mcpat: Adds McPAT performance counters
[gem5.git] / src / cpu / simple / atomic.cc
1 /*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31 #include "arch/locked_mem.hh"
32 #include "arch/mmaped_ipr.hh"
33 #include "arch/utility.hh"
34 #include "base/bigint.hh"
35 #include "config/the_isa.hh"
36 #include "cpu/exetrace.hh"
37 #include "cpu/simple/atomic.hh"
38 #include "mem/packet.hh"
39 #include "mem/packet_access.hh"
40 #include "params/AtomicSimpleCPU.hh"
41 #include "sim/faults.hh"
42 #include "sim/system.hh"
43
44 using namespace std;
45 using namespace TheISA;
46
47 AtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c)
48 : Event(CPU_Tick_Pri), cpu(c)
49 {
50 }
51
52
53 void
54 AtomicSimpleCPU::TickEvent::process()
55 {
56 cpu->tick();
57 }
58
59 const char *
60 AtomicSimpleCPU::TickEvent::description() const
61 {
62 return "AtomicSimpleCPU tick";
63 }
64
65 Port *
66 AtomicSimpleCPU::getPort(const string &if_name, int idx)
67 {
68 if (if_name == "dcache_port")
69 return &dcachePort;
70 else if (if_name == "icache_port")
71 return &icachePort;
72 else if (if_name == "physmem_port") {
73 hasPhysMemPort = true;
74 return &physmemPort;
75 }
76 else
77 panic("No Such Port\n");
78 }
79
80 void
81 AtomicSimpleCPU::init()
82 {
83 BaseCPU::init();
84 #if FULL_SYSTEM
85 ThreadID size = threadContexts.size();
86 for (ThreadID i = 0; i < size; ++i) {
87 ThreadContext *tc = threadContexts[i];
88
89 // initialize CPU, including PC
90 TheISA::initCPU(tc, tc->contextId());
91 }
92 #endif
93 if (hasPhysMemPort) {
94 bool snoop = false;
95 AddrRangeList pmAddrList;
96 physmemPort.getPeerAddressRanges(pmAddrList, snoop);
97 physMemAddr = *pmAddrList.begin();
98 }
99 // Atomic doesn't do MT right now, so contextId == threadId
100 ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT
101 data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too
102 data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too
103 }
104
105 bool
106 AtomicSimpleCPU::CpuPort::recvTiming(PacketPtr pkt)
107 {
108 panic("AtomicSimpleCPU doesn't expect recvTiming callback!");
109 return true;
110 }
111
112 Tick
113 AtomicSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt)
114 {
115 //Snooping a coherence request, just return
116 return 0;
117 }
118
119 void
120 AtomicSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt)
121 {
122 //No internal storage to update, just return
123 return;
124 }
125
126 void
127 AtomicSimpleCPU::CpuPort::recvStatusChange(Status status)
128 {
129 if (status == RangeChange) {
130 if (!snoopRangeSent) {
131 snoopRangeSent = true;
132 sendStatusChange(Port::RangeChange);
133 }
134 return;
135 }
136
137 panic("AtomicSimpleCPU doesn't expect recvStatusChange callback!");
138 }
139
140 void
141 AtomicSimpleCPU::CpuPort::recvRetry()
142 {
143 panic("AtomicSimpleCPU doesn't expect recvRetry callback!");
144 }
145
146 void
147 AtomicSimpleCPU::DcachePort::setPeer(Port *port)
148 {
149 Port::setPeer(port);
150
151 #if FULL_SYSTEM
152 // Update the ThreadContext's memory ports (Functional/Virtual
153 // Ports)
154 cpu->tcBase()->connectMemPorts(cpu->tcBase());
155 #endif
156 }
157
158 AtomicSimpleCPU::AtomicSimpleCPU(AtomicSimpleCPUParams *p)
159 : BaseSimpleCPU(p), tickEvent(this), width(p->width), locked(false),
160 simulate_data_stalls(p->simulate_data_stalls),
161 simulate_inst_stalls(p->simulate_inst_stalls),
162 icachePort(name() + "-iport", this), dcachePort(name() + "-iport", this),
163 physmemPort(name() + "-iport", this), hasPhysMemPort(false)
164 {
165 _status = Idle;
166
167 icachePort.snoopRangeSent = false;
168 dcachePort.snoopRangeSent = false;
169
170 }
171
172
173 AtomicSimpleCPU::~AtomicSimpleCPU()
174 {
