43c50b948b008ca194dfd0f08ff9ceeab2e0fa3f
[gem5.git] / src / cpu / simple / timing.cc
1 /*
2 * Copyright 2014 Google, Inc.
3 * Copyright (c) 2010-2013,2015 ARM Limited
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder. You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2002-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Steve Reinhardt
42 */
43
44 #include "cpu/simple/timing.hh"
45
46 #include "arch/locked_mem.hh"
47 #include "arch/mmapped_ipr.hh"
48 #include "arch/utility.hh"
49 #include "base/bigint.hh"
50 #include "config/the_isa.hh"
51 #include "cpu/exetrace.hh"
52 #include "debug/Config.hh"
53 #include "debug/Drain.hh"
54 #include "debug/ExecFaulting.hh"
55 #include "debug/Mwait.hh"
56 #include "debug/SimpleCPU.hh"
57 #include "mem/packet.hh"
58 #include "mem/packet_access.hh"
59 #include "params/TimingSimpleCPU.hh"
60 #include "sim/faults.hh"
61 #include "sim/full_system.hh"
62 #include "sim/system.hh"
63
64 using namespace std;
65 using namespace TheISA;
66
67 void
68 TimingSimpleCPU::init()
69 {
70 BaseSimpleCPU::init();
71 }
72
73 void
74 TimingSimpleCPU::TimingCPUPort::TickEvent::schedule(PacketPtr _pkt, Tick t)
75 {
76 pkt = _pkt;
77 cpu->schedule(this, t);
78 }
79
80 TimingSimpleCPU::TimingSimpleCPU(TimingSimpleCPUParams *p)
81 : BaseSimpleCPU(p), fetchTranslation(this), icachePort(this),
82 dcachePort(this), ifetch_pkt(NULL), dcache_pkt(NULL), previousCycle(0),
83 fetchEvent(this)
84 {
85 _status = Idle;
86 }
87
88
89
90 TimingSimpleCPU::~TimingSimpleCPU()
91 {
92 }
93
94 DrainState
95 TimingSimpleCPU::drain()
96 {
97 if (switchedOut())
98 return DrainState::Drained;
99
100 if (_status == Idle ||
101 (_status == BaseSimpleCPU::Running && isDrained())) {
102 DPRINTF(Drain, "No need to drain.\n");
103 activeThreads.clear();
104 return DrainState::Drained;
105 } else {
106 DPRINTF(Drain, "Requesting drain.\n");
107
108 // The fetch event can become descheduled if a drain didn't
109 // succeed on the first attempt. We need to reschedule it if
110 // the CPU is waiting for a microcode routine to complete.
111 if (_status == BaseSimpleCPU::Running && !fetchEvent.scheduled())
112 schedule(fetchEvent, clockEdge());
113
114 return DrainState::Draining;
115 }
116 }
117
118 void
119 TimingSimpleCPU::drainResume()
120 {
121 assert(!fetchEvent.scheduled());
122 if (switchedOut())
123 return;
124
125 DPRINTF(SimpleCPU, "Resume\n");
126 verifyMemoryMode();
127
128 assert(!threadContexts.empty());
129
130 _status = BaseSimpleCPU::Idle;
131
132 for (ThreadID tid = 0; tid < numThreads; tid++) {
133 if (threadInfo[tid]->thread->status() == ThreadContext::Active) {
134 threadInfo[tid]->notIdleFraction = 1;
135
136 activeThreads.push_back(tid);
137
138 _status = BaseSimpleCPU::Running;
139
140 // Fetch if any threads active
141 if (!fetchEvent.scheduled()) {
142 schedule(fetchEvent, nextCycle());
143 }
144 } else {
145 threadInfo[tid]->notIdleFraction = 0;
146 }
147 }
148
149 system->totalNumInsts = 0;
150 }
151
152 bool
153 TimingSimpleCPU::tryCompleteDrain()
154 {
155 if (drainState() != DrainState::Draining)
156 return false;
157
158 DPRINTF(Drain, "tryCompleteDrain.\n");
159 if (!isDrained())
160 return false;
161
