6487ffa9771236cfe67c675545f7a987c5a33d64
[gem5.git] / src / cpu / simple / timing.cc
1 /*
2 * Copyright 2014 Google, Inc.
3 * Copyright (c) 2010-2013,2015,2017-2018 ARM Limited
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder. You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2002-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Steve Reinhardt
42 */
43
44 #include "cpu/simple/timing.hh"
45
46 #include "arch/locked_mem.hh"
47 #include "arch/mmapped_ipr.hh"
48 #include "arch/utility.hh"
49 #include "config/the_isa.hh"
50 #include "cpu/exetrace.hh"
51 #include "debug/Config.hh"
52 #include "debug/Drain.hh"
53 #include "debug/ExecFaulting.hh"
54 #include "debug/Mwait.hh"
55 #include "debug/SimpleCPU.hh"
56 #include "mem/packet.hh"
57 #include "mem/packet_access.hh"
58 #include "params/TimingSimpleCPU.hh"
59 #include "sim/faults.hh"
60 #include "sim/full_system.hh"
61 #include "sim/system.hh"
62
63 using namespace std;
64 using namespace TheISA;
65
66 void
67 TimingSimpleCPU::init()
68 {
69 BaseSimpleCPU::init();
70 }
71
72 void
73 TimingSimpleCPU::TimingCPUPort::TickEvent::schedule(PacketPtr _pkt, Tick t)
74 {
75 pkt = _pkt;
76 cpu->schedule(this, t);
77 }
78
79 TimingSimpleCPU::TimingSimpleCPU(TimingSimpleCPUParams *p)
80 : BaseSimpleCPU(p), fetchTranslation(this), icachePort(this),
81 dcachePort(this), ifetch_pkt(NULL), dcache_pkt(NULL), previousCycle(0),
82 fetchEvent([this]{ fetch(); }, name())
83 {
84 _status = Idle;
85 }
86
87
88
89 TimingSimpleCPU::~TimingSimpleCPU()
90 {
91 }
92
93 DrainState
94 TimingSimpleCPU::drain()
95 {
96 // Deschedule any power gating event (if any)
97 deschedulePowerGatingEvent();
98
99 if (switchedOut())
100 return DrainState::Drained;
101
102 if (_status == Idle ||
103 (_status == BaseSimpleCPU::Running && isCpuDrained())) {
104 DPRINTF(Drain, "No need to drain.\n");
105 activeThreads.clear();
106 return DrainState::Drained;
107 } else {
108 DPRINTF(Drain, "Requesting drain.\n");
109
110 // The fetch event can become descheduled if a drain didn't
111 // succeed on the first attempt. We need to reschedule it if
112 // the CPU is waiting for a microcode routine to complete.
113 if (_status == BaseSimpleCPU::Running && !fetchEvent.scheduled())
114 schedule(fetchEvent, clockEdge());
115
116 return DrainState::Draining;
117 }
118 }
119
120 void
121 TimingSimpleCPU::drainResume()
122 {
123 assert(!fetchEvent.scheduled());
124 if (switchedOut())
125 return;
126
127 DPRINTF(SimpleCPU, "Resume\n");
128 verifyMemoryMode();
129
130 assert(!threadContexts.empty());
131
132 _status = BaseSimpleCPU::Idle;
133
134 for (ThreadID tid = 0; tid < numThreads; tid++) {
135 if (threadInfo[tid]->thread->status() == ThreadContext::Active) {
136 threadInfo[tid]->notIdleFraction = 1;
137
138 activeThreads.push_back(tid);
139
140 _status = BaseSimpleCPU::Running;
141
142 // Fetch if any threads active
143 if (!fetchEvent.scheduled()) {
144 schedule(fetchEvent, nextCycle());
145 }
146 } else {
147 threadInfo[tid]->notIdleFraction = 0;
148 }
149 }
150
151 // Reschedule any power gating event (if any)
152 schedulePowerGatingEvent();
153
154 system->totalNumInsts = 0;
155 }
156
157 bool
158 TimingSimpleCPU::tryCompleteDrain()
159 {
160 if (drainState() != DrainState::Draining)
161 return false;
162
163 DPRINTF(Drain, "tryCompleteDrain.\n");
164 if (!isCpuDrained())
165 return false;
166
167 DPRINTF(Drain, "CPU done draining, processing drain event\n");
168 signalDrainDone();
169
170 return true;