175 if (tickEvent.scheduled()) {
176 deschedule(tickEvent);
177 }
178 }
179
180 void
181 AtomicSimpleCPU::serialize(ostream &os)
182 {
183 SimObject::State so_state = SimObject::getState();
184 SERIALIZE_ENUM(so_state);
185 SERIALIZE_SCALAR(locked);
186 BaseSimpleCPU::serialize(os);
187 nameOut(os, csprintf("%s.tickEvent", name()));
188 tickEvent.serialize(os);
189 }
190
191 void
192 AtomicSimpleCPU::unserialize(Checkpoint *cp, const string &section)
193 {
194 SimObject::State so_state;
195 UNSERIALIZE_ENUM(so_state);
196 UNSERIALIZE_SCALAR(locked);
197 BaseSimpleCPU::unserialize(cp, section);
198 tickEvent.unserialize(cp, csprintf("%s.tickEvent", section));
199 }
200
201 void
202 AtomicSimpleCPU::resume()
203 {
204 if (_status == Idle || _status == SwitchedOut)
205 return;
206
207 DPRINTF(SimpleCPU, "Resume\n");
208 assert(system->getMemoryMode() == Enums::atomic);
209
210 changeState(SimObject::Running);
211 if (thread->status() == ThreadContext::Active) {
212 if (!tickEvent.scheduled())
213 schedule(tickEvent, nextCycle());
214 }
215 system->totalNumInsts = 0;
216 }
217
218 void
219 AtomicSimpleCPU::switchOut()
220 {
221 assert(_status == Running || _status == Idle);
222 _status = SwitchedOut;
223
224 tickEvent.squash();
225 }
226
227
228 void
229 AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
230 {
231 BaseCPU::takeOverFrom(oldCPU, &icachePort, &dcachePort);
232
233 assert(!tickEvent.scheduled());
234
235 // if any of this CPU's ThreadContexts are active, mark the CPU as
236 // running and schedule its tick event.
237 ThreadID size = threadContexts.size();
238 for (ThreadID i = 0; i < size; ++i) {
239 ThreadContext *tc = threadContexts[i];
240 if (tc->status() == ThreadContext::Active && _status != Running) {
241 _status = Running;
242 schedule(tickEvent, nextCycle());
243 break;
244 }
245 }
246 if (_status != Running) {
247 _status = Idle;
248 }
249 assert(threadContexts.size() == 1);
250 ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT
251 data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too
252 data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too
253 }
254
255
256 void
257 AtomicSimpleCPU::activateContext(int thread_num, int delay)
258 {
259 DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
260
261 assert(thread_num == 0);
262 assert(thread);
263
264 assert(_status == Idle);
265 assert(!tickEvent.scheduled());
266
267 notIdleFraction++;
268 numCycles += tickToCycles(thread->lastActivate - thread->lastSuspend);
269
270 //Make sure ticks are still on multiples of cycles
271 schedule(tickEvent, nextCycle(curTick() + ticks(delay)));
272 _status = Running;
273 }
274
275
276 void
277 AtomicSimpleCPU::suspendContext(int thread_num)
278 {
279 DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
280
281 assert(thread_num == 0);
282 assert(thread);
283
284 if (_status == Idle)
285 return;
286
287 assert(_status == Running);
288
289 // tick event may not be scheduled if this gets called from inside
290 // an instruction's execution, e.g. "quiesce"
291 if (tickEvent.scheduled())
292 deschedule(tickEvent);
293
294 notIdleFraction--;
295 _status = Idle;
296 }
297
298
299 Fault
300 AtomicSimpleCPU::readBytes(Addr addr, uint8_t * data,
301 unsigned size, unsigned flags)
302 {
303 // use the CPU's statically allocated read request and packet objects
304 Request *req = &data_read_req;
305
306 if (traceData) {
307 traceData->setAddr(addr);
308 }
309
310 //The block size of our peer.
311 unsigned blockSize = dcachePort.peerBlockSize();
312 //The size of the data we're trying to read.
313 int fullSize = size;
314
315 //The address of the second part of this access if it needs to be split
316 //across a cache line boundary.
