cpu: Probe points for basic PMU stats
[gem5.git] / src / cpu / simple / timing.cc
1 /*
2 * Copyright (c) 2010-2013 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Steve Reinhardt
41 */
42
43 #include "arch/locked_mem.hh"
44 #include "arch/mmapped_ipr.hh"
45 #include "arch/utility.hh"
46 #include "base/bigint.hh"
47 #include "config/the_isa.hh"
48 #include "cpu/simple/timing.hh"
49 #include "cpu/exetrace.hh"
50 #include "debug/Config.hh"
51 #include "debug/Drain.hh"
52 #include "debug/ExecFaulting.hh"
53 #include "debug/SimpleCPU.hh"
54 #include "mem/packet.hh"
55 #include "mem/packet_access.hh"
56 #include "params/TimingSimpleCPU.hh"
57 #include "sim/faults.hh"
58 #include "sim/full_system.hh"
59 #include "sim/system.hh"
60
61 using namespace std;
62 using namespace TheISA;
63
64 void
65 TimingSimpleCPU::init()
66 {
67 BaseCPU::init();
68
69 // Initialise the ThreadContext's memory proxies
70 tcBase()->initMemProxies(tcBase());
71
72 if (FullSystem && !params()->switched_out) {
73 for (int i = 0; i < threadContexts.size(); ++i) {
74 ThreadContext *tc = threadContexts[i];
75 // initialize CPU, including PC
76 TheISA::initCPU(tc, _cpuId);
77 }
78 }
79 }
80
81 void
82 TimingSimpleCPU::TimingCPUPort::TickEvent::schedule(PacketPtr _pkt, Tick t)
83 {
84 pkt = _pkt;
85 cpu->schedule(this, t);
86 }
87
88 TimingSimpleCPU::TimingSimpleCPU(TimingSimpleCPUParams *p)
89 : BaseSimpleCPU(p), fetchTranslation(this), icachePort(this),
90 dcachePort(this), ifetch_pkt(NULL), dcache_pkt(NULL), previousCycle(0),
91 fetchEvent(this), drainManager(NULL)
92 {
93 _status = Idle;
94
95 system->totalNumInsts = 0;
96 }
97
98
99
100 TimingSimpleCPU::~TimingSimpleCPU()
101 {
102 }
103
104 unsigned int
105 TimingSimpleCPU::drain(DrainManager *drain_manager)
106 {
107 assert(!drainManager);
108 if (switchedOut())
109 return 0;
110
111 if (_status == Idle ||
112 (_status == BaseSimpleCPU::Running && isDrained())) {
113 DPRINTF(Drain, "No need to drain.\n");
114 return 0;
115 } else {
116 drainManager = drain_manager;
117 DPRINTF(Drain, "Requesting drain: %s\n", pcState());
118
119 // The fetch event can become descheduled if a drain didn't
120 // succeed on the first attempt. We need to reschedule it if
121 // the CPU is waiting for a microcode routine to complete.
122 if (_status == BaseSimpleCPU::Running && !fetchEvent.scheduled())
123 schedule(fetchEvent, clockEdge());
124
125 return 1;
126 }
127 }
128
129 void
130 TimingSimpleCPU::drainResume()
131 {
132 assert(!fetchEvent.scheduled());
133 assert(!drainManager);
134 if (switchedOut())
135 return;
136
137 DPRINTF(SimpleCPU, "Resume\n");
138 verifyMemoryMode();
139
140 assert(!threadContexts.empty());
141 if (threadContexts.size() > 1)
142 fatal("The timing CPU only supports one thread.\n");
143
144 if (thread->status() == ThreadContext::Active) {
145 schedule(fetchEvent, nextCycle());
146 _status = BaseSimpleCPU::Running;
147 notIdleFraction = 1;
148 } else {
149 _status = BaseSimpleCPU::Idle;
150 notIdleFraction = 0;
151 }
152 }
153
154 bool
155 TimingSimpleCPU::tryCompleteDrain()
156 {
157 if (!drainManager)
158 return false;
159
160 DPRINTF(Drain, "tryCompleteDrain: %s\n", pcState());
161 if (!isDrained())
162 return false;
163
164 DPRINTF(Drain, "CPU done draining, processing drain event\n");
165 drainManager->signalDrainDone();
166 drainManager = NULL;
167
168 return true;
169 }
170
171 void
172 TimingSimpleCPU::switchOut()
173 {
174 BaseSimpleCPU::switchOut();
175
176 assert(!fetchEvent.scheduled());
177 assert(_status == BaseSimpleCPU::Running || _status == Idle);
178 assert(!stayAtPC);
179 assert(microPC() == 0);
180
181 updateCycleCounts();
182 }
183
184
185 void
186 TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
187 {
188 BaseSimpleCPU::takeOverFrom(oldCPU);
189
