77df2c05deba3b17bfdbce31218248565586b79a
[gem5.git] / src / cpu / simple / timing.cc
1 /*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31 #include "arch/locked_mem.hh"
32 #include "arch/utility.hh"
33 #include "base/bigint.hh"
34 #include "cpu/exetrace.hh"
35 #include "cpu/simple/timing.hh"
36 #include "mem/packet.hh"
37 #include "mem/packet_access.hh"
38 #include "sim/builder.hh"
39 #include "sim/system.hh"
40
41 using namespace std;
42 using namespace TheISA;
43
44 Port *
45 TimingSimpleCPU::getPort(const std::string &if_name, int idx)
46 {
47 if (if_name == "dcache_port")
48 return &dcachePort;
49 else if (if_name == "icache_port")
50 return &icachePort;
51 else
52 panic("No Such Port\n");
53 }
54
55 void
56 TimingSimpleCPU::init()
57 {
58 BaseCPU::init();
59 #if FULL_SYSTEM
60 for (int i = 0; i < threadContexts.size(); ++i) {
61 ThreadContext *tc = threadContexts[i];
62
63 // initialize CPU, including PC
64 TheISA::initCPU(tc, tc->readCpuId());
65 }
66 #endif
67 }
68
69 Tick
70 TimingSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt)
71 {
72 panic("TimingSimpleCPU doesn't expect recvAtomic callback!");
73 return curTick;
74 }
75
76 void
77 TimingSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt)
78 {
79 //No internal storage to update, jusst return
80 return;
81 }
82
83 void
84 TimingSimpleCPU::CpuPort::recvStatusChange(Status status)
85 {
86 if (status == RangeChange) {
87 if (!snoopRangeSent) {
88 snoopRangeSent = true;
89 sendStatusChange(Port::RangeChange);
90 }
91 return;
92 }
93
94 panic("TimingSimpleCPU doesn't expect recvStatusChange callback!");
95 }
96
97
98 void
99 TimingSimpleCPU::CpuPort::TickEvent::schedule(PacketPtr _pkt, Tick t)
100 {
101 pkt = _pkt;
102 Event::schedule(t);
103 }
104
105 TimingSimpleCPU::TimingSimpleCPU(Params *p)
106 : BaseSimpleCPU(p), icachePort(this, p->clock), dcachePort(this, p->clock),
107 cpu_id(p->cpu_id)
108 {
109 _status = Idle;
110
111 icachePort.snoopRangeSent = false;
112 dcachePort.snoopRangeSent = false;
113
114 ifetch_pkt = dcache_pkt = NULL;
115 drainEvent = NULL;
116 fetchEvent = NULL;
117 previousTick = 0;
118 changeState(SimObject::Running);
119 }
120
121
122 TimingSimpleCPU::~TimingSimpleCPU()
123 {
124 }
125
126 void
127 TimingSimpleCPU::serialize(ostream &os)
128 {
129 SimObject::State so_state = SimObject::getState();
130 SERIALIZE_ENUM(so_state);
131 BaseSimpleCPU::serialize(os);
132 }
133
134 void
135 TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
136 {
137 SimObject::State so_state;
138 UNSERIALIZE_ENUM(so_state);
139 BaseSimpleCPU::unserialize(cp, section);
140 }
141
142 unsigned int
143 TimingSimpleCPU::drain(Event *drain_event)
144 {
145 // TimingSimpleCPU is ready to drain if it's not waiting for
146 // an access to complete.
147 if (status() == Idle || status() == Running || status() == SwitchedOut) {
148 changeState(SimObject::Drained);
149 return 0;
150 } else {
151 changeState(SimObject::Draining);
152 drainEvent = drain_event;
153 return 1;
154 }
155 }
156
157 void
158 TimingSimpleCPU::resume()
159 {
160 if (_status != SwitchedOut && _status != Idle) {
161 assert(system->getMemoryMode() == System::Timing);
162
163 // Delete the old event if it existed.