317 Addr secondAddr = roundDown(addr + size - 1, blockSize);
318
319 if (secondAddr > addr)
320 size = secondAddr - addr;
321
322 dcache_latency = 0;
323
324 while (1) {
325 req->setVirt(0, addr, size, flags, thread->pcState().instAddr());
326
327 // translate to physical address
328 Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Read);
329
330 // Now do the access.
331 if (fault == NoFault && !req->getFlags().isSet(Request::NO_ACCESS)) {
332 Packet pkt = Packet(req,
333 req->isLLSC() ? MemCmd::LoadLockedReq : MemCmd::ReadReq,
334 Packet::Broadcast);
335 pkt.dataStatic(data);
336
337 if (req->isMmapedIpr())
338 dcache_latency += TheISA::handleIprRead(thread->getTC(), &pkt);
339 else {
340 if (hasPhysMemPort && pkt.getAddr() == physMemAddr)
341 dcache_latency += physmemPort.sendAtomic(&pkt);
342 else
343 dcache_latency += dcachePort.sendAtomic(&pkt);
344 }
345 dcache_access = true;
346
347 assert(!pkt.isError());
348
349 if (req->isLLSC()) {
350 TheISA::handleLockedRead(thread, req);
351 }
352 }
353
354 //If there's a fault, return it
355 if (fault != NoFault) {
356 if (req->isPrefetch()) {
357 return NoFault;
358 } else {
359 return fault;
360 }
361 }
362
363 //If we don't need to access a second cache line, stop now.
364 if (secondAddr <= addr)
365 {
366 if (req->isLocked() && fault == NoFault) {
367 assert(!locked);
368 locked = true;
369 }
370 return fault;
371 }
372
373 /*
374 * Set up for accessing the second cache line.
375 */
376
377 //Move the pointer we're reading into to the correct location.
378 data += size;
379 //Adjust the size to get the remaining bytes.
380 size = addr + fullSize - secondAddr;
381 //And access the right address.
382 addr = secondAddr;
383 }
384 }
385
386
387 template <class T>
388 Fault
389 AtomicSimpleCPU::read(Addr addr, T &data, unsigned flags)
390 {
391 uint8_t *dataPtr = (uint8_t *)&data;
392 memset(dataPtr, 0, sizeof(data));
393 Fault fault = readBytes(addr, dataPtr, sizeof(data), flags);
394 if (fault == NoFault) {
395 data = gtoh(data);
396 if (traceData)
397 traceData->setData(data);
398 }
399 return fault;
400 }
401
402 #ifndef DOXYGEN_SHOULD_SKIP_THIS
403
404 template
405 Fault
406 AtomicSimpleCPU::read(Addr addr, Twin32_t &data, unsigned flags);
407
408 template
409 Fault
410 AtomicSimpleCPU::read(Addr addr, Twin64_t &data, unsigned flags);
411
412 template
413 Fault
414 AtomicSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
415
416 template
417 Fault
418 AtomicSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
419
420 template
421 Fault
422 AtomicSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
423
424 template
425 Fault
426 AtomicSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
427
428 #endif //DOXYGEN_SHOULD_SKIP_THIS
429
430 template<>
431 Fault
432 AtomicSimpleCPU::read(Addr addr, double &data, unsigned flags)
433 {
434 return read(addr, *(uint64_t*)&data, flags);
435 }
436
437 template<>
438 Fault
439 AtomicSimpleCPU::read(Addr addr, float &data, unsigned flags)
440 {
441 return read(addr, *(uint32_t*)&data, flags);
442 }
443
444
445 template<>
446 Fault
447 AtomicSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
448 {
449 return read(addr, (uint32_t&)data, flags);
450 }
451
452
453 Fault
454 AtomicSimpleCPU::writeBytes(uint8_t *data, unsigned size,
455 Addr addr, unsigned flags, uint64_t *res)
456 {
457 // use the CPU's statically allocated write request and packet objects
458 Request *req = &data_write_req;
459
460 if (traceData) {
461 traceData->setAddr(addr);
462 }
463
464 //The block size of our peer.
465 unsigned blockSize = dcachePort.peerBlockSize();
466 //The size of the data we're trying to read.
467 int fullSize = size;
468
469 //The address of the second part of this access if it needs to be split
470 //across a cache line boundary.
