Port: Move retry from port base class to Master/SlavePort
[gem5.git] / src / cpu / simple / timing.cc
1 /*
2 * Copyright (c) 2010-2012 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Steve Reinhardt
41 */
42
43 #include "arch/locked_mem.hh"
44 #include "arch/mmapped_ipr.hh"
45 #include "arch/utility.hh"
46 #include "base/bigint.hh"
47 #include "config/the_isa.hh"
48 #include "cpu/simple/timing.hh"
49 #include "cpu/exetrace.hh"
50 #include "debug/Config.hh"
51 #include "debug/ExecFaulting.hh"
52 #include "debug/SimpleCPU.hh"
53 #include "mem/packet.hh"
54 #include "mem/packet_access.hh"
55 #include "params/TimingSimpleCPU.hh"
56 #include "sim/faults.hh"
57 #include "sim/full_system.hh"
58 #include "sim/system.hh"
59
60 using namespace std;
61 using namespace TheISA;
62
63 void
64 TimingSimpleCPU::init()
65 {
66 BaseCPU::init();
67
68 // Initialise the ThreadContext's memory proxies
69 tcBase()->initMemProxies(tcBase());
70
71 if (FullSystem && !params()->defer_registration) {
72 for (int i = 0; i < threadContexts.size(); ++i) {
73 ThreadContext *tc = threadContexts[i];
74 // initialize CPU, including PC
75 TheISA::initCPU(tc, _cpuId);
76 }
77 }
78 }
79
80 void
81 TimingSimpleCPU::TimingCPUPort::TickEvent::schedule(PacketPtr _pkt, Tick t)
82 {
83 pkt = _pkt;
84 cpu->schedule(this, t);
85 }
86
87 TimingSimpleCPU::TimingSimpleCPU(TimingSimpleCPUParams *p)
88 : BaseSimpleCPU(p), fetchTranslation(this), icachePort(this),
89 dcachePort(this), fetchEvent(this)
90 {
91 _status = Idle;
92
93 ifetch_pkt = dcache_pkt = NULL;
94 drainEvent = NULL;
95 previousTick = 0;
96 changeState(SimObject::Running);
97 system->totalNumInsts = 0;
98 }
99
100
101 TimingSimpleCPU::~TimingSimpleCPU()
102 {
103 }
104
105 void
106 TimingSimpleCPU::serialize(ostream &os)
107 {
108 SimObject::State so_state = SimObject::getState();
109 SERIALIZE_ENUM(so_state);
110 BaseSimpleCPU::serialize(os);
111 }
112
113 void
114 TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
115 {
116 SimObject::State so_state;
117 UNSERIALIZE_ENUM(so_state);
118 BaseSimpleCPU::unserialize(cp, section);
119 }
120
121 unsigned int
122 TimingSimpleCPU::drain(Event *drain_event)
123 {
124 // TimingSimpleCPU is ready to drain if it's not waiting for
125 // an access to complete.
126 if (_status == Idle || _status == Running || _status == SwitchedOut) {
127 changeState(SimObject::Drained);
128 return 0;
129 } else {
130 changeState(SimObject::Draining);
131 drainEvent = drain_event;
132 return 1;
133 }
134 }
135
136 void
137 TimingSimpleCPU::resume()
138 {
139 DPRINTF(SimpleCPU, "Resume\n");
140 if (_status != SwitchedOut && _status != Idle) {
141 assert(system->getMemoryMode() == Enums::timing);
142
143 if (fetchEvent.scheduled())
144 deschedule(fetchEvent);
145
146 schedule(fetchEvent, nextCycle());
147 }
148
149 changeState(SimObject::Running);
150 }
151
152 void
153 TimingSimpleCPU::switchOut()
154 {
155 assert(_status == Running || _status == Idle);
156 _status = SwitchedOut;
157 numCycles += tickToCycles(curTick() - previousTick);
158
159 // If we've been scheduled to resume but are then told to switch out,
160 // we'll need to cancel it.