171 }
172
173 void
174 TimingSimpleCPU::switchOut()
175 {
176 SimpleExecContext& t_info = *threadInfo[curThread];
177 M5_VAR_USED SimpleThread* thread = t_info.thread;
178
179 BaseSimpleCPU::switchOut();
180
181 assert(!fetchEvent.scheduled());
182 assert(_status == BaseSimpleCPU::Running || _status == Idle);
183 assert(!t_info.stayAtPC);
184 assert(thread->microPC() == 0);
185
186 updateCycleCounts();
187 updateCycleCounters(BaseCPU::CPU_STATE_ON);
188 }
189
190
191 void
192 TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
193 {
194 BaseSimpleCPU::takeOverFrom(oldCPU);
195
196 previousCycle = curCycle();
197 }
198
199 void
200 TimingSimpleCPU::verifyMemoryMode() const
201 {
202 if (!system->isTimingMode()) {
203 fatal("The timing CPU requires the memory system to be in "
204 "'timing' mode.\n");
205 }
206 }
207
208 void
209 TimingSimpleCPU::activateContext(ThreadID thread_num)
210 {
211 DPRINTF(SimpleCPU, "ActivateContext %d\n", thread_num);
212
213 assert(thread_num < numThreads);
214
215 threadInfo[thread_num]->notIdleFraction = 1;
216 if (_status == BaseSimpleCPU::Idle)
217 _status = BaseSimpleCPU::Running;
218
219 // kick things off by initiating the fetch of the next instruction
220 if (!fetchEvent.scheduled())
221 schedule(fetchEvent, clockEdge(Cycles(0)));
222
223 if (std::find(activeThreads.begin(), activeThreads.end(), thread_num)
224 == activeThreads.end()) {
225 activeThreads.push_back(thread_num);
226 }
227
228 BaseCPU::activateContext(thread_num);
229 }
230
231
232 void
233 TimingSimpleCPU::suspendContext(ThreadID thread_num)
234 {
235 DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
236
237 assert(thread_num < numThreads);
238 activeThreads.remove(thread_num);
239
240 if (_status == Idle)
241 return;
242
243 assert(_status == BaseSimpleCPU::Running);
244
245 threadInfo[thread_num]->notIdleFraction = 0;
246
247 if (activeThreads.empty()) {
248 _status = Idle;
249
250 if (fetchEvent.scheduled()) {
251 deschedule(fetchEvent);
252 }
253 }
254
255 BaseCPU::suspendContext(thread_num);
256 }
257
258 bool
259 TimingSimpleCPU::handleReadPacket(PacketPtr pkt)
260 {
261 SimpleExecContext &t_info = *threadInfo[curThread];
262 SimpleThread* thread = t_info.thread;
263
264 const RequestPtr &req = pkt->req;
265
266 // We're about the issues a locked load, so tell the monitor
267 // to start caring about this address
268 if (pkt->isRead() && pkt->req->isLLSC()) {
269 TheISA::handleLockedRead(thread, pkt->req);
270 }
271 if (req->isMmappedIpr()) {
272 Cycles delay = TheISA::handleIprRead(thread->getTC(), pkt);
273 new IprEvent(pkt, this, clockEdge(delay));
274 _status = DcacheWaitResponse;
275 dcache_pkt = NULL;
276 } else if (!dcachePort.sendTimingReq(pkt)) {
277 _status = DcacheRetry;
278 dcache_pkt = pkt;
279 } else {
280 _status = DcacheWaitResponse;
281 // memory system takes ownership of packet
282 dcache_pkt = NULL;
283 }
284 return dcache_pkt == NULL;
285 }
286
287 void
288 TimingSimpleCPU::sendData(const RequestPtr &req, uint8_t *data, uint64_t *res,
289 bool read)
290 {
291 SimpleExecContext &t_info = *threadInfo[curThread];
292 SimpleThread* thread = t_info.thread;
293
294 PacketPtr pkt = buildPacket(req, read);
295 pkt->dataDynamic<uint8_t>(data);
296
297 if (req->getFlags().isSet(Request::NO_ACCESS)) {
298 assert(!dcache_pkt);
299 pkt->makeResponse();
300 completeDataAccess(pkt);
301 } else if (read) {
302 handleReadPacket(pkt);
303 } else {
304 bool do_access = true; // flag to suppress cache access
