c597ac904b4da5068129d766ffcb22792f71763d
[gem5.git] / src / cpu / simple / base.cc
1 /*
2 * Copyright (c) 2010-2012, 2015, 2017 ARM Limited
3 * Copyright (c) 2013 Advanced Micro Devices, Inc.
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder. You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2002-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Steve Reinhardt
42 */
43
44 #include "cpu/simple/base.hh"
45
46 #include "arch/kernel_stats.hh"
47 #include "arch/stacktrace.hh"
48 #include "arch/utility.hh"
49 #include "arch/vtophys.hh"
50 #include "base/cp_annotate.hh"
51 #include "base/cprintf.hh"
52 #include "base/inifile.hh"
53 #include "base/loader/symtab.hh"
54 #include "base/logging.hh"
55 #include "base/pollevent.hh"
56 #include "base/trace.hh"
57 #include "base/types.hh"
58 #include "config/the_isa.hh"
59 #include "cpu/base.hh"
60 #include "cpu/checker/cpu.hh"
61 #include "cpu/checker/thread_context.hh"
62 #include "cpu/exetrace.hh"
63 #include "cpu/pred/bpred_unit.hh"
64 #include "cpu/profile.hh"
65 #include "cpu/simple/exec_context.hh"
66 #include "cpu/simple_thread.hh"
67 #include "cpu/smt.hh"
68 #include "cpu/static_inst.hh"
69 #include "cpu/thread_context.hh"
70 #include "debug/Decode.hh"
71 #include "debug/Fetch.hh"
72 #include "debug/Quiesce.hh"
73 #include "mem/mem_object.hh"
74 #include "mem/packet.hh"
75 #include "mem/request.hh"
76 #include "params/BaseSimpleCPU.hh"
77 #include "sim/byteswap.hh"
78 #include "sim/debug.hh"
79 #include "sim/faults.hh"
80 #include "sim/full_system.hh"
81 #include "sim/sim_events.hh"
82 #include "sim/sim_object.hh"
83 #include "sim/stats.hh"
84 #include "sim/system.hh"
85
86 using namespace std;
87 using namespace TheISA;
88
89 BaseSimpleCPU::BaseSimpleCPU(BaseSimpleCPUParams *p)
90 : BaseCPU(p),
91 curThread(0),
92 branchPred(p->branchPred),
93 traceData(NULL),
94 inst(),
95 _status(Idle)
96 {
97 SimpleThread *thread;
98
99 for (unsigned i = 0; i < numThreads; i++) {
100 if (FullSystem) {
101 thread = new SimpleThread(this, i, p->system,
102 p->itb, p->dtb, p->isa[i]);
103 } else {
104 thread = new SimpleThread(this, i, p->system, p->workload[i],
105 p->itb, p->dtb, p->isa[i]);
106 }
107 threadInfo.push_back(new SimpleExecContext(this, thread));
108 ThreadContext *tc = thread->getTC();
109 threadContexts.push_back(tc);
110 }
111
112 if (p->checker) {
113 if (numThreads != 1)
114 fatal("Checker currently does not support SMT");
115
116 BaseCPU *temp_checker = p->checker;
117 checker = dynamic_cast<CheckerCPU *>(temp_checker);
118 checker->setSystem(p->system);
119 // Manipulate thread context
120 ThreadContext *cpu_tc = threadContexts[0];
121 threadContexts[0] = new CheckerThreadContext<ThreadContext>(cpu_tc, this->checker);
122 } else {
123 checker = NULL;
124 }
125 }
126
127 void
128 BaseSimpleCPU::init()
129 {
130 BaseCPU::init();
131
132 for (auto tc : threadContexts) {
133 // Initialise the ThreadContext's memory proxies
134 tc->initMemProxies(tc);
135
136 if (FullSystem && !params()->switched_out) {
137 // initialize CPU, including PC
138 TheISA::initCPU(tc, tc->contextId());
139 }
140 }
141 }
142
143 void
144 BaseSimpleCPU::checkPcEventQueue()
145 {
146 Addr oldpc, pc = threadInfo[curThread]->thread->instAddr();
147 do {
148 oldpc = pc;
149 system->pcEventQueue.service(threadContexts[curThread]);
150 pc = threadInfo[curThread]->thread->instAddr();
151 } while (oldpc != pc);
152 }
153
154 void
155 BaseSimpleCPU::swapActiveThread()
156 {
157 if (numThreads > 1) {
158 if ((!curStaticInst || !curStaticInst->isDelayedCommit()) &&
159 !threadInfo[curThread]->stayAtPC) {