471 Addr secondAddr = roundDown(addr + size - 1, blockSize);
472
473 if(secondAddr > addr)
474 size = secondAddr - addr;
475
476 dcache_latency = 0;
477
478 while(1) {
479 req->setVirt(0, addr, size, flags, thread->pcState().instAddr());
480
481 // translate to physical address
482 Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Write);
483
484 // Now do the access.
485 if (fault == NoFault) {
486 MemCmd cmd = MemCmd::WriteReq; // default
487 bool do_access = true; // flag to suppress cache access
488
489 if (req->isLLSC()) {
490 cmd = MemCmd::StoreCondReq;
491 do_access = TheISA::handleLockedWrite(thread, req);
492 } else if (req->isSwap()) {
493 cmd = MemCmd::SwapReq;
494 if (req->isCondSwap()) {
495 assert(res);
496 req->setExtraData(*res);
497 }
498 }
499
500 if (do_access && !req->getFlags().isSet(Request::NO_ACCESS)) {
501 Packet pkt = Packet(req, cmd, Packet::Broadcast);
502 pkt.dataStatic(data);
503
504 if (req->isMmapedIpr()) {
505 dcache_latency +=
506 TheISA::handleIprWrite(thread->getTC(), &pkt);
507 } else {
508 if (hasPhysMemPort && pkt.getAddr() == physMemAddr)
509 dcache_latency += physmemPort.sendAtomic(&pkt);
510 else
511 dcache_latency += dcachePort.sendAtomic(&pkt);
512 }
513 dcache_access = true;
514 assert(!pkt.isError());
515
516 if (req->isSwap()) {
517 assert(res);
518 memcpy(res, pkt.getPtr<uint8_t>(), fullSize);
519 }
520 }
521
522 if (res && !req->isSwap()) {
523 *res = req->getExtraData();
524 }
525 }
526
527 //If there's a fault or we don't need to access a second cache line,
528 //stop now.
529 if (fault != NoFault || secondAddr <= addr)
530 {
531 if (req->isLocked() && fault == NoFault) {
532 assert(locked);
533 locked = false;
534 }
535 if (fault != NoFault && req->isPrefetch()) {
536 return NoFault;
537 } else {
538 return fault;
539 }
540 }
541
542 /*
543 * Set up for accessing the second cache line.
544 */
545
546 //Move the pointer we're reading into to the correct location.
547 data += size;
548 //Adjust the size to get the remaining bytes.
549 size = addr + fullSize - secondAddr;
550 //And access the right address.
551 addr = secondAddr;
552 }
553 }
554
555
556 template <class T>
557 Fault
558 AtomicSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
559 {
560 uint8_t *dataPtr = (uint8_t *)&data;
561 if (traceData)
562 traceData->setData(data);
563 data = htog(data);
564
565 Fault fault = writeBytes(dataPtr, sizeof(data), addr, flags, res);
566 if (fault == NoFault && data_write_req.isSwap()) {
567 *res = gtoh((T)*res);
568 }
569 return fault;
570 }
571
572
573 #ifndef DOXYGEN_SHOULD_SKIP_THIS
574
575 template
576 Fault
577 AtomicSimpleCPU::write(Twin32_t data, Addr addr,
578 unsigned flags, uint64_t *res);
579
580 template
581 Fault
582 AtomicSimpleCPU::write(Twin64_t data, Addr addr,
583 unsigned flags, uint64_t *res);
584
585 template
586 Fault
587 AtomicSimpleCPU::write(uint64_t data, Addr addr,
588 unsigned flags, uint64_t *res);
589
590 template
591 Fault
592 AtomicSimpleCPU::write(uint32_t data, Addr addr,
593 unsigned flags, uint64_t *res);
594
595 template
596 Fault
597 AtomicSimpleCPU::write(uint16_t data, Addr addr,
598 unsigned flags, uint64_t *res);
599
600 template
601 Fault
602 AtomicSimpleCPU::write(uint8_t data, Addr addr,
603 unsigned flags, uint64_t *res);
604
605 #endif //DOXYGEN_SHOULD_SKIP_THIS
606
607 template<>
608 Fault
609 AtomicSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
610 {
611 return write(*(uint64_t*)&data, addr, flags, res);
612 }
613
614 template<>
615 Fault