162 DPRINTF(Drain, "CPU done draining, processing drain event\n");
163 signalDrainDone();
164
165 return true;
166 }
167
168 void
169 TimingSimpleCPU::switchOut()
170 {
171 SimpleExecContext& t_info = *threadInfo[curThread];
172 M5_VAR_USED SimpleThread* thread = t_info.thread;
173
174 BaseSimpleCPU::switchOut();
175
176 assert(!fetchEvent.scheduled());
177 assert(_status == BaseSimpleCPU::Running || _status == Idle);
178 assert(!t_info.stayAtPC);
179 assert(thread->microPC() == 0);
180
181 updateCycleCounts();
182 }
183
184
185 void
186 TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
187 {
188 BaseSimpleCPU::takeOverFrom(oldCPU);
189
190 previousCycle = curCycle();
191 }
192
193 void
194 TimingSimpleCPU::verifyMemoryMode() const
195 {
196 if (!system->isTimingMode()) {
197 fatal("The timing CPU requires the memory system to be in "
198 "'timing' mode.\n");
199 }
200 }
201
202 void
203 TimingSimpleCPU::activateContext(ThreadID thread_num)
204 {
205 DPRINTF(SimpleCPU, "ActivateContext %d\n", thread_num);
206
207 assert(thread_num < numThreads);
208
209 threadInfo[thread_num]->notIdleFraction = 1;
210 if (_status == BaseSimpleCPU::Idle)
211 _status = BaseSimpleCPU::Running;
212
213 // kick things off by initiating the fetch of the next instruction
214 if (!fetchEvent.scheduled())
215 schedule(fetchEvent, clockEdge(Cycles(0)));
216
217 if (std::find(activeThreads.begin(), activeThreads.end(), thread_num)
218 == activeThreads.end()) {
219 activeThreads.push_back(thread_num);
220 }
221
222 BaseCPU::activateContext(thread_num);
223 }
224
225
226 void
227 TimingSimpleCPU::suspendContext(ThreadID thread_num)
228 {
229 DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
230
231 assert(thread_num < numThreads);
232 activeThreads.remove(thread_num);
233
234 if (_status == Idle)
235 return;
236
237 assert(_status == BaseSimpleCPU::Running);
238
239 threadInfo[thread_num]->notIdleFraction = 0;
240
241 if (activeThreads.empty()) {
242 _status = Idle;
243
244 if (fetchEvent.scheduled()) {
245 deschedule(fetchEvent);
246 }
247 }
248
249 BaseCPU::suspendContext(thread_num);
250 }
251
252 bool
253 TimingSimpleCPU::handleReadPacket(PacketPtr pkt)
254 {
255 SimpleExecContext &t_info = *threadInfo[curThread];
256 SimpleThread* thread = t_info.thread;
257
258 RequestPtr req = pkt->req;
259
260 // We're about the issues a locked load, so tell the monitor
261 // to start caring about this address
262 if (pkt->isRead() && pkt->req->isLLSC()) {
263 TheISA::handleLockedRead(thread, pkt->req);
264 }
265 if (req->isMmappedIpr()) {
266 Cycles delay = TheISA::handleIprRead(thread->getTC(), pkt);
267 new IprEvent(pkt, this, clockEdge(delay));
268 _status = DcacheWaitResponse;
269 dcache_pkt = NULL;
270 } else if (!dcachePort.sendTimingReq(pkt)) {
271 _status = DcacheRetry;
272 dcache_pkt = pkt;
273 } else {
274 _status = DcacheWaitResponse;
275 // memory system takes ownership of packet
276 dcache_pkt = NULL;
277 }
278 return dcache_pkt == NULL;
279 }
280
281 void
282 TimingSimpleCPU::sendData(RequestPtr req, uint8_t *data, uint64_t *res,
283 bool read)
284 {
285 SimpleExecContext &t_info = *threadInfo[curThread];
286 SimpleThread* thread = t_info.thread;
287
288 PacketPtr pkt = buildPacket(req, read);