160 // Swap active threads
161 if (!activeThreads.empty()) {
162 curThread = activeThreads.front();
163 activeThreads.pop_front();
164 activeThreads.push_back(curThread);
165 }
166 }
167 }
168 }
169
170 void
171 BaseSimpleCPU::countInst()
172 {
173 SimpleExecContext& t_info = *threadInfo[curThread];
174
175 if (!curStaticInst->isMicroop() || curStaticInst->isLastMicroop()) {
176 t_info.numInst++;
177 t_info.numInsts++;
178 }
179 t_info.numOp++;
180 t_info.numOps++;
181
182 system->totalNumInsts++;
183 t_info.thread->funcExeInst++;
184 }
185
186 Counter
187 BaseSimpleCPU::totalInsts() const
188 {
189 Counter total_inst = 0;
190 for (auto& t_info : threadInfo) {
191 total_inst += t_info->numInst;
192 }
193
194 return total_inst;
195 }
196
197 Counter
198 BaseSimpleCPU::totalOps() const
199 {
200 Counter total_op = 0;
201 for (auto& t_info : threadInfo) {
202 total_op += t_info->numOp;
203 }
204
205 return total_op;
206 }
207
208 BaseSimpleCPU::~BaseSimpleCPU()
209 {
210 }
211
212 void
213 BaseSimpleCPU::haltContext(ThreadID thread_num)
214 {
215 // for now, these are equivalent
216 suspendContext(thread_num);
217 updateCycleCounters(BaseCPU::CPU_STATE_SLEEP);
218 }
219
220
221 void
222 BaseSimpleCPU::regStats()
223 {
224 using namespace Stats;
225
226 BaseCPU::regStats();
227
228 for (ThreadID tid = 0; tid < numThreads; tid++) {
229 SimpleExecContext& t_info = *threadInfo[tid];
230
231 std::string thread_str = name();
232 if (numThreads > 1)
233 thread_str += ".thread" + std::to_string(tid);
234
235 t_info.numInsts
236 .name(thread_str + ".committedInsts")
237 .desc("Number of instructions committed")
238 ;
239
240 t_info.numOps
241 .name(thread_str + ".committedOps")
242 .desc("Number of ops (including micro ops) committed")
243 ;
244
245 t_info.numIntAluAccesses
246 .name(thread_str + ".num_int_alu_accesses")
247 .desc("Number of integer alu accesses")
248 ;
249
250 t_info.numFpAluAccesses
251 .name(thread_str + ".num_fp_alu_accesses")
252 .desc("Number of float alu accesses")
253 ;
254
255 t_info.numVecAluAccesses
256 .name(thread_str + ".num_vec_alu_accesses")
257 .desc("Number of vector alu accesses")
258 ;
259
260 t_info.numCallsReturns
261 .name(thread_str + ".num_func_calls")
262 .desc("number of times a function call or return occured")
263 ;
264
265 t_info.numCondCtrlInsts
266 .name(thread_str + ".num_conditional_control_insts")
267 .desc("number of instructions that are conditional controls")
268 ;
269
270 t_info.numIntInsts
271 .name(thread_str + ".num_int_insts")
272 .desc("number of integer instructions")
273 ;
274
275 t_info.numFpInsts
276 .name(thread_str + ".num_fp_insts")
277 .desc("number of float instructions")
278 ;
279
280 t_info.numVecInsts
281 .name(thread_str + ".num_vec_insts")
282 .desc("number of vector instructions")
283 ;
284
285 t_info.numIntRegReads
286 .name(thread_str + ".num_int_register_reads")
287 .desc("number of times the integer registers were read")
288 ;
289
290 t_info.numIntRegWrites
291 .name(thread_str + ".num_int_register_writes")
292 .desc("number of times the integer registers were written")
293 ;
294
295 t_info.numFpRegReads
296 .name(thread_str + ".num_fp_register_reads")
297 .desc("number of times the floating registers were read")
298 ;
299
300 t_info.numFpRegWrites
301 .name(thread_str + ".num_fp_register_writes")
302 .desc("number of times the floating registers were written")
303 ;
304
305 t_info.numVecRegReads
306 .name(thread_str + ".num_vec_register_reads")
307 .desc("number of times the vector registers were read")
308 ;
309
310 t_info.numVecRegWrites