190 previousCycle = curCycle();
191 }
192
193 void
194 TimingSimpleCPU::verifyMemoryMode() const
195 {
196 if (!system->isTimingMode()) {
197 fatal("The timing CPU requires the memory system to be in "
198 "'timing' mode.\n");
199 }
200 }
201
202 void
203 TimingSimpleCPU::activateContext(ThreadID thread_num)
204 {
205 DPRINTF(SimpleCPU, "ActivateContext %d\n", thread_num);
206
207 assert(thread_num == 0);
208 assert(thread);
209
210 assert(_status == Idle);
211
212 notIdleFraction = 1;
213 _status = BaseSimpleCPU::Running;
214
215 // kick things off by initiating the fetch of the next instruction
216 schedule(fetchEvent, clockEdge(Cycles(0)));
217 }
218
219
220 void
221 TimingSimpleCPU::suspendContext(ThreadID thread_num)
222 {
223 DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
224
225 assert(thread_num == 0);
226 assert(thread);
227
228 if (_status == Idle)
229 return;
230
231 assert(_status == BaseSimpleCPU::Running);
232
233 // just change status to Idle... if status != Running,
234 // completeInst() will not initiate fetch of next instruction.
235
236 notIdleFraction = 0;
237 _status = Idle;
238 }
239
240 bool
241 TimingSimpleCPU::handleReadPacket(PacketPtr pkt)
242 {
243 RequestPtr req = pkt->req;
244 if (req->isMmappedIpr()) {
245 Cycles delay = TheISA::handleIprRead(thread->getTC(), pkt);
246 new IprEvent(pkt, this, clockEdge(delay));
247 _status = DcacheWaitResponse;
248 dcache_pkt = NULL;
249 } else if (!dcachePort.sendTimingReq(pkt)) {
250 _status = DcacheRetry;
251 dcache_pkt = pkt;
252 } else {
253 _status = DcacheWaitResponse;
254 // memory system takes ownership of packet
255 dcache_pkt = NULL;
256 }
257 return dcache_pkt == NULL;
258 }
259
260 void
261 TimingSimpleCPU::sendData(RequestPtr req, uint8_t *data, uint64_t *res,
262 bool read)
263 {
264 PacketPtr pkt;
265 buildPacket(pkt, req, read);
266 pkt->dataDynamicArray<uint8_t>(data);
267 if (req->getFlags().isSet(Request::NO_ACCESS)) {
268 assert(!dcache_pkt);
269 pkt->makeResponse();
270 completeDataAccess(pkt);
271 } else if (read) {
272 handleReadPacket(pkt);
273 } else {
274 bool do_access = true; // flag to suppress cache access
275
276 if (req->isLLSC()) {
277 do_access = TheISA::handleLockedWrite(thread, req, dcachePort.cacheBlockMask);
278 } else if (req->isCondSwap()) {
279 assert(res);
280 req->setExtraData(*res);
281 }
282
283 if (do_access) {
284 dcache_pkt = pkt;
285 handleWritePacket();
286 } else {
287 _status = DcacheWaitResponse;
288 completeDataAccess(pkt);
289 }
290 }
291 }
292
293 void
294 TimingSimpleCPU::sendSplitData(RequestPtr req1, RequestPtr req2,
295 RequestPtr req, uint8_t *data, bool read)
296 {
297 PacketPtr pkt1, pkt2;
298 buildSplitPacket(pkt1, pkt2, req1, req2, req, data, read);
299 if (req->getFlags().isSet(Request::NO_ACCESS)) {
300 assert(!dcache_pkt);
301 pkt1->makeResponse();
302 completeDataAccess(pkt1);
303 } else if (read) {
304 SplitFragmentSenderState * send_state =
305 dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
306 if (handleReadPacket(pkt1)) {
307 send_state->clearFromParent();
308 send_state = dynamic_cast<SplitFragmentSenderState *>(
309 pkt2->senderState);
310 if (handleReadPacket(pkt2)) {
311 send_state->clearFromParent();
312 }
313 }
314 } else {
315 dcache_pkt = pkt1;
316 SplitFragmentSenderState * send_state =
317 dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
318 if (handleWritePacket()) {
319 send_state->clearFromParent();
320 dcache_pkt = pkt2;
321 send_state = dynamic_cast<SplitFragmentSenderState *>(
322 pkt2->senderState);
323 if (handleWritePacket()) {
324 send_state->clearFromParent();
325 }
326 }
327 }
328 }
329
330 void
331 TimingSimpleCPU::translationFault(const Fault &fault)
332 {
333 // fault may be NoFault in cases where a fault is suppressed,
334 // for instance prefetches.