164 if (fetchEvent) {
165 if (fetchEvent->scheduled())
166 fetchEvent->deschedule();
167
168 delete fetchEvent;
169 }
170
171 fetchEvent = new FetchEvent(this, nextCycle());
172 }
173
174 changeState(SimObject::Running);
175 previousTick = curTick;
176 }
177
178 void
179 TimingSimpleCPU::switchOut()
180 {
181 assert(status() == Running || status() == Idle);
182 _status = SwitchedOut;
183 numCycles += curTick - previousTick;
184
185 // If we've been scheduled to resume but are then told to switch out,
186 // we'll need to cancel it.
187 if (fetchEvent && fetchEvent->scheduled())
188 fetchEvent->deschedule();
189 }
190
191
192 void
193 TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
194 {
195 BaseCPU::takeOverFrom(oldCPU, &icachePort, &dcachePort);
196
197 // if any of this CPU's ThreadContexts are active, mark the CPU as
198 // running and schedule its tick event.
199 for (int i = 0; i < threadContexts.size(); ++i) {
200 ThreadContext *tc = threadContexts[i];
201 if (tc->status() == ThreadContext::Active && _status != Running) {
202 _status = Running;
203 break;
204 }
205 }
206
207 if (_status != Running) {
208 _status = Idle;
209 }
210 }
211
212
213 void
214 TimingSimpleCPU::activateContext(int thread_num, int delay)
215 {
216 assert(thread_num == 0);
217 assert(thread);
218
219 assert(_status == Idle);
220
221 notIdleFraction++;
222 _status = Running;
223
224 // kick things off by initiating the fetch of the next instruction
225 fetchEvent = new FetchEvent(this, nextCycle(curTick + cycles(delay)));
226 }
227
228
229 void
230 TimingSimpleCPU::suspendContext(int thread_num)
231 {
232 assert(thread_num == 0);
233 assert(thread);
234
235 assert(_status == Running);
236
237 // just change status to Idle... if status != Running,
238 // completeInst() will not initiate fetch of next instruction.
239
240 notIdleFraction--;
241 _status = Idle;
242 }
243
244
245 template <class T>
246 Fault
247 TimingSimpleCPU::read(Addr addr, T &data, unsigned flags)
248 {
249 Request *req =
250 new Request(/* asid */ 0, addr, sizeof(T), flags, thread->readPC(),
251 cpu_id, /* thread ID */ 0);
252
253 if (traceData) {
254 traceData->setAddr(req->getVaddr());
255 }
256
257 // translate to physical address
258 Fault fault = thread->translateDataReadReq(req);
259
260 // Now do the access.
261 if (fault == NoFault) {
262 PacketPtr pkt =
263 new Packet(req,
264 (req->isLocked() ?
265 MemCmd::LoadLockedReq : MemCmd::ReadReq),
266 Packet::Broadcast);
267 pkt->dataDynamic<T>(new T);
268
269 if (!dcachePort.sendTiming(pkt)) {
270 _status = DcacheRetry;
271 dcache_pkt = pkt;
272 } else {
273 _status = DcacheWaitResponse;
274 // memory system takes ownership of packet
275 dcache_pkt = NULL;
276 }
277
278 // This will need a new way to tell if it has a dcache attached.