311 .name(thread_str + ".num_vec_register_writes")
312 .desc("number of times the vector registers were written")
313 ;
314
315 t_info.numCCRegReads
316 .name(thread_str + ".num_cc_register_reads")
317 .desc("number of times the CC registers were read")
318 .flags(nozero)
319 ;
320
321 t_info.numCCRegWrites
322 .name(thread_str + ".num_cc_register_writes")
323 .desc("number of times the CC registers were written")
324 .flags(nozero)
325 ;
326
327 t_info.numMemRefs
328 .name(thread_str + ".num_mem_refs")
329 .desc("number of memory refs")
330 ;
331
332 t_info.numStoreInsts
333 .name(thread_str + ".num_store_insts")
334 .desc("Number of store instructions")
335 ;
336
337 t_info.numLoadInsts
338 .name(thread_str + ".num_load_insts")
339 .desc("Number of load instructions")
340 ;
341
342 t_info.notIdleFraction
343 .name(thread_str + ".not_idle_fraction")
344 .desc("Percentage of non-idle cycles")
345 ;
346
347 t_info.idleFraction
348 .name(thread_str + ".idle_fraction")
349 .desc("Percentage of idle cycles")
350 ;
351
352 t_info.numBusyCycles
353 .name(thread_str + ".num_busy_cycles")
354 .desc("Number of busy cycles")
355 ;
356
357 t_info.numIdleCycles
358 .name(thread_str + ".num_idle_cycles")
359 .desc("Number of idle cycles")
360 ;
361
362 t_info.icacheStallCycles
363 .name(thread_str + ".icache_stall_cycles")
364 .desc("ICache total stall cycles")
365 .prereq(t_info.icacheStallCycles)
366 ;
367
368 t_info.dcacheStallCycles
369 .name(thread_str + ".dcache_stall_cycles")
370 .desc("DCache total stall cycles")
371 .prereq(t_info.dcacheStallCycles)
372 ;
373
374 t_info.statExecutedInstType
375 .init(Enums::Num_OpClass)
376 .name(thread_str + ".op_class")
377 .desc("Class of executed instruction")
378 .flags(total | pdf | dist)
379 ;
380
381 for (unsigned i = 0; i < Num_OpClasses; ++i) {
382 t_info.statExecutedInstType.subname(i, Enums::OpClassStrings[i]);
383 }
384
385 t_info.idleFraction = constant(1.0) - t_info.notIdleFraction;
386 t_info.numIdleCycles = t_info.idleFraction * numCycles;
387 t_info.numBusyCycles = t_info.notIdleFraction * numCycles;
388
389 t_info.numBranches
390 .name(thread_str + ".Branches")
391 .desc("Number of branches fetched")
392 .prereq(t_info.numBranches);
393
394 t_info.numPredictedBranches
395 .name(thread_str + ".predictedBranches")
396 .desc("Number of branches predicted as taken")
397 .prereq(t_info.numPredictedBranches);
398
399 t_info.numBranchMispred
400 .name(thread_str + ".BranchMispred")
401 .desc("Number of branch mispredictions")
402 .prereq(t_info.numBranchMispred);
403 }
404 }
405
406 void
407 BaseSimpleCPU::resetStats()
408 {
409 for (auto &thread_info : threadInfo) {
410 thread_info->notIdleFraction = (_status != Idle);
411 }
412 }
413
414 void
415 BaseSimpleCPU::serializeThread(CheckpointOut &cp, ThreadID tid) const
416 {
417 assert(_status == Idle || _status == Running);
418
419 threadInfo[tid]->thread->serialize(cp);
420 }
421
422 void
423 BaseSimpleCPU::unserializeThread(CheckpointIn &cp, ThreadID tid)
424 {
425 threadInfo[tid]->thread->unserialize(cp);
426 }
427
428 void
429 change_thread_state(ThreadID tid, int activate, int priority)
430 {
431 }
432
433 Addr
434 BaseSimpleCPU::dbg_vtophys(Addr addr)
435 {
436 return vtophys(threadContexts[curThread], addr);
437 }
438
439 void
440 BaseSimpleCPU::wakeup(ThreadID tid)
441 {
442 getCpuAddrMonitor(tid)->gotWakeup = true;
443
444 if (threadInfo[tid]->thread->status() == ThreadContext::Suspended) {
445 DPRINTF(Quiesce,"[tid:%d] Suspended Processor awoke\n", tid);
446 threadInfo[tid]->thread->activate();
447 }
448 }
449
450 void