335 updateCycleCounts();
336
337 if (traceData) {
338 // Since there was a fault, we shouldn't trace this instruction.
339 delete traceData;
340 traceData = NULL;
341 }
342
343 postExecute();
344
345 advanceInst(fault);
346 }
347
348 void
349 TimingSimpleCPU::buildPacket(PacketPtr &pkt, RequestPtr req, bool read)
350 {
351 pkt = read ? Packet::createRead(req) : Packet::createWrite(req);
352 }
353
354 void
355 TimingSimpleCPU::buildSplitPacket(PacketPtr &pkt1, PacketPtr &pkt2,
356 RequestPtr req1, RequestPtr req2, RequestPtr req,
357 uint8_t *data, bool read)
358 {
359 pkt1 = pkt2 = NULL;
360
361 assert(!req1->isMmappedIpr() && !req2->isMmappedIpr());
362
363 if (req->getFlags().isSet(Request::NO_ACCESS)) {
364 buildPacket(pkt1, req, read);
365 return;
366 }
367
368 buildPacket(pkt1, req1, read);
369 buildPacket(pkt2, req2, read);
370
371 req->setPhys(req1->getPaddr(), req->getSize(), req1->getFlags(), dataMasterId());
372 PacketPtr pkt = new Packet(req, pkt1->cmd.responseCommand());
373
374 pkt->dataDynamicArray<uint8_t>(data);
375 pkt1->dataStatic<uint8_t>(data);
376 pkt2->dataStatic<uint8_t>(data + req1->getSize());
377
378 SplitMainSenderState * main_send_state = new SplitMainSenderState;
379 pkt->senderState = main_send_state;
380 main_send_state->fragments[0] = pkt1;
381 main_send_state->fragments[1] = pkt2;
382 main_send_state->outstanding = 2;
383 pkt1->senderState = new SplitFragmentSenderState(pkt, 0);
384 pkt2->senderState = new SplitFragmentSenderState(pkt, 1);
385 }
386
387 Fault
388 TimingSimpleCPU::readMem(Addr addr, uint8_t *data,
389 unsigned size, unsigned flags)
390 {
391 Fault fault;
392 const int asid = 0;
393 const ThreadID tid = 0;
394 const Addr pc = thread->instAddr();
395 unsigned block_size = cacheLineSize();
396 BaseTLB::Mode mode = BaseTLB::Read;
397
398 if (traceData) {
399 traceData->setAddr(addr);
400 }
401
402 RequestPtr req = new Request(asid, addr, size,
403 flags, dataMasterId(), pc, _cpuId, tid);
404
405 req->taskId(taskId());
406
407 Addr split_addr = roundDown(addr + size - 1, block_size);
408 assert(split_addr <= addr || split_addr - addr < block_size);
409
410 _status = DTBWaitResponse;
411 if (split_addr > addr) {
412 RequestPtr req1, req2;
413 assert(!req->isLLSC() && !req->isSwap());
414 req->splitOnVaddr(split_addr, req1, req2);
415
416 WholeTranslationState *state =
417 new WholeTranslationState(req, req1, req2, new uint8_t[size],
418 NULL, mode);
419 DataTranslation<TimingSimpleCPU *> *trans1 =
420 new DataTranslation<TimingSimpleCPU *>(this, state, 0);
421 DataTranslation<TimingSimpleCPU *> *trans2 =
422 new DataTranslation<TimingSimpleCPU *>(this, state, 1);
423
424 thread->dtb->translateTiming(req1, tc, trans1, mode);
425 thread->dtb->translateTiming(req2, tc, trans2, mode);
426 } else {
427 WholeTranslationState *state =
428 new WholeTranslationState(req, new uint8_t[size], NULL, mode);
429 DataTranslation<TimingSimpleCPU *> *translation
430 = new DataTranslation<TimingSimpleCPU *>(this, state);
431 thread->dtb->translateTiming(req, tc, translation, mode);
432 }
433
434 return NoFault;
435 }
436
437 bool
438 TimingSimpleCPU::handleWritePacket()
439 {
440 RequestPtr req = dcache_pkt->req;
441 if (req->isMmappedIpr()) {