279 if (req->isUncacheable())
280 recordEvent("Uncached Read");
281 } else {
282 delete req;
283 }
284
285 return fault;
286 }
287
288 #ifndef DOXYGEN_SHOULD_SKIP_THIS
289
290 template
291 Fault
292 TimingSimpleCPU::read(Addr addr, Twin64_t &data, unsigned flags);
293
294 template
295 Fault
296 TimingSimpleCPU::read(Addr addr, Twin32_t &data, unsigned flags);
297
298 template
299 Fault
300 TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
301
302 template
303 Fault
304 TimingSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
305
306 template
307 Fault
308 TimingSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
309
310 template
311 Fault
312 TimingSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
313
314 #endif //DOXYGEN_SHOULD_SKIP_THIS
315
316 template<>
317 Fault
318 TimingSimpleCPU::read(Addr addr, double &data, unsigned flags)
319 {
320 return read(addr, *(uint64_t*)&data, flags);
321 }
322
323 template<>
324 Fault
325 TimingSimpleCPU::read(Addr addr, float &data, unsigned flags)
326 {
327 return read(addr, *(uint32_t*)&data, flags);
328 }
329
330
331 template<>
332 Fault
333 TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
334 {
335 return read(addr, (uint32_t&)data, flags);
336 }
337
338
339 template <class T>
340 Fault
341 TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
342 {
343 Request *req =
344 new Request(/* asid */ 0, addr, sizeof(T), flags, thread->readPC(),
345 cpu_id, /* thread ID */ 0);
346
347 if (traceData) {
348 traceData->setAddr(req->getVaddr());
349 }
350
351 // translate to physical address
352 Fault fault = thread->translateDataWriteReq(req);
353
354 // Now do the access.
355 if (fault == NoFault) {
356 MemCmd cmd = MemCmd::WriteReq; // default
357 bool do_access = true; // flag to suppress cache access
358
359 assert(dcache_pkt == NULL);
360
361 if (req->isLocked()) {
362 cmd = MemCmd::StoreCondReq;
363 do_access = TheISA::handleLockedWrite(thread, req);
364 } else if (req->isSwap()) {
365 cmd = MemCmd::SwapReq;
366 if (req->isCondSwap()) {
367 assert(res);
368 req->setExtraData(*res);
369 }
370 }
371
372 if (do_access) {
373 dcache_pkt = new Packet(req, MemCmd::WriteReq, Packet::Broadcast);
374 dcache_pkt->allocate();
375 dcache_pkt->set(data);
376
377 if (!dcachePort.sendTiming(dcache_pkt)) {
378 _status = DcacheRetry;
379 } else {
380 _status = DcacheWaitResponse;
381 // memory system takes ownership of packet
382 dcache_pkt = NULL;
383 }
384 }
385 // This will need a new way to tell if it's hooked up to a cache or not.
386 if (req->isUncacheable())
387 recordEvent("Uncached Write");
388 } else {
389 delete req;
390 }
391
392
393 // If the write needs to have a fault on the access, consider calling
394 // changeStatus() and changing it to "bad addr write" or something.
395 return fault;
396 }
397
398
399 #ifndef DOXYGEN_SHOULD_SKIP_THIS
400 template
401 Fault
402 TimingSimpleCPU::write(Twin32_t data, Addr addr,
403 unsigned flags, uint64_t *res);
404
405 template
406 Fault
407 TimingSimpleCPU::write(Twin64_t data, Addr addr,
408 unsigned flags, uint64_t *res);
409
410 template
411 Fault
412 TimingSimpleCPU::write(uint64_t data, Addr addr,
413 unsigned flags, uint64_t *res);
414
415 template
416 Fault
417 TimingSimpleCPU::write(uint32_t data, Addr addr,
418 unsigned flags, uint64_t *res);
419
420 template
421 Fault
422 TimingSimpleCPU::write(uint16_t data, Addr addr,
423 unsigned flags, uint64_t *res);
424
425 template
426 Fault