451 BaseSimpleCPU::checkForInterrupts()
452 {
453 SimpleExecContext&t_info = *threadInfo[curThread];
454 SimpleThread* thread = t_info.thread;
455 ThreadContext* tc = thread->getTC();
456
457 if (checkInterrupts(tc)) {
458 Fault interrupt = interrupts[curThread]->getInterrupt(tc);
459
460 if (interrupt != NoFault) {
461 t_info.fetchOffset = 0;
462 interrupts[curThread]->updateIntrInfo(tc);
463 interrupt->invoke(tc);
464 thread->decoder.reset();
465 }
466 }
467 }
468
469
470 void
471 BaseSimpleCPU::setupFetchRequest(const RequestPtr &req)
472 {
473 SimpleExecContext &t_info = *threadInfo[curThread];
474 SimpleThread* thread = t_info.thread;
475
476 Addr instAddr = thread->instAddr();
477 Addr fetchPC = (instAddr & PCMask) + t_info.fetchOffset;
478
479 // set up memory request for instruction fetch
480 DPRINTF(Fetch, "Fetch: Inst PC:%08p, Fetch PC:%08p\n", instAddr, fetchPC);
481
482 req->setVirt(0, fetchPC, sizeof(MachInst), Request::INST_FETCH,
483 instMasterId(), instAddr);
484 }
485
486
487 void
488 BaseSimpleCPU::preExecute()
489 {
490 SimpleExecContext &t_info = *threadInfo[curThread];
491 SimpleThread* thread = t_info.thread;
492
493 // maintain $r0 semantics
494 thread->setIntReg(ZeroReg, 0);
495 #if THE_ISA == ALPHA_ISA
496 thread->setFloatRegBits(ZeroReg, 0);
497 #endif // ALPHA_ISA
498
499 // check for instruction-count-based events
500 comInstEventQueue[curThread]->serviceEvents(t_info.numInst);
501 system->instEventQueue.serviceEvents(system->totalNumInsts);
502
503 // decode the instruction
504 inst = gtoh(inst);
505
506 TheISA::PCState pcState = thread->pcState();
507
508 if (isRomMicroPC(pcState.microPC())) {
509 t_info.stayAtPC = false;
510 curStaticInst = microcodeRom.fetchMicroop(pcState.microPC(),
511 curMacroStaticInst);
512 } else if (!curMacroStaticInst) {
513 //We're not in the middle of a macro instruction
514 StaticInstPtr instPtr = NULL;
515
516 TheISA::Decoder *decoder = &(thread->decoder);
517
518 //Predecode, ie bundle up an ExtMachInst
519 //If more fetch data is needed, pass it in.
520 Addr fetchPC = (pcState.instAddr() & PCMask) + t_info.fetchOffset;
521 //if (decoder->needMoreBytes())
522 decoder->moreBytes(pcState, fetchPC, inst);
523 //else
524 // decoder->process();
525
526 //Decode an instruction if one is ready. Otherwise, we'll have to
527 //fetch beyond the MachInst at the current pc.
528 instPtr = decoder->decode(pcState);
529 if (instPtr) {
530 t_info.stayAtPC = false;
531 thread->pcState(pcState);
532 } else {
533 t_info.stayAtPC = true;
534 t_info.fetchOffset += sizeof(MachInst);
535 }
536
537 //If we decoded an instruction and it's microcoded, start pulling
538 //out micro ops
539 if (instPtr && instPtr->isMacroop()) {
540 curMacroStaticInst = instPtr;
541 curStaticInst =
542 curMacroStaticInst->fetchMicroop(pcState.microPC());
543 } else {
544 curStaticInst = instPtr;
545 }
546 } else {
547 //Read the next micro op from the macro op
548 curStaticInst = curMacroStaticInst->fetchMicroop(pcState.microPC());
549 }
550
551 //If we decoded an instruction this "tick", record information about it.
552 if (curStaticInst) {
553 #if TRACING_ON
554 traceData = tracer->getInstRecord(curTick(), thread->getTC(),
555 curStaticInst, thread->pcState(), curMacroStaticInst);
556
557 DPRINTF(Decode,"Decode: Decoded %s instruction: %#x\n",
558 curStaticInst->getName(), curStaticInst->machInst);
559 #endif // TRACING_ON
560 }
561
562 if (branchPred && curStaticInst &&
563 curStaticInst->isControl()) {
564 // Use a fake sequence number since we only have one
565 // instruction in flight at the same time.