289 pkt->dataDynamic<uint8_t>(data);
290 if (req->getFlags().isSet(Request::NO_ACCESS)) {
291 assert(!dcache_pkt);
292 pkt->makeResponse();
293 completeDataAccess(pkt);
294 } else if (read) {
295 handleReadPacket(pkt);
296 } else {
297 bool do_access = true; // flag to suppress cache access
298
299 if (req->isLLSC()) {
300 do_access = TheISA::handleLockedWrite(thread, req, dcachePort.cacheBlockMask);
301 } else if (req->isCondSwap()) {
302 assert(res);
303 req->setExtraData(*res);
304 }
305
306 if (do_access) {
307 dcache_pkt = pkt;
308 handleWritePacket();
309 threadSnoop(pkt, curThread);
310 } else {
311 _status = DcacheWaitResponse;
312 completeDataAccess(pkt);
313 }
314 }
315 }
316
317 void
318 TimingSimpleCPU::sendSplitData(RequestPtr req1, RequestPtr req2,
319 RequestPtr req, uint8_t *data, bool read)
320 {
321 PacketPtr pkt1, pkt2;
322 buildSplitPacket(pkt1, pkt2, req1, req2, req, data, read);
323 if (req->getFlags().isSet(Request::NO_ACCESS)) {
324 assert(!dcache_pkt);
325 pkt1->makeResponse();
326 completeDataAccess(pkt1);
327 } else if (read) {
328 SplitFragmentSenderState * send_state =
329 dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
330 if (handleReadPacket(pkt1)) {
331 send_state->clearFromParent();
332 send_state = dynamic_cast<SplitFragmentSenderState *>(
333 pkt2->senderState);
334 if (handleReadPacket(pkt2)) {
335 send_state->clearFromParent();
336 }
337 }
338 } else {
339 dcache_pkt = pkt1;
340 SplitFragmentSenderState * send_state =
341 dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
342 if (handleWritePacket()) {
343 send_state->clearFromParent();
344 dcache_pkt = pkt2;
345 send_state = dynamic_cast<SplitFragmentSenderState *>(
346 pkt2->senderState);
347 if (handleWritePacket()) {
348 send_state->clearFromParent();
349 }
350 }
351 }
352 }
353
354 void
355 TimingSimpleCPU::translationFault(const Fault &fault)
356 {
357 // fault may be NoFault in cases where a fault is suppressed,
358 // for instance prefetches.
359 updateCycleCounts();
360
361 if (traceData) {
362 // Since there was a fault, we shouldn't trace this instruction.
363 delete traceData;
364 traceData = NULL;
365 }
366
367 postExecute();
368
369 advanceInst(fault);
370 }
371
372 PacketPtr
373 TimingSimpleCPU::buildPacket(RequestPtr req, bool read)
374 {
375 return read ? Packet::createRead(req) : Packet::createWrite(req);
376 }
377
378 void
379 TimingSimpleCPU::buildSplitPacket(PacketPtr &pkt1, PacketPtr &pkt2,
380 RequestPtr req1, RequestPtr req2, RequestPtr req,
381 uint8_t *data, bool read)
382 {
383 pkt1 = pkt2 = NULL;
384
385 assert(!req1->isMmappedIpr() && !req2->isMmappedIpr());
386
387 if (req->getFlags().isSet(Request::NO_ACCESS)) {
388 pkt1 = buildPacket(req, read);
389 return;
390 }
391
392 pkt1 = buildPacket(req1, read);
393 pkt2 = buildPacket(req2, read);
394
395 PacketPtr pkt = new Packet(req, pkt1->cmd.responseCommand());
396
397 pkt->dataDynamic<uint8_t>(data);
398 pkt1->dataStatic<uint8_t>(data);
399 pkt2->dataStatic<uint8_t>(data + req1->getSize());
400
401 SplitMainSenderState * main_send_state = new SplitMainSenderState;
402 pkt->senderState = main_send_state;
403 main_send_state->fragments[0] = pkt1;