427 TimingSimpleCPU::write(uint8_t data, Addr addr,
428 unsigned flags, uint64_t *res);
429
430 #endif //DOXYGEN_SHOULD_SKIP_THIS
431
432 template<>
433 Fault
434 TimingSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
435 {
436 return write(*(uint64_t*)&data, addr, flags, res);
437 }
438
439 template<>
440 Fault
441 TimingSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
442 {
443 return write(*(uint32_t*)&data, addr, flags, res);
444 }
445
446
447 template<>
448 Fault
449 TimingSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
450 {
451 return write((uint32_t)data, addr, flags, res);
452 }
453
454
455 void
456 TimingSimpleCPU::fetch()
457 {
458 if (!curStaticInst || !curStaticInst->isDelayedCommit())
459 checkForInterrupts();
460
461 Request *ifetch_req = new Request();
462 ifetch_req->setThreadContext(cpu_id, /* thread ID */ 0);
463 Fault fault = setupFetchRequest(ifetch_req);
464
465 ifetch_pkt = new Packet(ifetch_req, MemCmd::ReadReq, Packet::Broadcast);
466 ifetch_pkt->dataStatic(&inst);
467
468 if (fault == NoFault) {
469 if (!icachePort.sendTiming(ifetch_pkt)) {
470 // Need to wait for retry
471 _status = IcacheRetry;
472 } else {
473 // Need to wait for cache to respond
474 _status = IcacheWaitResponse;
475 // ownership of packet transferred to memory system
476 ifetch_pkt = NULL;
477 }
478 } else {
479 delete ifetch_req;
480 delete ifetch_pkt;
481 // fetch fault: advance directly to next instruction (fault handler)
482 advanceInst(fault);
483 }
484
485 numCycles += curTick - previousTick;
486 previousTick = curTick;
487 }
488
489
490 void
491 TimingSimpleCPU::advanceInst(Fault fault)
492 {
493 advancePC(fault);
494
495 if (_status == Running) {
496 // kick off fetch of next instruction... callback from icache
497 // response will cause that instruction to be executed,
498 // keeping the CPU running.
499 fetch();
500 }
501 }
502
503
504 void
505 TimingSimpleCPU::completeIfetch(PacketPtr pkt)
506 {
507 // received a response from the icache: execute the received
508 // instruction
509 assert(!pkt->isError());
510 assert(_status == IcacheWaitResponse);
511
512 _status = Running;
513
514 numCycles += curTick - previousTick;
515 previousTick = curTick;
516
517 if (getState() == SimObject::Draining) {
518 delete pkt->req;
519 delete pkt;
520
521 completeDrain();
522 return;
523 }
524
525 preExecute();
526 if (curStaticInst->isMemRef() && !curStaticInst->isDataPrefetch()) {
527 // load or store: just send to dcache
528 Fault fault = curStaticInst->initiateAcc(this, traceData);
529 if (_status != Running) {
530 // instruction will complete in dcache response callback
531 assert(_status == DcacheWaitResponse || _status == DcacheRetry);
532 assert(fault == NoFault);
533 } else {
534 if (fault == NoFault) {
535 // early fail on store conditional: complete now
536 assert(dcache_pkt != NULL);
537 fault = curStaticInst->completeAcc(dcache_pkt, this,
538 traceData);
539 delete dcache_pkt->req;
540 delete dcache_pkt;
541 dcache_pkt = NULL;
542 }
543 postExecute();
544 advanceInst(fault);
545 }
546 } else {
547 // non-memory instruction: execute completely now
548 Fault fault = curStaticInst->execute(this, traceData);
549 postExecute();
550 advanceInst(fault);
551 }
552
553 delete pkt->req;
554 delete pkt;
555 }
556
557 void
558 TimingSimpleCPU::IcachePort::ITickEvent::process()
559 {
560 cpu->completeIfetch(pkt);
561 }
562
563 bool
564 TimingSimpleCPU::IcachePort::recvTiming(PacketPtr pkt)