442 Cycles delay = TheISA::handleIprWrite(thread->getTC(), dcache_pkt);
443 new IprEvent(dcache_pkt, this, clockEdge(delay));
444 _status = DcacheWaitResponse;
445 dcache_pkt = NULL;
446 } else if (!dcachePort.sendTimingReq(dcache_pkt)) {
447 _status = DcacheRetry;
448 } else {
449 _status = DcacheWaitResponse;
450 // memory system takes ownership of packet
451 dcache_pkt = NULL;
452 }
453 return dcache_pkt == NULL;
454 }
455
456 Fault
457 TimingSimpleCPU::writeMem(uint8_t *data, unsigned size,
458 Addr addr, unsigned flags, uint64_t *res)
459 {
460 uint8_t *newData = new uint8_t[size];
461 const int asid = 0;
462 const ThreadID tid = 0;
463 const Addr pc = thread->instAddr();
464 unsigned block_size = cacheLineSize();
465 BaseTLB::Mode mode = BaseTLB::Write;
466
467 if (data == NULL) {
468 assert(flags & Request::CACHE_BLOCK_ZERO);
469 // This must be a cache block cleaning request
470 memset(newData, 0, size);
471 } else {
472 memcpy(newData, data, size);
473 }
474
475 if (traceData) {
476 traceData->setAddr(addr);
477 }
478
479 RequestPtr req = new Request(asid, addr, size,
480 flags, dataMasterId(), pc, _cpuId, tid);
481
482 req->taskId(taskId());
483
484 Addr split_addr = roundDown(addr + size - 1, block_size);
485 assert(split_addr <= addr || split_addr - addr < block_size);
486
487 _status = DTBWaitResponse;
488 if (split_addr > addr) {
489 RequestPtr req1, req2;
490 assert(!req->isLLSC() && !req->isSwap());
491 req->splitOnVaddr(split_addr, req1, req2);
492
493 WholeTranslationState *state =
494 new WholeTranslationState(req, req1, req2, newData, res, mode);
495 DataTranslation<TimingSimpleCPU *> *trans1 =
496 new DataTranslation<TimingSimpleCPU *>(this, state, 0);
497 DataTranslation<TimingSimpleCPU *> *trans2 =
498 new DataTranslation<TimingSimpleCPU *>(this, state, 1);
499
500 thread->dtb->translateTiming(req1, tc, trans1, mode);
501 thread->dtb->translateTiming(req2, tc, trans2, mode);
502 } else {
503 WholeTranslationState *state =
504 new WholeTranslationState(req, newData, res, mode);
505 DataTranslation<TimingSimpleCPU *> *translation =
506 new DataTranslation<TimingSimpleCPU *>(this, state);
507 thread->dtb->translateTiming(req, tc, translation, mode);
508 }
509
510 // Translation faults will be returned via finishTranslation()
511 return NoFault;
512 }
513
514
515 void
516 TimingSimpleCPU::finishTranslation(WholeTranslationState *state)
517 {
518 _status = BaseSimpleCPU::Running;
519
520 if (state->getFault() != NoFault) {
521 if (state->isPrefetch()) {
522 state->setNoFault();
523 }
524 delete [] state->data;
525 state->deleteReqs();
526 translationFault(state->getFault());
527 } else {
528 if (!state->isSplit) {
529 sendData(state->mainReq, state->data, state->res,
530 state->mode == BaseTLB::Read);
531 } else {
532 sendSplitData(state->sreqLow, state->sreqHigh, state->mainReq,
533 state->data, state->mode == BaseTLB::Read);
534 }
535 }
536
537 delete state;
538 }
539
540
541 void
542 TimingSimpleCPU::fetch()
543 {
544 DPRINTF(SimpleCPU, "Fetch\n");
545
546 if (!curStaticInst || !curStaticInst->isDelayedCommit())
547 checkForInterrupts();
548
549 checkPcEventQueue();
550
551 // We must have just got suspended by a PC event
552 if (_status == Idle)
553 return;