404 main_send_state->fragments[1] = pkt2;
405 main_send_state->outstanding = 2;
406 pkt1->senderState = new SplitFragmentSenderState(pkt, 0);
407 pkt2->senderState = new SplitFragmentSenderState(pkt, 1);
408 }
409
410 Fault
411 TimingSimpleCPU::readMem(Addr addr, uint8_t *data,
412 unsigned size, Request::Flags flags)
413 {
414 panic("readMem() is for atomic accesses, and should "
415 "never be called on TimingSimpleCPU.\n");
416 }
417
418 Fault
419 TimingSimpleCPU::initiateMemRead(Addr addr, unsigned size,
420 Request::Flags flags)
421 {
422 SimpleExecContext &t_info = *threadInfo[curThread];
423 SimpleThread* thread = t_info.thread;
424
425 Fault fault;
426 const int asid = 0;
427 const Addr pc = thread->instAddr();
428 unsigned block_size = cacheLineSize();
429 BaseTLB::Mode mode = BaseTLB::Read;
430
431 if (traceData)
432 traceData->setMem(addr, size, flags);
433
434 RequestPtr req = new Request(asid, addr, size, flags, dataMasterId(), pc,
435 thread->contextId());
436
437 req->taskId(taskId());
438
439 Addr split_addr = roundDown(addr + size - 1, block_size);
440 assert(split_addr <= addr || split_addr - addr < block_size);
441
442 _status = DTBWaitResponse;
443 if (split_addr > addr) {
444 RequestPtr req1, req2;
445 assert(!req->isLLSC() && !req->isSwap());
446 req->splitOnVaddr(split_addr, req1, req2);
447
448 WholeTranslationState *state =
449 new WholeTranslationState(req, req1, req2, new uint8_t[size],
450 NULL, mode);
451 DataTranslation<TimingSimpleCPU *> *trans1 =
452 new DataTranslation<TimingSimpleCPU *>(this, state, 0);
453 DataTranslation<TimingSimpleCPU *> *trans2 =
454 new DataTranslation<TimingSimpleCPU *>(this, state, 1);
455
456 thread->dtb->translateTiming(req1, thread->getTC(), trans1, mode);
457 thread->dtb->translateTiming(req2, thread->getTC(), trans2, mode);
458 } else {
459 WholeTranslationState *state =
460 new WholeTranslationState(req, new uint8_t[size], NULL, mode);
461 DataTranslation<TimingSimpleCPU *> *translation
462 = new DataTranslation<TimingSimpleCPU *>(this, state);
463 thread->dtb->translateTiming(req, thread->getTC(), translation, mode);
464 }
465
466 return NoFault;
467 }
468
469 bool
470 TimingSimpleCPU::handleWritePacket()
471 {
472 SimpleExecContext &t_info = *threadInfo[curThread];
473 SimpleThread* thread = t_info.thread;
474
475 RequestPtr req = dcache_pkt->req;
476 if (req->isMmappedIpr()) {
477 Cycles delay = TheISA::handleIprWrite(thread->getTC(), dcache_pkt);
478 new IprEvent(dcache_pkt, this, clockEdge(delay));
479 _status = DcacheWaitResponse;
480 dcache_pkt = NULL;
481 } else if (!dcachePort.sendTimingReq(dcache_pkt)) {
482 _status = DcacheRetry;
483 } else {
484 _status = DcacheWaitResponse;
485 // memory system takes ownership of packet
486 dcache_pkt = NULL;
487 }
488 return dcache_pkt == NULL;
489 }
490
491 Fault
492 TimingSimpleCPU::writeMem(uint8_t *data, unsigned size,
493 Addr addr, Request::Flags flags, uint64_t *res)
494 {
495 SimpleExecContext &t_info = *threadInfo[curThread];
496 SimpleThread* thread = t_info.thread;
497
498 uint8_t *newData = new uint8_t[size];
499 const int asid = 0;
500 const Addr pc = thread->instAddr();
501 unsigned block_size = cacheLineSize();
502 BaseTLB::Mode mode = BaseTLB::Write;