565 {
566 if (pkt->isResponse()) {
567 // delay processing of returned data until next CPU clock edge
568 Tick next_tick = cpu->nextCycle(curTick);
569
570 if (next_tick == curTick)
571 cpu->completeIfetch(pkt);
572 else
573 tickEvent.schedule(pkt, next_tick);
574
575 return true;
576 }
577 else if (pkt->wasNacked()) {
578 assert(cpu->_status == IcacheWaitResponse);
579 pkt->reinitNacked();
580 if (!sendTiming(pkt)) {
581 cpu->_status = IcacheRetry;
582 cpu->ifetch_pkt = pkt;
583 }
584 }
585 //Snooping a Coherence Request, do nothing
586 return true;
587 }
588
589 void
590 TimingSimpleCPU::IcachePort::recvRetry()
591 {
592 // we shouldn't get a retry unless we have a packet that we're
593 // waiting to transmit
594 assert(cpu->ifetch_pkt != NULL);
595 assert(cpu->_status == IcacheRetry);
596 PacketPtr tmp = cpu->ifetch_pkt;
597 if (sendTiming(tmp)) {
598 cpu->_status = IcacheWaitResponse;
599 cpu->ifetch_pkt = NULL;
600 }
601 }
602
603 void
604 TimingSimpleCPU::completeDataAccess(PacketPtr pkt)
605 {
606 // received a response from the dcache: complete the load or store
607 // instruction
608 assert(!pkt->isError());
609 assert(_status == DcacheWaitResponse);
610 _status = Running;
611
612 numCycles += curTick - previousTick;
613 previousTick = curTick;
614
615 Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
616
617 if (pkt->isRead() && pkt->isLocked()) {
618 TheISA::handleLockedRead(thread, pkt->req);
619 }
620
621 delete pkt->req;
622 delete pkt;
623
624 postExecute();
625
626 if (getState() == SimObject::Draining) {
627 advancePC(fault);
628 completeDrain();
629
630 return;
631 }
632
633 advanceInst(fault);
634 }
635
636
637 void
638 TimingSimpleCPU::completeDrain()
639 {
640 DPRINTF(Config, "Done draining\n");
641 changeState(SimObject::Drained);
642 drainEvent->process();
643 }
644
645 void
646 TimingSimpleCPU::DcachePort::setPeer(Port *port)
647 {
648 Port::setPeer(port);
649
650 #if FULL_SYSTEM
651 // Update the ThreadContext's memory ports (Functional/Virtual
652 // Ports)
653 cpu->tcBase()->connectMemPorts();
654 #endif
655 }
656
657 bool
658 TimingSimpleCPU::DcachePort::recvTiming(PacketPtr pkt)
659 {
660 if (pkt->isResponse()) {
661 // delay processing of returned data until next CPU clock edge
662 Tick next_tick = cpu->nextCycle(curTick);
663
664 if (next_tick == curTick)
665 cpu->completeDataAccess(pkt);
666 else
667 tickEvent.schedule(pkt, next_tick);
668
669 return true;
670 }
671 else if (pkt->wasNacked()) {
672 assert(cpu->_status == DcacheWaitResponse);
673 pkt->reinitNacked();
674 if (!sendTiming(pkt)) {
675 cpu->_status = DcacheRetry;
676 cpu->dcache_pkt = pkt;
677 }
678 }
679 //Snooping a Coherence Request, do nothing
680 return true;
681 }
682
683 void
684 TimingSimpleCPU::DcachePort::DTickEvent::process()
685 {
686 cpu->completeDataAccess(pkt);
687 }
688
689 void
690 TimingSimpleCPU::DcachePort::recvRetry()
691 {
692 // we shouldn't get a retry unless we have a packet that we're
693 // waiting to transmit
694 assert(cpu->dcache_pkt != NULL);
695 assert(cpu->_status == DcacheRetry);
696 PacketPtr tmp = cpu->dcache_pkt;
697 if (sendTiming(tmp)) {
698 cpu->_status = DcacheWaitResponse;
699 // memory system takes ownership of packet
700 cpu->dcache_pkt = NULL;
701 }
702 }
703
704
705 ////////////////////////////////////////////////////////////////////////
706 //
707 // TimingSimpleCPU Simulation Object
708 //
709 BEGIN_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