305
306 if (req->isLLSC()) {
307 do_access = TheISA::handleLockedWrite(thread, req, dcachePort.cacheBlockMask);
308 } else if (req->isCondSwap()) {
309 assert(res);
310 req->setExtraData(*res);
311 }
312
313 if (do_access) {
314 dcache_pkt = pkt;
315 handleWritePacket();
316 threadSnoop(pkt, curThread);
317 } else {
318 _status = DcacheWaitResponse;
319 completeDataAccess(pkt);
320 }
321 }
322 }
323
324 void
325 TimingSimpleCPU::sendSplitData(const RequestPtr &req1, const RequestPtr &req2,
326 const RequestPtr &req, uint8_t *data, bool read)
327 {
328 PacketPtr pkt1, pkt2;
329 buildSplitPacket(pkt1, pkt2, req1, req2, req, data, read);
330 if (req->getFlags().isSet(Request::NO_ACCESS)) {
331 assert(!dcache_pkt);
332 pkt1->makeResponse();
333 completeDataAccess(pkt1);
334 } else if (read) {
335 SplitFragmentSenderState * send_state =
336 dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
337 if (handleReadPacket(pkt1)) {
338 send_state->clearFromParent();
339 send_state = dynamic_cast<SplitFragmentSenderState *>(
340 pkt2->senderState);
341 if (handleReadPacket(pkt2)) {
342 send_state->clearFromParent();
343 }
344 }
345 } else {
346 dcache_pkt = pkt1;
347 SplitFragmentSenderState * send_state =
348 dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
349 if (handleWritePacket()) {
350 send_state->clearFromParent();
351 dcache_pkt = pkt2;
352 send_state = dynamic_cast<SplitFragmentSenderState *>(
353 pkt2->senderState);
354 if (handleWritePacket()) {
355 send_state->clearFromParent();
356 }
357 }
358 }
359 }
360
361 void
362 TimingSimpleCPU::translationFault(const Fault &fault)
363 {
364 // fault may be NoFault in cases where a fault is suppressed,
365 // for instance prefetches.
366 updateCycleCounts();
367 updateCycleCounters(BaseCPU::CPU_STATE_ON);
368
369 if (traceData) {
370 // Since there was a fault, we shouldn't trace this instruction.
371 delete traceData;
372 traceData = NULL;
373 }
374
375 postExecute();
376
377 advanceInst(fault);
378 }
379
380 PacketPtr
381 TimingSimpleCPU::buildPacket(const RequestPtr &req, bool read)
382 {
383 return read ? Packet::createRead(req) : Packet::createWrite(req);
384 }
385
386 void
387 TimingSimpleCPU::buildSplitPacket(PacketPtr &pkt1, PacketPtr &pkt2,
388 const RequestPtr &req1, const RequestPtr &req2, const RequestPtr &req,
389 uint8_t *data, bool read)
390 {
391 pkt1 = pkt2 = NULL;
392
393 assert(!req1->isMmappedIpr() && !req2->isMmappedIpr());
394
395 if (req->getFlags().isSet(Request::NO_ACCESS)) {
396 pkt1 = buildPacket(req, read);
397 return;
398 }
399
400 pkt1 = buildPacket(req1, read);
401 pkt2 = buildPacket(req2, read);
402
403 PacketPtr pkt = new Packet(req, pkt1->cmd.responseCommand());
404
405 pkt->dataDynamic<uint8_t>(data);
406 pkt1->dataStatic<uint8_t>(data);
407 pkt2->dataStatic<uint8_t>(data + req1->getSize());
408
409 SplitMainSenderState * main_send_state = new SplitMainSenderState;
410 pkt->senderState = main_send_state;
411 main_send_state->fragments[0] = pkt1;
412 main_send_state->fragments[1] = pkt2;
413 main_send_state->outstanding = 2;
414 pkt1->senderState = new SplitFragmentSenderState(pkt, 0);
415 pkt2->senderState = new SplitFragmentSenderState(pkt, 1);
416 }
417
418 Fault
419 TimingSimpleCPU::initiateMemRead(Addr addr, unsigned size,
420 Request::Flags flags,
421 const std::vector<bool>& byte_enable)
422 {
423 SimpleExecContext &t_info = *threadInfo[curThread];
424 SimpleThread* thread = t_info.thread;
425
426 Fault fault;