161 if (fetchEvent.scheduled())
162 deschedule(fetchEvent);
163 }
164
165
166 void
167 TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
168 {
169 BaseCPU::takeOverFrom(oldCPU);
170
171 // if any of this CPU's ThreadContexts are active, mark the CPU as
172 // running and schedule its tick event.
173 for (int i = 0; i < threadContexts.size(); ++i) {
174 ThreadContext *tc = threadContexts[i];
175 if (tc->status() == ThreadContext::Active && _status != Running) {
176 _status = Running;
177 break;
178 }
179 }
180
181 if (_status != Running) {
182 _status = Idle;
183 }
184 assert(threadContexts.size() == 1);
185 previousTick = curTick();
186 }
187
188
189 void
190 TimingSimpleCPU::activateContext(ThreadID thread_num, int delay)
191 {
192 DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
193
194 assert(thread_num == 0);
195 assert(thread);
196
197 assert(_status == Idle);
198
199 notIdleFraction++;
200 _status = Running;
201
202 // kick things off by initiating the fetch of the next instruction
203 schedule(fetchEvent, nextCycle(curTick() + ticks(delay)));
204 }
205
206
207 void
208 TimingSimpleCPU::suspendContext(ThreadID thread_num)
209 {
210 DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
211
212 assert(thread_num == 0);
213 assert(thread);
214
215 if (_status == Idle)
216 return;
217
218 assert(_status == Running);
219
220 // just change status to Idle... if status != Running,
221 // completeInst() will not initiate fetch of next instruction.
222
223 notIdleFraction--;
224 _status = Idle;
225 }
226
227 bool
228 TimingSimpleCPU::handleReadPacket(PacketPtr pkt)
229 {
230 RequestPtr req = pkt->req;
231 if (req->isMmappedIpr()) {
232 Tick delay;
233 delay = TheISA::handleIprRead(thread->getTC(), pkt);
234 new IprEvent(pkt, this, nextCycle(curTick() + delay));
235 _status = DcacheWaitResponse;
236 dcache_pkt = NULL;
237 } else if (!dcachePort.sendTimingReq(pkt)) {
238 _status = DcacheRetry;
239 dcache_pkt = pkt;
240 } else {
241 _status = DcacheWaitResponse;
242 // memory system takes ownership of packet
243 dcache_pkt = NULL;
244 }
245 return dcache_pkt == NULL;
246 }
247
248 void
249 TimingSimpleCPU::sendData(RequestPtr req, uint8_t *data, uint64_t *res,
250 bool read)
251 {
252 PacketPtr pkt;
253 buildPacket(pkt, req, read);
254 pkt->dataDynamicArray<uint8_t>(data);
255 if (req->getFlags().isSet(Request::NO_ACCESS)) {
256 assert(!dcache_pkt);
257 pkt->makeResponse();
258 completeDataAccess(pkt);
259 } else if (read) {
260 handleReadPacket(pkt);
261 } else {
262 bool do_access = true; // flag to suppress cache access
263
264 if (req->isLLSC()) {
265 do_access = TheISA::handleLockedWrite(thread, req);
266 } else if (req->isCondSwap()) {
267 assert(res);
268 req->setExtraData(*res);
269 }
270
271 if (do_access) {
272 dcache_pkt = pkt;
273 handleWritePacket();
274 } else {
275 _status = DcacheWaitResponse;
276 completeDataAccess(pkt);
277 }
278 }
279 }
280
281 void
282 TimingSimpleCPU::sendSplitData(RequestPtr req1, RequestPtr req2,
283 RequestPtr req, uint8_t *data, bool read)
284 {
285 PacketPtr pkt1, pkt2;
286 buildSplitPacket(pkt1, pkt2, req1, req2, req, data, read);
287 if (req->getFlags().isSet(Request::NO_ACCESS)) {
288 assert(!dcache_pkt);
289 pkt1->makeResponse();
290 completeDataAccess(pkt1);
291 } else if (read) {
292 SplitFragmentSenderState * send_state =
293 dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
294 if (handleReadPacket(pkt1)) {
295 send_state->clearFromParent();
296 send_state = dynamic_cast<SplitFragmentSenderState *>(
297 pkt2->senderState);
298 if (handleReadPacket(pkt2)) {
299 send_state->clearFromParent();
300 }
301 }
302 } else {
303 dcache_pkt = pkt1;
304 SplitFragmentSenderState * send_state =
305 dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
306 if (handleWritePacket()) {
307 send_state->clearFromParent();
308 dcache_pkt = pkt2;
309 send_state = dynamic_cast<SplitFragmentSenderState *>(
310 pkt2->senderState);
311 if (handleWritePacket()) {
312 send_state->clearFromParent();
313 }
314 }
315 }
316 }
317
318 void
319 TimingSimpleCPU::translationFault(Fault fault)
320 {
321 // fault may be NoFault in cases where a fault is suppressed,
322 // for instance prefetches.
