Add names to memory Port objects for tracing.
[gem5.git] / src / cpu / simple / timing.cc
1 /*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 #include "arch/utility.hh"
30 #include "cpu/exetrace.hh"
31 #include "cpu/simple/timing.hh"
32 #include "mem/packet_impl.hh"
33 #include "sim/builder.hh"
34
35 using namespace std;
36 using namespace TheISA;
37
38
39 void
40 TimingSimpleCPU::init()
41 {
42 //Create Memory Ports (conect them up)
43 Port *mem_dport = mem->getPort("");
44 dcachePort.setPeer(mem_dport);
45 mem_dport->setPeer(&dcachePort);
46
47 Port *mem_iport = mem->getPort("");
48 icachePort.setPeer(mem_iport);
49 mem_iport->setPeer(&icachePort);
50
51 BaseCPU::init();
52 #if FULL_SYSTEM
53 for (int i = 0; i < execContexts.size(); ++i) {
54 ExecContext *xc = execContexts[i];
55
56 // initialize CPU, including PC
57 TheISA::initCPU(xc, xc->readCpuId());
58 }
59 #endif
60 }
61
62 Tick
63 TimingSimpleCPU::CpuPort::recvAtomic(Packet *pkt)
64 {
65 panic("TimingSimpleCPU doesn't expect recvAtomic callback!");
66 return curTick;
67 }
68
69 void
70 TimingSimpleCPU::CpuPort::recvFunctional(Packet *pkt)
71 {
72 panic("TimingSimpleCPU doesn't expect recvFunctional callback!");
73 }
74
75 void
76 TimingSimpleCPU::CpuPort::recvStatusChange(Status status)
77 {
78 if (status == RangeChange)
79 return;
80
81 panic("TimingSimpleCPU doesn't expect recvStatusChange callback!");
82 }
83
84 TimingSimpleCPU::TimingSimpleCPU(Params *p)
85 : BaseSimpleCPU(p), icachePort(this), dcachePort(this)
86 {
87 _status = Idle;
88 ifetch_pkt = dcache_pkt = NULL;
89 }
90
91
92 TimingSimpleCPU::~TimingSimpleCPU()
93 {
94 }
95
96 void
97 TimingSimpleCPU::serialize(ostream &os)
98 {
99 BaseSimpleCPU::serialize(os);
100 SERIALIZE_ENUM(_status);
101 }
102
103 void
104 TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
105 {
106 BaseSimpleCPU::unserialize(cp, section);
107 UNSERIALIZE_ENUM(_status);
108 }
109
110 void
111 TimingSimpleCPU::switchOut(Sampler *s)
112 {
113 sampler = s;
114 if (status() == Running) {
115 _status = SwitchedOut;
116 }
117 sampler->signalSwitched();
118 }
119
120
121 void
122 TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
123 {
124 BaseCPU::takeOverFrom(oldCPU);
125
126 // if any of this CPU's ExecContexts are active, mark the CPU as
127 // running and schedule its tick event.
128 for (int i = 0; i < execContexts.size(); ++i) {
129 ExecContext *xc = execContexts[i];
130 if (xc->status() == ExecContext::Active && _status != Running) {
131 _status = Running;
132 break;
133 }
134 }
135 }
136
137
138 void
139 TimingSimpleCPU::activateContext(int thread_num, int delay)
140 {
141 assert(thread_num == 0);
142 assert(cpuXC);
143
144 assert(_status == Idle);
145
146 notIdleFraction++;
147 _status = Running;
148 // kick things off by initiating the fetch of the next instruction
149 Event *e =
150 new EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch>(this, true);
151 e->schedule(curTick + cycles(delay));
152 }
153
154
155 void
156 TimingSimpleCPU::suspendContext(int thread_num)
157 {
158 assert(thread_num == 0);
159 assert(cpuXC);
160
161 panic("TimingSimpleCPU::suspendContext not implemented");
162
163 assert(_status == Running);
164
165 notIdleFraction--;
166 _status = Idle;
167 }
168
169
170 template <class T>
171 Fault
172 TimingSimpleCPU::read(Addr addr, T &data, unsigned flags)
173 {
174 Request *data_read_req = new Request(true);
175
176 data_read_req->setVaddr(addr);
177 data_read_req->setSize(sizeof(T));
178 data_read_req->setFlags(flags);
179 data_read_req->setTime(curTick);
180
181 if (traceData) {
182 traceData->setAddr(data_read_req->getVaddr());
183 }
184
185 // translate to physical address
186 Fault fault = cpuXC->translateDataReadReq(data_read_req);
187
188 // Now do the access.