427 const int asid = 0;
428 const Addr pc = thread->instAddr();
429 unsigned block_size = cacheLineSize();
430 BaseTLB::Mode mode = BaseTLB::Read;
431
432 if (traceData)
433 traceData->setMem(addr, size, flags);
434
435 RequestPtr req = std::make_shared<Request>(
436 asid, addr, size, flags, dataMasterId(), pc,
437 thread->contextId());
438 if (!byte_enable.empty()) {
439 req->setByteEnable(byte_enable);
440 }
441
442 req->taskId(taskId());
443
444 Addr split_addr = roundDown(addr + size - 1, block_size);
445 assert(split_addr <= addr || split_addr - addr < block_size);
446
447 _status = DTBWaitResponse;
448 if (split_addr > addr) {
449 RequestPtr req1, req2;
450 assert(!req->isLLSC() && !req->isSwap());
451 req->splitOnVaddr(split_addr, req1, req2);
452
453 WholeTranslationState *state =
454 new WholeTranslationState(req, req1, req2, new uint8_t[size],
455 NULL, mode);
456 DataTranslation<TimingSimpleCPU *> *trans1 =
457 new DataTranslation<TimingSimpleCPU *>(this, state, 0);
458 DataTranslation<TimingSimpleCPU *> *trans2 =
459 new DataTranslation<TimingSimpleCPU *>(this, state, 1);
460
461 thread->dtb->translateTiming(req1, thread->getTC(), trans1, mode);
462 thread->dtb->translateTiming(req2, thread->getTC(), trans2, mode);
463 } else {
464 WholeTranslationState *state =
465 new WholeTranslationState(req, new uint8_t[size], NULL, mode);
466 DataTranslation<TimingSimpleCPU *> *translation
467 = new DataTranslation<TimingSimpleCPU *>(this, state);
468 thread->dtb->translateTiming(req, thread->getTC(), translation, mode);
469 }
470
471 return NoFault;
472 }
473
474 bool
475 TimingSimpleCPU::handleWritePacket()
476 {
477 SimpleExecContext &t_info = *threadInfo[curThread];
478 SimpleThread* thread = t_info.thread;
479
480 const RequestPtr &req = dcache_pkt->req;
481 if (req->isMmappedIpr()) {
482 Cycles delay = TheISA::handleIprWrite(thread->getTC(), dcache_pkt);
483 new IprEvent(dcache_pkt, this, clockEdge(delay));
484 _status = DcacheWaitResponse;
485 dcache_pkt = NULL;
486 } else if (!dcachePort.sendTimingReq(dcache_pkt)) {
487 _status = DcacheRetry;
488 } else {
489 _status = DcacheWaitResponse;
490 // memory system takes ownership of packet
491 dcache_pkt = NULL;
492 }
493 return dcache_pkt == NULL;
494 }
495
496 Fault
497 TimingSimpleCPU::writeMem(uint8_t *data, unsigned size,
498 Addr addr, Request::Flags flags, uint64_t *res,
499 const std::vector<bool>& byte_enable)
500 {
501 SimpleExecContext &t_info = *threadInfo[curThread];
502 SimpleThread* thread = t_info.thread;
503
504 uint8_t *newData = new uint8_t[size];
505 const int asid = 0;
506 const Addr pc = thread->instAddr();
507 unsigned block_size = cacheLineSize();
508 BaseTLB::Mode mode = BaseTLB::Write;
509
510 if (data == NULL) {
511 assert(flags & Request::STORE_NO_DATA);
512 // This must be a cache block cleaning request
513 memset(newData, 0, size);
514 } else {
515 memcpy(newData, data, size);
516 }
517
518 if (traceData)
519 traceData->setMem(addr, size, flags);
520
521 RequestPtr req = std::make_shared<Request>(
522 asid, addr, size, flags, dataMasterId(), pc,
523 thread->contextId());
524 if (!byte_enable.empty()) {
525 req->setByteEnable(byte_enable);
526 }
527
528 req->taskId(taskId());
529
530 Addr split_addr = roundDown(addr + size - 1, block_size);
531 assert(split_addr <= addr || split_addr - addr < block_size);
532
533 _status = DTBWaitResponse;
534
535 // TODO: TimingSimpleCPU doesn't support arbitrarily long multi-line mem.