323 numCycles += tickToCycles(curTick() - previousTick);
324 previousTick = curTick();
325
326 if (traceData) {
327 // Since there was a fault, we shouldn't trace this instruction.
328 delete traceData;
329 traceData = NULL;
330 }
331
332 postExecute();
333
334 if (getState() == SimObject::Draining) {
335 advancePC(fault);
336 completeDrain();
337 } else {
338 advanceInst(fault);
339 }
340 }
341
342 void
343 TimingSimpleCPU::buildPacket(PacketPtr &pkt, RequestPtr req, bool read)
344 {
345 MemCmd cmd;
346 if (read) {
347 cmd = MemCmd::ReadReq;
348 if (req->isLLSC())
349 cmd = MemCmd::LoadLockedReq;
350 } else {
351 cmd = MemCmd::WriteReq;
352 if (req->isLLSC()) {
353 cmd = MemCmd::StoreCondReq;
354 } else if (req->isSwap()) {
355 cmd = MemCmd::SwapReq;
356 }
357 }
358 pkt = new Packet(req, cmd);
359 }
360
361 void
362 TimingSimpleCPU::buildSplitPacket(PacketPtr &pkt1, PacketPtr &pkt2,
363 RequestPtr req1, RequestPtr req2, RequestPtr req,
364 uint8_t *data, bool read)
365 {
366 pkt1 = pkt2 = NULL;
367
368 assert(!req1->isMmappedIpr() && !req2->isMmappedIpr());
369
370 if (req->getFlags().isSet(Request::NO_ACCESS)) {
371 buildPacket(pkt1, req, read);
372 return;
373 }
374
375 buildPacket(pkt1, req1, read);
376 buildPacket(pkt2, req2, read);
377
378 req->setPhys(req1->getPaddr(), req->getSize(), req1->getFlags(), dataMasterId());
379 PacketPtr pkt = new Packet(req, pkt1->cmd.responseCommand());
380
381 pkt->dataDynamicArray<uint8_t>(data);
382 pkt1->dataStatic<uint8_t>(data);
383 pkt2->dataStatic<uint8_t>(data + req1->getSize());
384
385 SplitMainSenderState * main_send_state = new SplitMainSenderState;
386 pkt->senderState = main_send_state;
387 main_send_state->fragments[0] = pkt1;
388 main_send_state->fragments[1] = pkt2;
389 main_send_state->outstanding = 2;
390 pkt1->senderState = new SplitFragmentSenderState(pkt, 0);
391 pkt2->senderState = new SplitFragmentSenderState(pkt, 1);
392 }
393
394 Fault
395 TimingSimpleCPU::readMem(Addr addr, uint8_t *data,
396 unsigned size, unsigned flags)
397 {
398 Fault fault;
399 const int asid = 0;
400 const ThreadID tid = 0;
401 const Addr pc = thread->instAddr();
402 unsigned block_size = dcachePort.peerBlockSize();
403 BaseTLB::Mode mode = BaseTLB::Read;
404
405 if (traceData) {
406 traceData->setAddr(addr);
407 }
408
409 RequestPtr req = new Request(asid, addr, size,
410 flags, dataMasterId(), pc, _cpuId, tid);
411
412 Addr split_addr = roundDown(addr + size - 1, block_size);
413 assert(split_addr <= addr || split_addr - addr < block_size);
414
415 _status = DTBWaitResponse;
416 if (split_addr > addr) {
417 RequestPtr req1, req2;
418 assert(!req->isLLSC() && !req->isSwap());
419 req->splitOnVaddr(split_addr, req1, req2);
420
421 WholeTranslationState *state =
422 new WholeTranslationState(req, req1, req2, new uint8_t[size],
423 NULL, mode);
424 DataTranslation<TimingSimpleCPU *> *trans1 =
425 new DataTranslation<TimingSimpleCPU *>(this, state, 0);
426 DataTranslation<TimingSimpleCPU *> *trans2 =