566 const InstSeqNum cur_sn(0);
567 t_info.predPC = thread->pcState();
568 const bool predict_taken(
569 branchPred->predict(curStaticInst, cur_sn, t_info.predPC,
570 curThread));
571
572 if (predict_taken)
573 ++t_info.numPredictedBranches;
574 }
575 }
576
577 void
578 BaseSimpleCPU::postExecute()
579 {
580 SimpleExecContext &t_info = *threadInfo[curThread];
581 SimpleThread* thread = t_info.thread;
582
583 assert(curStaticInst);
584
585 TheISA::PCState pc = threadContexts[curThread]->pcState();
586 Addr instAddr = pc.instAddr();
587 if (FullSystem && thread->profile) {
588 bool usermode = TheISA::inUserMode(threadContexts[curThread]);
589 thread->profilePC = usermode ? 1 : instAddr;
590 ProfileNode *node = thread->profile->consume(threadContexts[curThread],
591 curStaticInst);
592 if (node)
593 thread->profileNode = node;
594 }
595
596 if (curStaticInst->isMemRef()) {
597 t_info.numMemRefs++;
598 }
599
600 if (curStaticInst->isLoad()) {
601 ++t_info.numLoad;
602 comLoadEventQueue[curThread]->serviceEvents(t_info.numLoad);
603 }
604
605 if (CPA::available()) {
606 CPA::cpa()->swAutoBegin(threadContexts[curThread], pc.nextInstAddr());
607 }
608
609 if (curStaticInst->isControl()) {
610 ++t_info.numBranches;
611 }
612
613 /* Power model statistics */
614 //integer alu accesses
615 if (curStaticInst->isInteger()){
616 t_info.numIntAluAccesses++;
617 t_info.numIntInsts++;
618 }
619
620 //float alu accesses
621 if (curStaticInst->isFloating()){
622 t_info.numFpAluAccesses++;
623 t_info.numFpInsts++;
624 }
625
626 //vector alu accesses
627 if (curStaticInst->isVector()){
628 t_info.numVecAluAccesses++;
629 t_info.numVecInsts++;
630 }
631
632 //number of function calls/returns to get window accesses
633 if (curStaticInst->isCall() || curStaticInst->isReturn()){
634 t_info.numCallsReturns++;
635 }
636
637 //the number of branch predictions that will be made
638 if (curStaticInst->isCondCtrl()){
639 t_info.numCondCtrlInsts++;
640 }
641
642 //result bus acceses
643 if (curStaticInst->isLoad()){
644 t_info.numLoadInsts++;
645 }
646
647 if (curStaticInst->isStore()){
648 t_info.numStoreInsts++;
649 }
650 /* End power model statistics */
651
652 t_info.statExecutedInstType[curStaticInst->opClass()]++;
653
654 if (FullSystem)
655 traceFunctions(instAddr);
656
657 if (traceData) {
658 traceData->dump();
659 delete traceData;
660 traceData = NULL;
661 }
662
663 // Call CPU instruction commit probes
664 probeInstCommit(curStaticInst);
665 }
666
667 void
668 BaseSimpleCPU::advancePC(const Fault &fault)
669 {
670 SimpleExecContext &t_info = *threadInfo[curThread];
671 SimpleThread* thread = t_info.thread;
672
673 const bool branching(thread->pcState().branching());
674
675 //Since we're moving to a new pc, zero out the offset
676 t_info.fetchOffset = 0;
677 if (fault != NoFault) {
678 curMacroStaticInst = StaticInst::nullStaticInstPtr;
679 fault->invoke(threadContexts[curThread], curStaticInst);
680 thread->decoder.reset();
681 } else {
682 if (curStaticInst) {
683 if (curStaticInst->isLastMicroop())
684 curMacroStaticInst = StaticInst::nullStaticInstPtr;
685 TheISA::PCState pcState = thread->pcState();
686 TheISA::advancePC(pcState, curStaticInst);
687 thread->pcState(pcState);
688 }
689 }
690
691 if (branchPred && curStaticInst && curStaticInst->isControl()) {
692 // Use a fake sequence number since we only have one
693 // instruction in flight at the same time.
694 const InstSeqNum cur_sn(0);
695
696 if (t_info.predPC == thread->pcState()) {
697 // Correctly predicted branch
698 branchPred->update(cur_sn, curThread);
699 } else {
700 // Mis-predicted branch
701 branchPred->squash(cur_sn, thread->pcState(), branching, curThread);
702 ++t_info.numBranchMispred;
703 }
704 }
705 }
706
707 void
708 BaseSimpleCPU::startup()
709 {
710 BaseCPU::startup();
711 for (auto& t_info : threadInfo)
712 t_info->thread->startup();
713 }