536 // accesses yet
537
538 if (split_addr > addr) {
539 RequestPtr req1, req2;
540 assert(!req->isLLSC() && !req->isSwap());
541 req->splitOnVaddr(split_addr, req1, req2);
542
543 WholeTranslationState *state =
544 new WholeTranslationState(req, req1, req2, newData, res, mode);
545 DataTranslation<TimingSimpleCPU *> *trans1 =
546 new DataTranslation<TimingSimpleCPU *>(this, state, 0);
547 DataTranslation<TimingSimpleCPU *> *trans2 =
548 new DataTranslation<TimingSimpleCPU *>(this, state, 1);
549
550 thread->dtb->translateTiming(req1, thread->getTC(), trans1, mode);
551 thread->dtb->translateTiming(req2, thread->getTC(), trans2, mode);
552 } else {
553 WholeTranslationState *state =
554 new WholeTranslationState(req, newData, res, mode);
555 DataTranslation<TimingSimpleCPU *> *translation =
556 new DataTranslation<TimingSimpleCPU *>(this, state);
557 thread->dtb->translateTiming(req, thread->getTC(), translation, mode);
558 }
559
560 // Translation faults will be returned via finishTranslation()
561 return NoFault;
562 }
563
564 Fault
565 TimingSimpleCPU::initiateMemAMO(Addr addr, unsigned size,
566 Request::Flags flags,
567 AtomicOpFunctorPtr amo_op)
568 {
569 SimpleExecContext &t_info = *threadInfo[curThread];
570 SimpleThread* thread = t_info.thread;
571
572 Fault fault;
573 const int asid = 0;
574 const Addr pc = thread->instAddr();
575 unsigned block_size = cacheLineSize();
576 BaseTLB::Mode mode = BaseTLB::Write;
577
578 if (traceData)
579 traceData->setMem(addr, size, flags);
580
581 RequestPtr req = make_shared<Request>(asid, addr, size, flags,
582 dataMasterId(), pc, thread->contextId(),
583 std::move(amo_op));
584
585 assert(req->hasAtomicOpFunctor());
586
587 req->taskId(taskId());
588
589 Addr split_addr = roundDown(addr + size - 1, block_size);
590
591 // AMO requests that access across a cache line boundary are not
592 // allowed since the cache does not guarantee AMO ops to be executed
593 // atomically in two cache lines
594 // For ISAs such as x86 that requires AMO operations to work on
595 // accesses that cross cache-line boundaries, the cache needs to be
596 // modified to support locking both cache lines to guarantee the
597 // atomicity.
598 if (split_addr > addr) {
599 panic("AMO requests should not access across a cache line boundary\n");
600 }
601
602 _status = DTBWaitResponse;
603
604 WholeTranslationState *state =
605 new WholeTranslationState(req, new uint8_t[size], NULL, mode);
606 DataTranslation<TimingSimpleCPU *> *translation
607 = new DataTranslation<TimingSimpleCPU *>(this, state);
608 thread->dtb->translateTiming(req, thread->getTC(), translation, mode);
609
610 return NoFault;
611 }
612
613 void
614 TimingSimpleCPU::threadSnoop(PacketPtr pkt, ThreadID sender)
615 {
616 for (ThreadID tid = 0; tid < numThreads; tid++) {
617 if (tid != sender) {
618 if (getCpuAddrMonitor(tid)->doMonitor(pkt)) {
619 wakeup(tid);
620 }
621 TheISA::handleLockedSnoop(threadInfo[tid]->thread, pkt,
622 dcachePort.cacheBlockMask);
623 }
624 }
625 }
626
627 void
628 TimingSimpleCPU::finishTranslation(WholeTranslationState *state)
629 {
630 _status = BaseSimpleCPU::Running;
631
632 if (state->getFault() != NoFault) {
633 if (state->isPrefetch()) {
634 state->setNoFault();
635 }
636 delete [] state->data;
637 state->deleteReqs();
638 translationFault(state->getFault());
639 } else {
640 if (!state->isSplit) {
641 sendData(state->mainReq, state->data, state->res,
642 state->mode == BaseTLB::Read);
643 } else {
644 sendSplitData(state->sreqLow, state->sreqHigh, state->mainReq,
645 state->data, state->mode == BaseTLB::Read);
646 }
647 }
648
649 delete state;
650 }
651
652
653 void
654 TimingSimpleCPU::fetch()
655 {
656 // Change thread if multi-threaded
657 swapActiveThread();
658
659 SimpleExecContext &t_info = *threadInfo[curThread];
660 SimpleThread* thread = t_info.thread;
661
662 DPRINTF(SimpleCPU, "Fetch\n");
663
664 if (!curStaticInst || !curStaticInst->isDelayedCommit()) {
665 checkForInterrupts();
666 checkPcEventQueue();
667 }
668
669 // We must have just got suspended by a PC event