189 if (fault == NoFault) {
190 Packet *data_read_pkt = new Packet;
191 data_read_pkt->cmd = Read;
192 data_read_pkt->req = data_read_req;
193 data_read_pkt->dataDynamic<T>(new T);
194 data_read_pkt->addr = data_read_req->getPaddr();
195 data_read_pkt->size = sizeof(T);
196 data_read_pkt->dest = Packet::Broadcast;
197
198 if (!dcachePort.sendTiming(data_read_pkt)) {
199 _status = DcacheRetry;
200 dcache_pkt = data_read_pkt;
201 } else {
202 _status = DcacheWaitResponse;
203 dcache_pkt = NULL;
204 }
205 }
206
207 // This will need a new way to tell if it has a dcache attached.
208 if (data_read_req->getFlags() & UNCACHEABLE)
209 recordEvent("Uncached Read");
210
211 return fault;
212 }
213
214 #ifndef DOXYGEN_SHOULD_SKIP_THIS
215
216 template
217 Fault
218 TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
219
220 template
221 Fault
222 TimingSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
223
224 template
225 Fault
226 TimingSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
227
228 template
229 Fault
230 TimingSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
231
232 #endif //DOXYGEN_SHOULD_SKIP_THIS
233
234 template<>
235 Fault
236 TimingSimpleCPU::read(Addr addr, double &data, unsigned flags)
237 {
238 return read(addr, *(uint64_t*)&data, flags);
239 }
240
241 template<>
242 Fault
243 TimingSimpleCPU::read(Addr addr, float &data, unsigned flags)
244 {
245 return read(addr, *(uint32_t*)&data, flags);
246 }
247
248
249 template<>
250 Fault
251 TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
252 {
253 return read(addr, (uint32_t&)data, flags);
254 }
255
256
257 template <class T>
258 Fault
259 TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
260 {
261 Request *data_write_req = new Request(true);
262 data_write_req->setVaddr(addr);
263 data_write_req->setTime(curTick);
264 data_write_req->setSize(sizeof(T));
265 data_write_req->setFlags(flags);
266
267 // translate to physical address
268 Fault fault = cpuXC->translateDataWriteReq(data_write_req);
269 // Now do the access.
270 if (fault == NoFault) {
271 Packet *data_write_pkt = new Packet;
272 data_write_pkt->cmd = Write;
273 data_write_pkt->req = data_write_req;
274 data_write_pkt->allocate();
275 data_write_pkt->size = sizeof(T);
276 data_write_pkt->set(data);
277 data_write_pkt->addr = data_write_req->getPaddr();
278 data_write_pkt->dest = Packet::Broadcast;
279
280 if (!dcachePort.sendTiming(data_write_pkt)) {
281 _status = DcacheRetry;
282 dcache_pkt = data_write_pkt;
283 } else {
284 _status = DcacheWaitResponse;
285 dcache_pkt = NULL;
286 }
287 }
288
289 // This will need a new way to tell if it's hooked up to a cache or not.
290 if (data_write_req->getFlags() & UNCACHEABLE)
291 recordEvent("Uncached Write");
292
293 // If the write needs to have a fault on the access, consider calling
294 // changeStatus() and changing it to "bad addr write" or something.