616 AtomicSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
617 {
618 return write(*(uint32_t*)&data, addr, flags, res);
619 }
620
621
622 template<>
623 Fault
624 AtomicSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
625 {
626 return write((uint32_t)data, addr, flags, res);
627 }
628
629
630 void
631 AtomicSimpleCPU::tick()
632 {
633 DPRINTF(SimpleCPU, "Tick\n");
634
635 Tick latency = 0;
636
637 for (int i = 0; i < width || locked; ++i) {
638 numCycles++;
639
640 if (!curStaticInst || !curStaticInst->isDelayedCommit())
641 checkForInterrupts();
642
643 checkPcEventQueue();
644
645 Fault fault = NoFault;
646
647 TheISA::PCState pcState = thread->pcState();
648
649 bool needToFetch = !isRomMicroPC(pcState.microPC()) &&
650 !curMacroStaticInst;
651 if (needToFetch) {
652 setupFetchRequest(&ifetch_req);
653 fault = thread->itb->translateAtomic(&ifetch_req, tc,
654 BaseTLB::Execute);
655 }
656
657 if (fault == NoFault) {
658 Tick icache_latency = 0;
659 bool icache_access = false;
660 dcache_access = false; // assume no dcache access
661
662 if (needToFetch) {
663 // This is commented out because the predecoder would act like
664 // a tiny cache otherwise. It wouldn't be flushed when needed
665 // like the I cache. It should be flushed, and when that works
666 // this code should be uncommented.
667 //Fetch more instruction memory if necessary
668 //if(predecoder.needMoreBytes())
669 //{
670 icache_access = true;
671 Packet ifetch_pkt = Packet(&ifetch_req, MemCmd::ReadReq,
672 Packet::Broadcast);
673 ifetch_pkt.dataStatic(&inst);
674
675 if (hasPhysMemPort && ifetch_pkt.getAddr() == physMemAddr)
676 icache_latency = physmemPort.sendAtomic(&ifetch_pkt);
677 else
678 icache_latency = icachePort.sendAtomic(&ifetch_pkt);
679
680 assert(!ifetch_pkt.isError());
681
682 // ifetch_req is initialized to read the instruction directly
683 // into the CPU object's inst field.
684 //}
685 }
686
687 preExecute();
688
689 if (curStaticInst) {
690 fault = curStaticInst->execute(this, traceData);
691
692 // keep an instruction count
693 if (fault == NoFault)
694 countInst();
695 else if (traceData && !DTRACE(ExecFaulting)) {
696 delete traceData;
697 traceData = NULL;
698 }
699
700 postExecute();
701 }
702
703 // @todo remove me after debugging with legion done
704 if (curStaticInst && (!curStaticInst->isMicroop() ||
705 curStaticInst->isFirstMicroop()))
706 instCnt++;
707
708 Tick stall_ticks = 0;
709 if (simulate_inst_stalls && icache_access)
710 stall_ticks += icache_latency;
711
712 if (simulate_data_stalls && dcache_access)
713 stall_ticks += dcache_latency;
714
715 if (stall_ticks) {
716 Tick stall_cycles = stall_ticks / ticks(1);
717 Tick aligned_stall_ticks = ticks(stall_cycles);
718
719 if (aligned_stall_ticks < stall_ticks)
720 aligned_stall_ticks += 1;
721
722 latency += aligned_stall_ticks;
723 }
724
725 }
726 if(fault != NoFault || !stayAtPC)
727 advancePC(fault);
728 }
729
730 // instruction takes at least one cycle
731 if (latency < ticks(1))
732 latency = ticks(1);
733
734 if (_status != Idle)
735 schedule(tickEvent, curTick() + latency);
736 }
737
738
739 void
740 AtomicSimpleCPU::printAddr(Addr a)
741 {
742 dcachePort.printAddr(a);
743 }
744
745
746 ////////////////////////////////////////////////////////////////////////
747 //
748 // AtomicSimpleCPU Simulation Object
749 //
750 AtomicSimpleCPU *
751 AtomicSimpleCPUParams::create()
752 {
753 numThreads = 1;
754 #if !FULL_SYSTEM
755 if (workload.size() != 1)
756 panic("only one workload allowed");
757 #endif
758 return new AtomicSimpleCPU(this);
759 }