670 if (_status == Idle)
671 return;
672
673 TheISA::PCState pcState = thread->pcState();
674 bool needToFetch = !isRomMicroPC(pcState.microPC()) &&
675 !curMacroStaticInst;
676
677 if (needToFetch) {
678 _status = BaseSimpleCPU::Running;
679 RequestPtr ifetch_req = std::make_shared<Request>();
680 ifetch_req->taskId(taskId());
681 ifetch_req->setContext(thread->contextId());
682 setupFetchRequest(ifetch_req);
683 DPRINTF(SimpleCPU, "Translating address %#x\n", ifetch_req->getVaddr());
684 thread->itb->translateTiming(ifetch_req, thread->getTC(),
685 &fetchTranslation, BaseTLB::Execute);
686 } else {
687 _status = IcacheWaitResponse;
688 completeIfetch(NULL);
689
690 updateCycleCounts();
691 updateCycleCounters(BaseCPU::CPU_STATE_ON);
692 }
693 }
694
695
696 void
697 TimingSimpleCPU::sendFetch(const Fault &fault, const RequestPtr &req,
698 ThreadContext *tc)
699 {
700 if (fault == NoFault) {
701 DPRINTF(SimpleCPU, "Sending fetch for addr %#x(pa: %#x)\n",
702 req->getVaddr(), req->getPaddr());
703 ifetch_pkt = new Packet(req, MemCmd::ReadReq);
704 ifetch_pkt->dataStatic(&inst);
705 DPRINTF(SimpleCPU, " -- pkt addr: %#x\n", ifetch_pkt->getAddr());
706
707 if (!icachePort.sendTimingReq(ifetch_pkt)) {
708 // Need to wait for retry
709 _status = IcacheRetry;
710 } else {
711 // Need to wait for cache to respond
712 _status = IcacheWaitResponse;
713 // ownership of packet transferred to memory system
714 ifetch_pkt = NULL;
715 }
716 } else {
717 DPRINTF(SimpleCPU, "Translation of addr %#x faulted\n", req->getVaddr());
718 // fetch fault: advance directly to next instruction (fault handler)
719 _status = BaseSimpleCPU::Running;
720 advanceInst(fault);
721 }
722
723 updateCycleCounts();
724 updateCycleCounters(BaseCPU::CPU_STATE_ON);
725 }
726
727
728 void
729 TimingSimpleCPU::advanceInst(const Fault &fault)
730 {
731 SimpleExecContext &t_info = *threadInfo[curThread];
732
733 if (_status == Faulting)
734 return;
735
736 if (fault != NoFault) {
737 DPRINTF(SimpleCPU, "Fault occured. Handling the fault\n");
738
739 advancePC(fault);
740
741 // A syscall fault could suspend this CPU (e.g., futex_wait)
742 // If the _status is not Idle, schedule an event to fetch the next
743 // instruction after 'stall' ticks.
744 // If the cpu has been suspended (i.e., _status == Idle), another
745 // cpu will wake this cpu up later.
746 if (_status != Idle) {
747 DPRINTF(SimpleCPU, "Scheduling fetch event after the Fault\n");
748
749 Tick stall = dynamic_pointer_cast<SyscallRetryFault>(fault) ?
750 clockEdge(syscallRetryLatency) : clockEdge();
751 reschedule(fetchEvent, stall, true);
752 _status = Faulting;
753 }
754
755 return;
756 }
757
758 if (!t_info.stayAtPC)
759 advancePC(fault);
760
761 if (tryCompleteDrain())
762 return;
763
764 if (_status == BaseSimpleCPU::Running) {
765 // kick off fetch of next instruction... callback from icache
766 // response will cause that instruction to be executed,
767 // keeping the CPU running.
768 fetch();
769 }
770 }
771
772
773 void
774 TimingSimpleCPU::completeIfetch(PacketPtr pkt)
775 {
776 SimpleExecContext& t_info = *threadInfo[curThread];
777
778 DPRINTF(SimpleCPU, "Complete ICache Fetch for addr %#x\n", pkt ?
779 pkt->getAddr() : 0);
780
781 // received a response from the icache: execute the received
782 // instruction
783 assert(!pkt || !pkt->isError());
784 assert(_status == IcacheWaitResponse);
785
786 _status = BaseSimpleCPU::Running;
787
788 updateCycleCounts();
789 updateCycleCounters(BaseCPU::CPU_STATE_ON);
790
791 if (pkt)
792 pkt->req->setAccessLatency();
793
794
795 preExecute();
796 if (curStaticInst && curStaticInst->isMemRef()) {
797 // load or store: just send to dcache
798 Fault fault = curStaticInst->initiateAcc(&t_info, traceData);
799
800 // If we're not running now the instruction will complete in a dcache
801 // response callback or the instruction faulted and has started an
802 // ifetch
803 if (_status == BaseSimpleCPU::Running) {
804 if (fault != NoFault && traceData) {
805 // If there was a fault, we shouldn't trace this instruction.