554
555 TheISA::PCState pcState = thread->pcState();
556 bool needToFetch = !isRomMicroPC(pcState.microPC()) && !curMacroStaticInst;
557
558 if (needToFetch) {
559 _status = BaseSimpleCPU::Running;
560 Request *ifetch_req = new Request();
561 ifetch_req->taskId(taskId());
562 ifetch_req->setThreadContext(_cpuId, /* thread ID */ 0);
563 setupFetchRequest(ifetch_req);
564 DPRINTF(SimpleCPU, "Translating address %#x\n", ifetch_req->getVaddr());
565 thread->itb->translateTiming(ifetch_req, tc, &fetchTranslation,
566 BaseTLB::Execute);
567 } else {
568 _status = IcacheWaitResponse;
569 completeIfetch(NULL);
570
571 updateCycleCounts();
572 }
573 }
574
575
576 void
577 TimingSimpleCPU::sendFetch(const Fault &fault, RequestPtr req,
578 ThreadContext *tc)
579 {
580 if (fault == NoFault) {
581 DPRINTF(SimpleCPU, "Sending fetch for addr %#x(pa: %#x)\n",
582 req->getVaddr(), req->getPaddr());
583 ifetch_pkt = new Packet(req, MemCmd::ReadReq);
584 ifetch_pkt->dataStatic(&inst);
585 DPRINTF(SimpleCPU, " -- pkt addr: %#x\n", ifetch_pkt->getAddr());
586
587 if (!icachePort.sendTimingReq(ifetch_pkt)) {
588 // Need to wait for retry
589 _status = IcacheRetry;
590 } else {
591 // Need to wait for cache to respond
592 _status = IcacheWaitResponse;
593 // ownership of packet transferred to memory system
594 ifetch_pkt = NULL;
595 }
596 } else {
597 DPRINTF(SimpleCPU, "Translation of addr %#x faulted\n", req->getVaddr());
598 delete req;
599 // fetch fault: advance directly to next instruction (fault handler)
600 _status = BaseSimpleCPU::Running;
601 advanceInst(fault);
602 }
603
604 updateCycleCounts();
605 }
606
607
608 void
609 TimingSimpleCPU::advanceInst(const Fault &fault)
610 {
611 if (_status == Faulting)
612 return;
613
614 if (fault != NoFault) {
615 advancePC(fault);
616 DPRINTF(SimpleCPU, "Fault occured, scheduling fetch event\n");
617 reschedule(fetchEvent, clockEdge(), true);
618 _status = Faulting;
619 return;
620 }
621
622
623 if (!stayAtPC)
624 advancePC(fault);
625
626 if (tryCompleteDrain())
627 return;
628
629 if (_status == BaseSimpleCPU::Running) {
630 // kick off fetch of next instruction... callback from icache
631 // response will cause that instruction to be executed,
632 // keeping the CPU running.
633 fetch();
634 }
635 }
636
637
638 void
639 TimingSimpleCPU::completeIfetch(PacketPtr pkt)
640 {
641 DPRINTF(SimpleCPU, "Complete ICache Fetch for addr %#x\n", pkt ?
642 pkt->getAddr() : 0);
643
644 // received a response from the icache: execute the received
645 // instruction
646 assert(!pkt || !pkt->isError());
647 assert(_status == IcacheWaitResponse);
648
649 _status = BaseSimpleCPU::Running;
650
651 updateCycleCounts();
652
653 if (pkt)
654 pkt->req->setAccessLatency();
655
656
657 preExecute();
658 if (curStaticInst && curStaticInst->isMemRef()) {
659 // load or store: just send to dcache
660 Fault fault = curStaticInst->initiateAcc(this, traceData);
661
662 // If we're not running now the instruction will complete in a dcache
663 // response callback or the instruction faulted and has started an
664 // ifetch
665 if (_status == BaseSimpleCPU::Running) {
666 if (fault != NoFault && traceData) {
667 // If there was a fault, we shouldn't trace this instruction.