295 return fault;
296 }
297
298
299 #ifndef DOXYGEN_SHOULD_SKIP_THIS
300 template
301 Fault
302 TimingSimpleCPU::write(uint64_t data, Addr addr,
303 unsigned flags, uint64_t *res);
304
305 template
306 Fault
307 TimingSimpleCPU::write(uint32_t data, Addr addr,
308 unsigned flags, uint64_t *res);
309
310 template
311 Fault
312 TimingSimpleCPU::write(uint16_t data, Addr addr,
313 unsigned flags, uint64_t *res);
314
315 template
316 Fault
317 TimingSimpleCPU::write(uint8_t data, Addr addr,
318 unsigned flags, uint64_t *res);
319
320 #endif //DOXYGEN_SHOULD_SKIP_THIS
321
322 template<>
323 Fault
324 TimingSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
325 {
326 return write(*(uint64_t*)&data, addr, flags, res);
327 }
328
329 template<>
330 Fault
331 TimingSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
332 {
333 return write(*(uint32_t*)&data, addr, flags, res);
334 }
335
336
337 template<>
338 Fault
339 TimingSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
340 {
341 return write((uint32_t)data, addr, flags, res);
342 }
343
344
345 void
346 TimingSimpleCPU::fetch()
347 {
348 checkForInterrupts();
349
350 Request *ifetch_req = new Request(true);
351 ifetch_req->setSize(sizeof(MachInst));
352
353 ifetch_pkt = new Packet;
354 ifetch_pkt->cmd = Read;
355 ifetch_pkt->dataStatic(&inst);
356 ifetch_pkt->req = ifetch_req;
357 ifetch_pkt->size = sizeof(MachInst);
358 ifetch_pkt->dest = Packet::Broadcast;
359
360 Fault fault = setupFetchPacket(ifetch_pkt);
361 if (fault == NoFault) {
362 if (!icachePort.sendTiming(ifetch_pkt)) {
363 // Need to wait for retry
364 _status = IcacheRetry;
365 } else {
366 // Need to wait for cache to respond
367 _status = IcacheWaitResponse;
368 // ownership of packet transferred to memory system
369 ifetch_pkt = NULL;
370 }
371 } else {
372 panic("TimingSimpleCPU fetch fault handling not implemented");
373 }
374 }
375
376
377 void
378 TimingSimpleCPU::completeInst(Fault fault)
379 {
380 postExecute();
381
382 if (traceData) {
383 traceData->finalize();
384 }
385
386 advancePC(fault);
387
388 if (_status == Running) {
389 // kick off fetch of next instruction... callback from icache
390 // response will cause that instruction to be executed,
391 // keeping the CPU running.
392 fetch();
393 }
394 }
395
396
397 void
398 TimingSimpleCPU::completeIfetch()
399 {
400 // received a response from the icache: execute the received
401 // instruction
402 assert(_status == IcacheWaitResponse);
403 _status = Running;
404 preExecute();
405 if (curStaticInst->isMemRef()) {
406 // load or store: just send to dcache
407 Fault fault = curStaticInst->initiateAcc(this, traceData);
408 assert(fault == NoFault);
409 assert(_status == DcacheWaitResponse);
410 // instruction will complete in dcache response callback
411 } else {
412 // non-memory instruction: execute completely now
413 Fault fault = curStaticInst->execute(this, traceData);
414 completeInst(fault);
415 }
416 }
417
418
419 bool
420 TimingSimpleCPU::IcachePort::recvTiming(Packet *pkt)
421 {
422 cpu->completeIfetch();
423 return true;
424 }
425
426 Packet *
427 TimingSimpleCPU::IcachePort::recvRetry()
428 {
429 // we shouldn't get a retry unless we have a packet that we're
430 // waiting to transmit
431 assert(cpu->ifetch_pkt != NULL);
432 assert(cpu->_status == IcacheRetry);
433 cpu->_status = IcacheWaitResponse;
434 Packet *tmp = cpu->ifetch_pkt;
435 cpu->ifetch_pkt = NULL;
436 return tmp;
437 }
438
439 void
440 TimingSimpleCPU::completeDataAccess(Packet *pkt)
441 {
442 // received a response from the dcache: complete the load or store
443 // instruction
444 assert(pkt->result == Success);
445 assert(_status == DcacheWaitResponse);
446 _status = Running;
447