427 new DataTranslation<TimingSimpleCPU *>(this, state, 1);
428
429 thread->dtb->translateTiming(req1, tc, trans1, mode);
430 thread->dtb->translateTiming(req2, tc, trans2, mode);
431 } else {
432 WholeTranslationState *state =
433 new WholeTranslationState(req, new uint8_t[size], NULL, mode);
434 DataTranslation<TimingSimpleCPU *> *translation
435 = new DataTranslation<TimingSimpleCPU *>(this, state);
436 thread->dtb->translateTiming(req, tc, translation, mode);
437 }
438
439 return NoFault;
440 }
441
442 bool
443 TimingSimpleCPU::handleWritePacket()
444 {
445 RequestPtr req = dcache_pkt->req;
446 if (req->isMmappedIpr()) {
447 Tick delay;
448 delay = TheISA::handleIprWrite(thread->getTC(), dcache_pkt);
449 new IprEvent(dcache_pkt, this, nextCycle(curTick() + delay));
450 _status = DcacheWaitResponse;
451 dcache_pkt = NULL;
452 } else if (!dcachePort.sendTimingReq(dcache_pkt)) {
453 _status = DcacheRetry;
454 } else {
455 _status = DcacheWaitResponse;
456 // memory system takes ownership of packet
457 dcache_pkt = NULL;
458 }
459 return dcache_pkt == NULL;
460 }
461
462 Fault
463 TimingSimpleCPU::writeMem(uint8_t *data, unsigned size,
464 Addr addr, unsigned flags, uint64_t *res)
465 {
466 uint8_t *newData = new uint8_t[size];
467 memcpy(newData, data, size);
468
469 const int asid = 0;
470 const ThreadID tid = 0;
471 const Addr pc = thread->instAddr();
472 unsigned block_size = dcachePort.peerBlockSize();
473 BaseTLB::Mode mode = BaseTLB::Write;
474
475 if (traceData) {
476 traceData->setAddr(addr);
477 }
478
479 RequestPtr req = new Request(asid, addr, size,
480 flags, dataMasterId(), pc, _cpuId, tid);
481
482 Addr split_addr = roundDown(addr + size - 1, block_size);
483 assert(split_addr <= addr || split_addr - addr < block_size);
484
485 _status = DTBWaitResponse;
486 if (split_addr > addr) {
487 RequestPtr req1, req2;
488 assert(!req->isLLSC() && !req->isSwap());
489 req->splitOnVaddr(split_addr, req1, req2);
490
491 WholeTranslationState *state =
492 new WholeTranslationState(req, req1, req2, newData, res, mode);
493 DataTranslation<TimingSimpleCPU *> *trans1 =
494 new DataTranslation<TimingSimpleCPU *>(this, state, 0);
495 DataTranslation<TimingSimpleCPU *> *trans2 =
496 new DataTranslation<TimingSimpleCPU *>(this, state, 1);
497
498 thread->dtb->translateTiming(req1, tc, trans1, mode);
499 thread->dtb->translateTiming(req2, tc, trans2, mode);
500 } else {
501 WholeTranslationState *state =
502 new WholeTranslationState(req, newData, res, mode);
503 DataTranslation<TimingSimpleCPU *> *translation =
504 new DataTranslation<TimingSimpleCPU *>(this, state);
505 thread->dtb->translateTiming(req, tc, translation, mode);
506 }
507
508 // Translation faults will be returned via finishTranslation()
509 return NoFault;
510 }
511
512
513 void
514 TimingSimpleCPU::finishTranslation(WholeTranslationState *state)
515 {
516 _status = Running;
517
518 if (state->getFault() != NoFault) {
519 if (state->isPrefetch()) {
520 state->setNoFault();
521 }