668 delete traceData;
669 traceData = NULL;
670 }
671
672 postExecute();
673 // @todo remove me after debugging with legion done
674 if (curStaticInst && (!curStaticInst->isMicroop() ||
675 curStaticInst->isFirstMicroop()))
676 instCnt++;
677 advanceInst(fault);
678 }
679 } else if (curStaticInst) {
680 // non-memory instruction: execute completely now
681 Fault fault = curStaticInst->execute(this, traceData);
682
683 // keep an instruction count
684 if (fault == NoFault)
685 countInst();
686 else if (traceData && !DTRACE(ExecFaulting)) {
687 delete traceData;
688 traceData = NULL;
689 }
690
691 postExecute();
692 // @todo remove me after debugging with legion done
693 if (curStaticInst && (!curStaticInst->isMicroop() ||
694 curStaticInst->isFirstMicroop()))
695 instCnt++;
696 advanceInst(fault);
697 } else {
698 advanceInst(NoFault);
699 }
700
701 if (pkt) {
702 delete pkt->req;
703 delete pkt;
704 }
705 }
706
707 void
708 TimingSimpleCPU::IcachePort::ITickEvent::process()
709 {
710 cpu->completeIfetch(pkt);
711 }
712
713 bool
714 TimingSimpleCPU::IcachePort::recvTimingResp(PacketPtr pkt)
715 {
716 DPRINTF(SimpleCPU, "Received timing response %#x\n", pkt->getAddr());
717 // delay processing of returned data until next CPU clock edge
718 Tick next_tick = cpu->clockEdge();
719
720 if (next_tick == curTick())
721 cpu->completeIfetch(pkt);
722 else
723 tickEvent.schedule(pkt, next_tick);
724
725 return true;
726 }
727
728 void
729 TimingSimpleCPU::IcachePort::recvRetry()
730 {
731 // we shouldn't get a retry unless we have a packet that we're
732 // waiting to transmit
733 assert(cpu->ifetch_pkt != NULL);
734 assert(cpu->_status == IcacheRetry);
735 PacketPtr tmp = cpu->ifetch_pkt;
736 if (sendTimingReq(tmp)) {
737 cpu->_status = IcacheWaitResponse;
738 cpu->ifetch_pkt = NULL;
739 }
740 }
741
742 void
743 TimingSimpleCPU::completeDataAccess(PacketPtr pkt)
744 {
745 // received a response from the dcache: complete the load or store
746 // instruction
747 assert(!pkt->isError());
748 assert(_status == DcacheWaitResponse || _status == DTBWaitResponse ||
749 pkt->req->getFlags().isSet(Request::NO_ACCESS));
750
751 pkt->req->setAccessLatency();
752
753 updateCycleCounts();
754
755 if (pkt->senderState) {
756 SplitFragmentSenderState * send_state =
757 dynamic_cast<SplitFragmentSenderState *>(pkt->senderState);
758 assert(send_state);
759 delete pkt->req;
760 delete pkt;
761 PacketPtr big_pkt = send_state->bigPkt;
762 delete send_state;
763
764 SplitMainSenderState * main_send_state =
765 dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
766 assert(main_send_state);
767 // Record the fact that this packet is no longer outstanding.
768 assert(main_send_state->outstanding != 0);
769 main_send_state->outstanding--;
770
771 if (main_send_state->outstanding) {
772 return;
773 } else {
774 delete main_send_state;
775 big_pkt->senderState = NULL;
776 pkt = big_pkt;
777 }
778 }
779
780 _status = BaseSimpleCPU::Running;
781
782 Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
783
784 // keep an instruction count
785 if (fault == NoFault)
786 countInst();
787 else if (traceData) {
788 // If there was a fault, we shouldn't trace this instruction.