806 delete traceData;
807 traceData = NULL;
808 }
809
810 postExecute();
811 // @todo remove me after debugging with legion done
812 if (curStaticInst && (!curStaticInst->isMicroop() ||
813 curStaticInst->isFirstMicroop()))
814 instCnt++;
815 advanceInst(fault);
816 }
817 } else if (curStaticInst) {
818 // non-memory instruction: execute completely now
819 Fault fault = curStaticInst->execute(&t_info, traceData);
820
821 // keep an instruction count
822 if (fault == NoFault)
823 countInst();
824 else if (traceData && !DTRACE(ExecFaulting)) {
825 delete traceData;
826 traceData = NULL;
827 }
828
829 postExecute();
830 // @todo remove me after debugging with legion done
831 if (curStaticInst && (!curStaticInst->isMicroop() ||
832 curStaticInst->isFirstMicroop()))
833 instCnt++;
834 advanceInst(fault);
835 } else {
836 advanceInst(NoFault);
837 }
838
839 if (pkt) {
840 delete pkt;
841 }
842 }
843
844 void
845 TimingSimpleCPU::IcachePort::ITickEvent::process()
846 {
847 cpu->completeIfetch(pkt);
848 }
849
850 bool
851 TimingSimpleCPU::IcachePort::recvTimingResp(PacketPtr pkt)
852 {
853 DPRINTF(SimpleCPU, "Received fetch response %#x\n", pkt->getAddr());
854 // we should only ever see one response per cycle since we only
855 // issue a new request once this response is sunk
856 assert(!tickEvent.scheduled());
857 // delay processing of returned data until next CPU clock edge
858 tickEvent.schedule(pkt, cpu->clockEdge());
859
860 return true;
861 }
862
863 void
864 TimingSimpleCPU::IcachePort::recvReqRetry()
865 {
866 // we shouldn't get a retry unless we have a packet that we're
867 // waiting to transmit
868 assert(cpu->ifetch_pkt != NULL);
869 assert(cpu->_status == IcacheRetry);
870 PacketPtr tmp = cpu->ifetch_pkt;
871 if (sendTimingReq(tmp)) {
872 cpu->_status = IcacheWaitResponse;
873 cpu->ifetch_pkt = NULL;
874 }
875 }
876
877 void
878 TimingSimpleCPU::completeDataAccess(PacketPtr pkt)
879 {
880 // received a response from the dcache: complete the load or store
881 // instruction
882 assert(!pkt->isError());
883 assert(_status == DcacheWaitResponse || _status == DTBWaitResponse ||
884 pkt->req->getFlags().isSet(Request::NO_ACCESS));
885
886 pkt->req->setAccessLatency();
887
888 updateCycleCounts();
889 updateCycleCounters(BaseCPU::CPU_STATE_ON);
890
891 if (pkt->senderState) {
892 SplitFragmentSenderState * send_state =
893 dynamic_cast<SplitFragmentSenderState *>(pkt->senderState);
894 assert(send_state);
895 delete pkt;
896 PacketPtr big_pkt = send_state->bigPkt;
897 delete send_state;
898
899 SplitMainSenderState * main_send_state =
900 dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
901 assert(main_send_state);
902 // Record the fact that this packet is no longer outstanding.
903 assert(main_send_state->outstanding != 0);
904 main_send_state->outstanding--;
905
906 if (main_send_state->outstanding) {
907 return;
908 } else {
909 delete main_send_state;
910 big_pkt->senderState = NULL;
911 pkt = big_pkt;
912 }
913 }
914
915 _status = BaseSimpleCPU::Running;
916
917 Fault fault = curStaticInst->completeAcc(pkt, threadInfo[curThread],
918 traceData);
919
920 // keep an instruction count
921 if (fault == NoFault)
922 countInst();
923 else if (traceData) {
924 // If there was a fault, we shouldn't trace this instruction.