503
504 if (data == NULL) {
505 assert(flags & Request::CACHE_BLOCK_ZERO);
506 // This must be a cache block cleaning request
507 memset(newData, 0, size);
508 } else {
509 memcpy(newData, data, size);
510 }
511
512 if (traceData)
513 traceData->setMem(addr, size, flags);
514
515 RequestPtr req = new Request(asid, addr, size, flags, dataMasterId(), pc,
516 thread->contextId());
517
518 req->taskId(taskId());
519
520 Addr split_addr = roundDown(addr + size - 1, block_size);
521 assert(split_addr <= addr || split_addr - addr < block_size);
522
523 _status = DTBWaitResponse;
524 if (split_addr > addr) {
525 RequestPtr req1, req2;
526 assert(!req->isLLSC() && !req->isSwap());
527 req->splitOnVaddr(split_addr, req1, req2);
528
529 WholeTranslationState *state =
530 new WholeTranslationState(req, req1, req2, newData, res, mode);
531 DataTranslation<TimingSimpleCPU *> *trans1 =
532 new DataTranslation<TimingSimpleCPU *>(this, state, 0);
533 DataTranslation<TimingSimpleCPU *> *trans2 =
534 new DataTranslation<TimingSimpleCPU *>(this, state, 1);
535
536 thread->dtb->translateTiming(req1, thread->getTC(), trans1, mode);
537 thread->dtb->translateTiming(req2, thread->getTC(), trans2, mode);
538 } else {
539 WholeTranslationState *state =
540 new WholeTranslationState(req, newData, res, mode);
541 DataTranslation<TimingSimpleCPU *> *translation =
542 new DataTranslation<TimingSimpleCPU *>(this, state);
543 thread->dtb->translateTiming(req, thread->getTC(), translation, mode);
544 }
545
546 // Translation faults will be returned via finishTranslation()
547 return NoFault;
548 }
549
550 void
551 TimingSimpleCPU::threadSnoop(PacketPtr pkt, ThreadID sender)
552 {
553 for (ThreadID tid = 0; tid < numThreads; tid++) {
554 if (tid != sender) {
555 if (getCpuAddrMonitor(tid)->doMonitor(pkt)) {
556 wakeup(tid);
557 }
558 TheISA::handleLockedSnoop(threadInfo[tid]->thread, pkt,
559 dcachePort.cacheBlockMask);
560 }
561 }
562 }
563
564 void
565 TimingSimpleCPU::finishTranslation(WholeTranslationState *state)
566 {
567 _status = BaseSimpleCPU::Running;
568
569 if (state->getFault() != NoFault) {
570 if (state->isPrefetch()) {
571 state->setNoFault();
572 }
573 delete [] state->data;
574 state->deleteReqs();
575 translationFault(state->getFault());
576 } else {
577 if (!state->isSplit) {
578 sendData(state->mainReq, state->data, state->res,
579 state->mode == BaseTLB::Read);
580 } else {
581 sendSplitData(state->sreqLow, state->sreqHigh, state->mainReq,
582 state->data, state->mode == BaseTLB::Read);
583 }
584 }
585
586 delete state;
587 }
588
589
590 void
591 TimingSimpleCPU::fetch()
592 {
593 // Change thread if multi-threaded
594 swapActiveThread();
595
596 SimpleExecContext &t_info = *threadInfo[curThread];
597 SimpleThread* thread = t_info.thread;
598
599 DPRINTF(SimpleCPU, "Fetch\n");
600
601 if (!curStaticInst || !curStaticInst->isDelayedCommit()) {
602 checkForInterrupts();
603 checkPcEventQueue();
604 }
605
606 // We must have just got suspended by a PC event
607 if (_status == Idle)
608 return;
609
610 TheISA::PCState pcState = thread->pcState();
611 bool needToFetch = !isRomMicroPC(pcState.microPC()) &&
612 !curMacroStaticInst;
613
614 if (needToFetch) {