448 Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
449
450 completeInst(fault);
451 }
452
453
454
455 bool
456 TimingSimpleCPU::DcachePort::recvTiming(Packet *pkt)
457 {
458 cpu->completeDataAccess(pkt);
459 return true;
460 }
461
462 Packet *
463 TimingSimpleCPU::DcachePort::recvRetry()
464 {
465 // we shouldn't get a retry unless we have a packet that we're
466 // waiting to transmit
467 assert(cpu->dcache_pkt != NULL);
468 assert(cpu->_status == DcacheRetry);
469 cpu->_status = DcacheWaitResponse;
470 Packet *tmp = cpu->dcache_pkt;
471 cpu->dcache_pkt = NULL;
472 return tmp;
473 }
474
475
476 ////////////////////////////////////////////////////////////////////////
477 //
478 // TimingSimpleCPU Simulation Object
479 //
480 BEGIN_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
481
482 Param<Counter> max_insts_any_thread;
483 Param<Counter> max_insts_all_threads;
484 Param<Counter> max_loads_any_thread;
485 Param<Counter> max_loads_all_threads;
486 SimObjectParam<MemObject *> mem;
487
488 #if FULL_SYSTEM
489 SimObjectParam<AlphaITB *> itb;
490 SimObjectParam<AlphaDTB *> dtb;
491 SimObjectParam<System *> system;
492 Param<int> cpu_id;
493 Param<Tick> profile;
494 #else
495 SimObjectParam<Process *> workload;
496 #endif // FULL_SYSTEM
497
498 Param<int> clock;
499
500 Param<bool> defer_registration;
501 Param<int> width;
502 Param<bool> function_trace;
503 Param<Tick> function_trace_start;
504 Param<bool> simulate_stalls;
505
506 END_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
507
508 BEGIN_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
509
510 INIT_PARAM(max_insts_any_thread,
511 "terminate when any thread reaches this inst count"),
512 INIT_PARAM(max_insts_all_threads,
513 "terminate when all threads have reached this inst count"),
514 INIT_PARAM(max_loads_any_thread,
515 "terminate when any thread reaches this load count"),
516 INIT_PARAM(max_loads_all_threads,
517 "terminate when all threads have reached this load count"),
518 INIT_PARAM(mem, "memory"),
519
520 #if FULL_SYSTEM
521 INIT_PARAM(itb, "Instruction TLB"),
522 INIT_PARAM(dtb, "Data TLB"),
523 INIT_PARAM(system, "system object"),
524 INIT_PARAM(cpu_id, "processor ID"),
525 INIT_PARAM(profile, ""),
526 #else
527 INIT_PARAM(workload, "processes to run"),
528 #endif // FULL_SYSTEM
529
530 INIT_PARAM(clock, "clock speed"),
531 INIT_PARAM(defer_registration, "defer system registration (for sampling)"),
532 INIT_PARAM(width, "cpu width"),
533 INIT_PARAM(function_trace, "Enable function trace"),
534 INIT_PARAM(function_trace_start, "Cycle to start function trace"),
535 INIT_PARAM(simulate_stalls, "Simulate cache stall cycles")
536
537 END_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
538
539
540 CREATE_SIM_OBJECT(TimingSimpleCPU)
541 {
542 TimingSimpleCPU::Params *params = new TimingSimpleCPU::Params();
543 params->name = getInstanceName();
544 params->numberOfThreads = 1;
545 params->max_insts_any_thread = max_insts_any_thread;
546 params->max_insts_all_threads = max_insts_all_threads;
547 params->max_loads_any_thread = max_loads_any_thread;
548 params->max_loads_all_threads = max_loads_all_threads;
549 params->deferRegistration = defer_registration;
550 params->clock = clock;
551 params->functionTrace = function_trace;
552 params->functionTraceStart = function_trace_start;
553 params->mem = mem;
554
555 #if FULL_SYSTEM
556 params->itb = itb;
557 params->dtb = dtb;
558 params->system = system;
559 params->cpu_id = cpu_id;
560 params->profile = profile;
561 #else
562 params->process = workload;
563 #endif
564
565 TimingSimpleCPU *cpu = new TimingSimpleCPU(params);
566 return cpu;
567 }
568
569 REGISTER_SIM_OBJECT("TimingSimpleCPU", TimingSimpleCPU)
570