925 delete traceData;
926 traceData = NULL;
927 }
928
929 delete pkt;
930
931 postExecute();
932
933 advanceInst(fault);
934 }
935
936 void
937 TimingSimpleCPU::updateCycleCounts()
938 {
939 const Cycles delta(curCycle() - previousCycle);
940
941 numCycles += delta;
942
943 previousCycle = curCycle();
944 }
945
946 void
947 TimingSimpleCPU::DcachePort::recvTimingSnoopReq(PacketPtr pkt)
948 {
949 for (ThreadID tid = 0; tid < cpu->numThreads; tid++) {
950 if (cpu->getCpuAddrMonitor(tid)->doMonitor(pkt)) {
951 cpu->wakeup(tid);
952 }
953 }
954
955 // Making it uniform across all CPUs:
956 // The CPUs need to be woken up only on an invalidation packet (when using caches)
957 // or on an incoming write packet (when not using caches)
958 // It is not necessary to wake up the processor on all incoming packets
959 if (pkt->isInvalidate() || pkt->isWrite()) {
960 for (auto &t_info : cpu->threadInfo) {
961 TheISA::handleLockedSnoop(t_info->thread, pkt, cacheBlockMask);
962 }
963 }
964 }
965
966 void
967 TimingSimpleCPU::DcachePort::recvFunctionalSnoop(PacketPtr pkt)
968 {
969 for (ThreadID tid = 0; tid < cpu->numThreads; tid++) {
970 if (cpu->getCpuAddrMonitor(tid)->doMonitor(pkt)) {
971 cpu->wakeup(tid);
972 }
973 }
974 }
975
976 bool
977 TimingSimpleCPU::DcachePort::recvTimingResp(PacketPtr pkt)
978 {
979 DPRINTF(SimpleCPU, "Received load/store response %#x\n", pkt->getAddr());
980
981 // The timing CPU is not really ticked, instead it relies on the
982 // memory system (fetch and load/store) to set the pace.
983 if (!tickEvent.scheduled()) {
984 // Delay processing of returned data until next CPU clock edge
985 tickEvent.schedule(pkt, cpu->clockEdge());
986 return true;
987 } else {
988 // In the case of a split transaction and a cache that is
989 // faster than a CPU we could get two responses in the
990 // same tick, delay the second one
991 if (!retryRespEvent.scheduled())
992 cpu->schedule(retryRespEvent, cpu->clockEdge(Cycles(1)));
993 return false;
994 }
995 }
996
997 void
998 TimingSimpleCPU::DcachePort::DTickEvent::process()
999 {
1000 cpu->completeDataAccess(pkt);
1001 }
1002
1003 void
1004 TimingSimpleCPU::DcachePort::recvReqRetry()
1005 {
1006 // we shouldn't get a retry unless we have a packet that we're
1007 // waiting to transmit
1008 assert(cpu->dcache_pkt != NULL);
1009 assert(cpu->_status == DcacheRetry);
1010 PacketPtr tmp = cpu->dcache_pkt;
1011 if (tmp->senderState) {
1012 // This is a packet from a split access.
1013 SplitFragmentSenderState * send_state =
1014 dynamic_cast<SplitFragmentSenderState *>(tmp->senderState);
1015 assert(send_state);
1016 PacketPtr big_pkt = send_state->bigPkt;
1017
1018 SplitMainSenderState * main_send_state =
1019 dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
1020 assert(main_send_state);
1021
1022 if (sendTimingReq(tmp)) {
1023 // If we were able to send without retrying, record that fact
1024 // and try sending the other fragment.
1025 send_state->clearFromParent();
1026 int other_index = main_send_state->getPendingFragment();
1027 if (other_index > 0) {
1028 tmp = main_send_state->fragments[other_index];
1029 cpu->dcache_pkt = tmp;
1030 if ((big_pkt->isRead() && cpu->handleReadPacket(tmp)) ||
1031 (big_pkt->isWrite() && cpu->handleWritePacket())) {
1032 main_send_state->fragments[other_index] = NULL;
1033 }
1034 } else {
1035 cpu->_status = DcacheWaitResponse;
1036 // memory system takes ownership of packet
1037 cpu->dcache_pkt = NULL;
1038 }
1039 }
1040 } else if (sendTimingReq(tmp)) {
1041 cpu->_status = DcacheWaitResponse;
1042 // memory system takes ownership of packet
1043 cpu->dcache_pkt = NULL;
1044 }
1045 }
1046
1047 TimingSimpleCPU::IprEvent::IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu,
1048 Tick t)
1049 : pkt(_pkt), cpu(_cpu)
1050 {
1051 cpu->schedule(this, t);
1052 }
1053
1054 void
1055 TimingSimpleCPU::IprEvent::process()
1056 {
1057 cpu->completeDataAccess(pkt);
1058 }
1059
1060 const char *
1061 TimingSimpleCPU::IprEvent::description() const
1062 {
1063 return "Timing Simple CPU Delay IPR event";
1064 }
1065
1066
1067 void
1068 TimingSimpleCPU::printAddr(Addr a)
1069 {
1070 dcachePort.printAddr(a);
1071 }
1072
1073
1074 ////////////////////////////////////////////////////////////////////////
1075 //
1076 // TimingSimpleCPU Simulation Object
1077 //
1078 TimingSimpleCPU *
1079 TimingSimpleCPUParams::create()
1080 {
1081 return new TimingSimpleCPU(this);
1082 }