a second cache line,
519 //stop now.
520 if (fault != NoFault || secondAddr <= addr)
521 {
522 if (req->isLockedRMW() && fault == NoFault) {
523 assert(locked);
524 locked = false;
525 }
526
527
528 if (fault != NoFault && req->isPrefetch()) {
529 return NoFault;
530 } else {
531 return fault;
532 }
533 }
534
535 /*
536 * Set up for accessing the second cache line.
537 */
538
539 //Move the pointer we're reading into to the correct location.
540 data += size;
541 //Adjust the size to get the remaining bytes.
542 size = addr + fullSize - secondAddr;
543 //And access the right address.
544 addr = secondAddr;
545 }
546 }
547
548
549 void
550 AtomicSimpleCPU::tick()
551 {
552 DPRINTF(SimpleCPU, "Tick\n");
553
554 // Change thread if multi-threaded
555 swapActiveThread();
556
557 // Set memroy request ids to current thread
558 if (numThreads > 1) {
559 ContextID cid = threadContexts[curThread]->contextId();
560
561 ifetch_req.setContext(cid);
562 data_read_req.setContext(cid);
563 data_write_req.setContext(cid);
564 }
565
566 SimpleExecContext& t_info = *threadInfo[curThread];
567 SimpleThread* thread = t_info.thread;
568
569 Tick latency = 0;
570
571 for (int i = 0; i < width || locked; ++i) {
572 numCycles++;
573 ppCycles->notify(1);
574
575 if (!curStaticInst || !curStaticInst->isDelayedCommit()) {
576 checkForInterrupts();
577 checkPcEventQueue();
578 }
579
580 // We must have just got suspended by a PC event
581 if (_status == Idle) {
582 tryCompleteDrain();
583 return;
584 }
585
586 Fault fault = NoFault;
587
588 TheISA::PCState pcState = thread->pcState();
589
590 bool needToFetch = !isRomMicroPC(pcState.microPC()) &&
591 !curMacroStaticInst;
592 if (needToFetch) {
593 ifetch_req.taskId(taskId());
594 setupFetchRequest(&ifetch_req);
595 fault = thread->itb->translateAtomic(&ifetch_req, thread->getTC(),
596 BaseTLB::Execute);
597 }
598
599 if (fault == NoFault) {
600 Tick icache_latency = 0;
601 bool icache_access = false;
602 dcache_access = false; // assume no dcache access
603
604 if (needToFetch) {
605 // This is commented out because the decoder would act like
606 // a tiny cache otherwise. It wouldn't be flushed when needed
607 // like the I cache. It should be flushed, and when that works
608 // this code should be uncommented.
609 //Fetch more instruction memory if necessary
610 //if (decoder.needMoreBytes())
611 //{
612 icache_access = true;
613 Packet ifetch_pkt = Packet(&ifetch_req, MemCmd::ReadReq);
614 ifetch_pkt.dataStatic(&inst);
615
616 if (fastmem && system->isMemAddr(ifetch_pkt.getAddr()))
617 system->getPhysMem().access(&ifetch_pkt);
618 else
619 icache_latency = icachePort.sendAtomic(&ifetch_pkt);
620
621 assert(!ifetch_pkt.isError());
622
623 // ifetch_req is initialized to read the instruction directly
624 // into the CPU object's inst field.
625 //}
626 }
627
628 preExecute();
629
630 if (curStaticInst) {
631 fault = curStaticInst->execute(&t_info, traceData);
632
633 // keep an instruction count
634 if (fault == NoFault) {
635 countInst();
636 ppCommit->notify(std::make_pair(thread, curStaticInst));
637 }
638 else if (traceData && !DTRACE(ExecFaulting)) {
639 delete traceData;
640 traceData = NULL;
641 }
642
643 postExecute();
644 }
645
646 // @todo remove me after debugging with legion done
647 if (curStaticInst && (!curStaticInst->isMicroop() ||
648 curStaticInst->isFirstMicroop()))
649 instCnt++;
650
651 Tick stall_ticks = 0;
652 if (simulate_inst_stalls && icache_access)
653 stall_ticks += icache_latency;
654
655 if (simulate_data_stalls && dcache_access)
656 stall_ticks += dcache_latency;
657
658 if (stall_ticks) {
659 // the atomic cpu does its accounting in ticks, so
660 // keep counting in ticks but round to the clock
661 // period
662 latency += divCeil(stall_ticks, clockPeriod()) *
663 clockPeriod();
664 }
665
666 }
667 if (fault != NoFault || !t_info.stayAtPC)
668 advancePC(fault);
669 }
670
671 if (tryCompleteDrain())
672 return;
673
674 // instruction takes at least one cycle
675 if (latency < clockPeriod())
676 latency = clockPeriod();
677
678 if (_status != Idle)
679 reschedule(tickEvent, curTick() + latency, true);
680 }
681
682 void
683 AtomicSimpleCPU::regProbePoints()
684 {
685 BaseCPU::regProbePoints();
686
687 ppCommit = new ProbePointArg<pair<SimpleThread*, const StaticInstPtr>>
688 (getProbeManager(), "Commit");
689 }
690
691 void
692 AtomicSimpleCPU::printAddr(Addr a)
693 {
694 dcachePort.printAddr(a);
695 }
696
697 ////////////////////////////////////////////////////////////////////////
698 //
699 // AtomicSimpleCPU Simulation Object
700 //
701 AtomicSimpleCPU *
702 AtomicSimpleCPUParams::create()
703 {
704 return new AtomicSimpleCPU(this);
705 }