615 _status = BaseSimpleCPU::Running;
616 Request *ifetch_req = new Request();
617 ifetch_req->taskId(taskId());
618 ifetch_req->setContext(thread->contextId());
619 setupFetchRequest(ifetch_req);
620 DPRINTF(SimpleCPU, "Translating address %#x\n", ifetch_req->getVaddr());
621 thread->itb->translateTiming(ifetch_req, thread->getTC(),
622 &fetchTranslation, BaseTLB::Execute);
623 } else {
624 _status = IcacheWaitResponse;
625 completeIfetch(NULL);
626
627 updateCycleCounts();
628 }
629 }
630
631
632 void
633 TimingSimpleCPU::sendFetch(const Fault &fault, RequestPtr req,
634 ThreadContext *tc)
635 {
636 if (fault == NoFault) {
637 DPRINTF(SimpleCPU, "Sending fetch for addr %#x(pa: %#x)\n",
638 req->getVaddr(), req->getPaddr());
639 ifetch_pkt = new Packet(req, MemCmd::ReadReq);
640 ifetch_pkt->dataStatic(&inst);
641 DPRINTF(SimpleCPU, " -- pkt addr: %#x\n", ifetch_pkt->getAddr());
642
643 if (!icachePort.sendTimingReq(ifetch_pkt)) {
644 // Need to wait for retry
645 _status = IcacheRetry;
646 } else {
647 // Need to wait for cache to respond
648 _status = IcacheWaitResponse;
649 // ownership of packet transferred to memory system
650 ifetch_pkt = NULL;
651 }
652 } else {
653 DPRINTF(SimpleCPU, "Translation of addr %#x faulted\n", req->getVaddr());
654 delete req;
655 // fetch fault: advance directly to next instruction (fault handler)
656 _status = BaseSimpleCPU::Running;
657 advanceInst(fault);
658 }
659
660 updateCycleCounts();
661 }
662
663
664 void
665 TimingSimpleCPU::advanceInst(const Fault &fault)
666 {
667 SimpleExecContext &t_info = *threadInfo[curThread];
668
669 if (_status == Faulting)
670 return;
671
672 if (fault != NoFault) {
673 advancePC(fault);
674 DPRINTF(SimpleCPU, "Fault occured, scheduling fetch event\n");
675 reschedule(fetchEvent, clockEdge(), true);
676 _status = Faulting;
677 return;
678 }
679
680
681 if (!t_info.stayAtPC)
682 advancePC(fault);
683
684 if (tryCompleteDrain())
685 return;
686
687 if (_status == BaseSimpleCPU::Running) {
688 // kick off fetch of next instruction... callback from icache
689 // response will cause that instruction to be executed,
690 // keeping the CPU running.
691 fetch();
692 }
693 }
694
695
696 void
697 TimingSimpleCPU::completeIfetch(PacketPtr pkt)
698 {
699 SimpleExecContext& t_info = *threadInfo[curThread];
700
701 DPRINTF(SimpleCPU, "Complete ICache Fetch for addr %#x\n", pkt ?
702 pkt->getAddr() : 0);
703
704 // received a response from the icache: execute the received
705 // instruction
706 assert(!pkt || !pkt->isError());
707 assert(_status == IcacheWaitResponse);
708
709 _status = BaseSimpleCPU::Running;
710
711 updateCycleCounts();
712
713 if (pkt)
714 pkt->req->setAccessLatency();
715
716
717 preExecute();
718 if (curStaticInst && curStaticInst->isMemRef()) {
719 // load or store: just send to dcache
720 Fault fault = curStaticInst->initiateAcc(&t_info, traceData);
721
722 // If we're not running now the instruction will complete in a dcache
723 // response callback or the instruction faulted and has started an
724 // ifetch
725 if (_status == BaseSimpleCPU::Running) {
726 if (fault != NoFault && traceData) {
727 // If there was a fault, we shouldn't trace this instruction.