789 delete traceData;
790 traceData = NULL;
791 }
792
793 // the locked flag may be cleared on the response packet, so check
794 // pkt->req and not pkt to see if it was a load-locked
795 if (pkt->isRead() && pkt->req->isLLSC()) {
796 TheISA::handleLockedRead(thread, pkt->req);
797 }
798
799 delete pkt->req;
800 delete pkt;
801
802 postExecute();
803
804 advanceInst(fault);
805 }
806
807 void
808 TimingSimpleCPU::updateCycleCounts()
809 {
810 const Cycles delta(curCycle() - previousCycle);
811
812 numCycles += delta;
813 ppCycles->notify(delta);
814
815 previousCycle = curCycle();
816 }
817
818 void
819 TimingSimpleCPU::DcachePort::recvTimingSnoopReq(PacketPtr pkt)
820 {
821 TheISA::handleLockedSnoop(cpu->thread, pkt, cacheBlockMask);
822 }
823
824
825 bool
826 TimingSimpleCPU::DcachePort::recvTimingResp(PacketPtr pkt)
827 {
828 // delay processing of returned data until next CPU clock edge
829 Tick next_tick = cpu->clockEdge();
830
831 if (next_tick == curTick()) {
832 cpu->completeDataAccess(pkt);
833 } else {
834 if (!tickEvent.scheduled()) {
835 tickEvent.schedule(pkt, next_tick);
836 } else {
837 // In the case of a split transaction and a cache that is
838 // faster than a CPU we could get two responses before
839 // next_tick expires
840 if (!retryEvent.scheduled())
841 cpu->schedule(retryEvent, next_tick);
842 return false;
843 }
844 }
845
846 return true;
847 }
848
849 void
850 TimingSimpleCPU::DcachePort::DTickEvent::process()
851 {
852 cpu->completeDataAccess(pkt);
853 }
854
855 void
856 TimingSimpleCPU::DcachePort::recvRetry()
857 {
858 // we shouldn't get a retry unless we have a packet that we're
859 // waiting to transmit
860 assert(cpu->dcache_pkt != NULL);
861 assert(cpu->_status == DcacheRetry);
862 PacketPtr tmp = cpu->dcache_pkt;
863 if (tmp->senderState) {
864 // This is a packet from a split access.
865 SplitFragmentSenderState * send_state =
866 dynamic_cast<SplitFragmentSenderState *>(tmp->senderState);
867 assert(send_state);
868 PacketPtr big_pkt = send_state->bigPkt;
869
870 SplitMainSenderState * main_send_state =
871 dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
872 assert(main_send_state);
873
874 if (sendTimingReq(tmp)) {
875 // If we were able to send without retrying, record that fact
876 // and try sending the other fragment.
877 send_state->clearFromParent();
878 int other_index = main_send_state->getPendingFragment();
879 if (other_index > 0) {
880 tmp = main_send_state->fragments[other_index];
881 cpu->dcache_pkt = tmp;
882 if ((big_pkt->isRead() && cpu->handleReadPacket(tmp)) ||
883 (big_pkt->isWrite() && cpu->handleWritePacket())) {
884 main_send_state->fragments[other_index] = NULL;
885 }
886 } else {
887 cpu->_status = DcacheWaitResponse;
888 // memory system takes ownership of packet
889 cpu->dcache_pkt = NULL;
890 }
891 }
892 } else if (sendTimingReq(tmp)) {
893 cpu->_status = DcacheWaitResponse;
894 // memory system takes ownership of packet
895 cpu->dcache_pkt = NULL;
896 }
897 }
898
899 TimingSimpleCPU::IprEvent::IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu,
900 Tick t)
901 : pkt(_pkt), cpu(_cpu)
902 {
903 cpu->schedule(this, t);
904 }
905
906 void
907 TimingSimpleCPU::IprEvent::process()
908 {
909 cpu->completeDataAccess(pkt);
910 }
911
912 const char *
913 TimingSimpleCPU::IprEvent::description() const
914 {
915 return "Timing Simple CPU Delay IPR event";
916 }
917
918
919 void
920 TimingSimpleCPU::printAddr(Addr a)
921 {
922 dcachePort.printAddr(a);
923 }
924
925
926 ////////////////////////////////////////////////////////////////////////
927 //
928 // TimingSimpleCPU Simulation Object
929 //
930 TimingSimpleCPU *
931 TimingSimpleCPUParams::create()
932 {
933 numThreads = 1;
934 if (!FullSystem && workload.size() != 1)
935 panic("only one workload allowed");
936 return new TimingSimpleCPU(this);
937 }