710
711 Param<Counter> max_insts_any_thread;
712 Param<Counter> max_insts_all_threads;
713 Param<Counter> max_loads_any_thread;
714 Param<Counter> max_loads_all_threads;
715 Param<Tick> progress_interval;
716 SimObjectParam<System *> system;
717 Param<int> cpu_id;
718
719 #if FULL_SYSTEM
720 SimObjectParam<TheISA::ITB *> itb;
721 SimObjectParam<TheISA::DTB *> dtb;
722 Param<Tick> profile;
723
724 Param<bool> do_quiesce;
725 Param<bool> do_checkpoint_insts;
726 Param<bool> do_statistics_insts;
727 #else
728 SimObjectParam<Process *> workload;
729 #endif // FULL_SYSTEM
730
731 Param<int> clock;
732 Param<int> phase;
733
734 Param<bool> defer_registration;
735 Param<int> width;
736 Param<bool> function_trace;
737 Param<Tick> function_trace_start;
738 Param<bool> simulate_stalls;
739
740 END_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
741
742 BEGIN_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
743
744 INIT_PARAM(max_insts_any_thread,
745 "terminate when any thread reaches this inst count"),
746 INIT_PARAM(max_insts_all_threads,
747 "terminate when all threads have reached this inst count"),
748 INIT_PARAM(max_loads_any_thread,
749 "terminate when any thread reaches this load count"),
750 INIT_PARAM(max_loads_all_threads,
751 "terminate when all threads have reached this load count"),
752 INIT_PARAM(progress_interval, "Progress interval"),
753 INIT_PARAM(system, "system object"),
754 INIT_PARAM(cpu_id, "processor ID"),
755
756 #if FULL_SYSTEM
757 INIT_PARAM(itb, "Instruction TLB"),
758 INIT_PARAM(dtb, "Data TLB"),
759 INIT_PARAM(profile, ""),
760 INIT_PARAM(do_quiesce, ""),
761 INIT_PARAM(do_checkpoint_insts, ""),
762 INIT_PARAM(do_statistics_insts, ""),
763 #else
764 INIT_PARAM(workload, "processes to run"),
765 #endif // FULL_SYSTEM
766
767 INIT_PARAM(clock, "clock speed"),
768 INIT_PARAM_DFLT(phase, "clock phase", 0),
769 INIT_PARAM(defer_registration, "defer system registration (for sampling)"),
770 INIT_PARAM(width, "cpu width"),
771 INIT_PARAM(function_trace, "Enable function trace"),
772 INIT_PARAM(function_trace_start, "Cycle to start function trace"),
773 INIT_PARAM(simulate_stalls, "Simulate cache stall cycles")
774
775 END_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
776
777
778 CREATE_SIM_OBJECT(TimingSimpleCPU)
779 {
780 TimingSimpleCPU::Params *params = new TimingSimpleCPU::Params();
781 params->name = getInstanceName();
782 params->numberOfThreads = 1;
783 params->max_insts_any_thread = max_insts_any_thread;
784 params->max_insts_all_threads = max_insts_all_threads;
785 params->max_loads_any_thread = max_loads_any_thread;
786 params->max_loads_all_threads = max_loads_all_threads;
787 params->progress_interval = progress_interval;
788 params->deferRegistration = defer_registration;
789 params->clock = clock;
790 params->phase = phase;
791 params->functionTrace = function_trace;
792 params->functionTraceStart = function_trace_start;
793 params->system = system;
794 params->cpu_id = cpu_id;
795
796 #if FULL_SYSTEM
797 params->itb = itb;
798 params->dtb = dtb;
799 params->profile = profile;
800 params->do_quiesce = do_quiesce;
801 params->do_checkpoint_insts = do_checkpoint_insts;
802 params->do_statistics_insts = do_statistics_insts;
803 #else
804 params->process = workload;
805 #endif
806
807 TimingSimpleCPU *cpu = new TimingSimpleCPU(params);
808 return cpu;
809 }
810
811 REGISTER_SIM_OBJECT("TimingSimpleCPU", TimingSimpleCPU)
812