728 delete traceData;
729 traceData = NULL;
730 }
731
732 postExecute();
733 // @todo remove me after debugging with legion done
734 if (curStaticInst && (!curStaticInst->isMicroop() ||
735 curStaticInst->isFirstMicroop()))
736 instCnt++;
737 advanceInst(fault);
738 }
739 } else if (curStaticInst) {
740 // non-memory instruction: execute completely now
741 Fault fault = curStaticInst->execute(&t_info, traceData);
742
743 // keep an instruction count
744 if (fault == NoFault)
745 countInst();
746 else if (traceData && !DTRACE(ExecFaulting)) {
747 delete traceData;
748 traceData = NULL;
749 }
750
751 postExecute();
752 // @todo remove me after debugging with legion done
753 if (curStaticInst && (!curStaticInst->isMicroop() ||
754 curStaticInst->isFirstMicroop()))
755 instCnt++;
756 advanceInst(fault);
757 } else {
758 advanceInst(NoFault);
759 }
760
761 if (pkt) {
762 delete pkt->req;
763 delete pkt;
764 }
765 }
766
767 void
768 TimingSimpleCPU::IcachePort::ITickEvent::process()
769 {
770 cpu->completeIfetch(pkt);
771 }
772
773 bool
774 TimingSimpleCPU::IcachePort::recvTimingResp(PacketPtr pkt)
775 {
776 DPRINTF(SimpleCPU, "Received fetch response %#x\n", pkt->getAddr());
777 // we should only ever see one response per cycle since we only
778 // issue a new request once this response is sunk
779 assert(!tickEvent.scheduled());
780 // delay processing of returned data until next CPU clock edge
781 tickEvent.schedule(pkt, cpu->clockEdge());
782
783 return true;
784 }
785
786 void
787 TimingSimpleCPU::IcachePort::recvReqRetry()
788 {
789 // we shouldn't get a retry unless we have a packet that we're
790 // waiting to transmit
791 assert(cpu->ifetch_pkt != NULL);
792 assert(cpu->_status == IcacheRetry);
793 PacketPtr tmp = cpu->ifetch_pkt;
794 if (sendTimingReq(tmp)) {
795 cpu->_status = IcacheWaitResponse;
796 cpu->ifetch_pkt = NULL;
797 }
798 }
799
800 void
801 TimingSimpleCPU::completeDataAccess(PacketPtr pkt)
802 {
803 // received a response from the dcache: complete the load or store
804 // instruction
805 assert(!pkt->isError());
806 assert(_status == DcacheWaitResponse || _status == DTBWaitResponse ||
807 pkt->req->getFlags().isSet(Request::NO_ACCESS));
808
809 pkt->req->setAccessLatency();
810
811 updateCycleCounts();
812
813 if (pkt->senderState) {
814 SplitFragmentSenderState * send_state =
815 dynamic_cast<SplitFragmentSenderState *>(pkt->senderState);
816 assert(send_state);
817 delete pkt->req;
818 delete pkt;
819 PacketPtr big_pkt = send_state->bigPkt;
820 delete send_state;
821
822 SplitMainSenderState * main_send_state =
823 dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
824 assert(main_send_state);
825 // Record the fact that this packet is no longer outstanding.
826 assert(main_send_state->outstanding != 0);
827 main_send_state->outstanding--;
828
829 if (main_send_state->outstanding) {
830 return;
831 } else {
832 delete main_send_state;
833 big_pkt->senderState = NULL;
834 pkt = big_pkt;
835 }
836 }
837
838 _status = BaseSimpleCPU::Running;
839
840 Fault fault = curStaticInst->completeAcc(pkt, threadInfo[curThread],
841 traceData);
842
843 // keep an instruction count
844 if (fault == NoFault)
845 countInst();
846 else if (traceData) {
847 // If there was a fault, we shouldn't trace this instruction.
848 delete traceData;
849 traceData = NULL;
850 }
851
852 delete pkt->req;
853 delete pkt;
854
855 postExecute();
856
857 advanceInst(fault);
858 }
859
860 void
861 TimingSimpleCPU::updateCycleCounts()
862 {
863 const Cycles delta(curCycle() - previousCycle);
864
865 numCycles += delta;
866 ppCycles->notify(delta);
867
868 previousCycle = curCycle();
869 }
870
871 void
872 TimingSimpleCPU::DcachePort::recvTimingSnoopReq(PacketPtr pkt)
873 {
874 for (ThreadID tid = 0; tid < cpu->numThreads; tid++) {
875 if (cpu->getCpuAddrMonitor(tid)->doMonitor(pkt)) {
876 cpu->wakeup(tid);
877 }
878 }
879
880 // Making it uniform across all CPUs:
881 // The CPUs need to be woken up only on an invalidation packet (when using caches)
882 // or on an incoming write packet (when not using caches)
883 // It is not necessary to wake up the processor on all incoming packets
884 if (pkt->isInvalidate() || pkt->isWrite()) {
885 for (auto &t_info : cpu->threadInfo) {
886 TheISA::handleLockedSnoop(t_info->thread, pkt, cacheBlockMask);
887 }
888 }
889 }
890
891 void
892 TimingSimpleCPU::DcachePort::recvFunctionalSnoop(PacketPtr pkt)
893 {
894 for (ThreadID tid = 0; tid < cpu->numThreads; tid++) {
895 if (cpu->getCpuAddrMonitor(tid)->doMonitor(pkt)) {
896 cpu->wakeup(tid);
897 }
898 }
899 }
900
901 bool
902 TimingSimpleCPU::DcachePort::recvTimingResp(PacketPtr pkt)
903 {
904 DPRINTF(SimpleCPU, "Received load/store response %#x\n", pkt->getAddr());
905
906 // The timing CPU is not really ticked, instead it relies on the
907 // memory system (fetch and load/store) to set the pace.
908 if (!tickEvent.scheduled()) {
909 // Delay processing of returned data until next CPU clock edge
910 tickEvent.schedule(pkt, cpu->clockEdge());
911 return true;
912 } else {
913 // In the case of a split transaction and a cache that is
914 // faster than a CPU we could get two responses in the
915 // same tick, delay the second one
916 if (!retryRespEvent.scheduled())
917 cpu->schedule(retryRespEvent, cpu->clockEdge(Cycles(1)));
918 return false;
919 }
920 }
921
922 void
923 TimingSimpleCPU::DcachePort::DTickEvent::process()
924 {
925 cpu->completeDataAccess(pkt);
926 }
927
928 void
929 TimingSimpleCPU::DcachePort::recvReqRetry()
930 {
931 // we shouldn't get a retry unless we have a packet that we're
932 // waiting to transmit
933 assert(cpu->dcache_pkt != NULL);
934 assert(cpu->_status == DcacheRetry);
935 PacketPtr tmp = cpu->dcache_pkt;
936 if (tmp->senderState) {
937 // This is a packet from a split access.
938 SplitFragmentSenderState * send_state =
939 dynamic_cast<SplitFragmentSenderState *>(tmp->senderState);
940 assert(send_state);
941 PacketPtr big_pkt = send_state->bigPkt;
942
943 SplitMainSenderState * main_send_state =
944 dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
945 assert(main_send_state);
946
947 if (sendTimingReq(tmp)) {
948 // If we were able to send without retrying, record that fact
949 // and try sending the other fragment.
950 send_state->clearFromParent();
951 int other_index = main_send_state->getPendingFragment();
952 if (other_index > 0) {
953 tmp = main_send_state->fragments[other_index];
954 cpu->dcache_pkt = tmp;
955 if ((big_pkt->isRead() && cpu->handleReadPacket(tmp)) ||
956 (big_pkt->isWrite() && cpu->handleWritePacket())) {
957 main_send_state->fragments[other_index] = NULL;
958 }
959 } else {
960 cpu->_status = DcacheWaitResponse;
961 // memory system takes ownership of packet
962 cpu->dcache_pkt = NULL;
963 }
964 }
965 } else if (sendTimingReq(tmp)) {
966 cpu->_status = DcacheWaitResponse;
967 // memory system takes ownership of packet
968 cpu->dcache_pkt = NULL;
969 }
970 }
971
972 TimingSimpleCPU::IprEvent::IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu,
973 Tick t)
974 : pkt(_pkt), cpu(_cpu)
975 {
976 cpu->schedule(this, t);
977 }
978
979 void
980 TimingSimpleCPU::IprEvent::process()
981 {
982 cpu->completeDataAccess(pkt);
983 }
984
985 const char *
986 TimingSimpleCPU::IprEvent::description() const
987 {
988 return "Timing Simple CPU Delay IPR event";
989 }
990
991
992 void
993 TimingSimpleCPU::printAddr(Addr a)
994 {
995 dcachePort.printAddr(a);
996 }
997
998
999 ////////////////////////////////////////////////////////////////////////
1000 //
1001 // TimingSimpleCPU Simulation Object
1002 //
1003 TimingSimpleCPU *
1004 TimingSimpleCPUParams::create()
1005 {
1006 return new TimingSimpleCPU(this);
1007 }