522 delete [] state->data;
523 state->deleteReqs();
524 translationFault(state->getFault());
525 } else {
526 if (!state->isSplit) {
527 sendData(state->mainReq, state->data, state->res,
528 state->mode == BaseTLB::Read);
529 } else {
530 sendSplitData(state->sreqLow, state->sreqHigh, state->mainReq,
531 state->data, state->mode == BaseTLB::Read);
532 }
533 }
534
535 delete state;
536 }
537
538
539 void
540 TimingSimpleCPU::fetch()
541 {
542 DPRINTF(SimpleCPU, "Fetch\n");
543
544 if (!curStaticInst || !curStaticInst->isDelayedCommit())
545 checkForInterrupts();
546
547 checkPcEventQueue();
548
549 // We must have just got suspended by a PC event
550 if (_status == Idle)
551 return;
552
553 TheISA::PCState pcState = thread->pcState();
554 bool needToFetch = !isRomMicroPC(pcState.microPC()) && !curMacroStaticInst;
555
556 if (needToFetch) {
557 _status = Running;
558 Request *ifetch_req = new Request();
559 ifetch_req->setThreadContext(_cpuId, /* thread ID */ 0);
560 setupFetchRequest(ifetch_req);
561 DPRINTF(SimpleCPU, "Translating address %#x\n", ifetch_req->getVaddr());
562 thread->itb->translateTiming(ifetch_req, tc, &fetchTranslation,
563 BaseTLB::Execute);
564 } else {
565 _status = IcacheWaitResponse;
566 completeIfetch(NULL);
567
568 numCycles += tickToCycles(curTick() - previousTick);
569 previousTick = curTick();
570 }
571 }
572
573
574 void
575 TimingSimpleCPU::sendFetch(Fault fault, RequestPtr req, ThreadContext *tc)
576 {
577 if (fault == NoFault) {
578 DPRINTF(SimpleCPU, "Sending fetch for addr %#x(pa: %#x)\n",
579 req->getVaddr(), req->getPaddr());
580 ifetch_pkt = new Packet(req, MemCmd::ReadReq);
581 ifetch_pkt->dataStatic(&inst);
582 DPRINTF(SimpleCPU, " -- pkt addr: %#x\n", ifetch_pkt->getAddr());
583
584 if (!icachePort.sendTimingReq(ifetch_pkt)) {
585 // Need to wait for retry
586 _status = IcacheRetry;
587 } else {
588 // Need to wait for cache to respond
589 _status = IcacheWaitResponse;
590 // ownership of packet transferred to memory system
591 ifetch_pkt = NULL;
592 }
593 } else {
594 DPRINTF(SimpleCPU, "Translation of addr %#x faulted\n", req->getVaddr());
595 delete req;
596 // fetch fault: advance directly to next instruction (fault handler)
597 _status = Running;
598 advanceInst(fault);
599 }
600
601 numCycles += tickToCycles(curTick() - previousTick);
602 previousTick = curTick();
603 }
604
605
606 void
607 TimingSimpleCPU::advanceInst(Fault fault)
608 {
609
610 if (_status == Faulting)
611 return;
612
613 if (fault != NoFault) {
614 advancePC(fault);
615 DPRINTF(SimpleCPU, "Fault occured, scheduling fetch event\n");
616 reschedule(fetchEvent, nextCycle(), true);
617 _status = Faulting;
618 return;
619 }
620
621
622 if (!stayAtPC)
623 advancePC(fault);
624
625 if (_status == Running) {
626 // kick off fetch of next instruction... callback from icache
627 // response will cause that instruction to be executed,
628 // keeping the CPU running.
629 fetch();
630 }
631 }
632
633
634 void
635 TimingSimpleCPU::completeIfetch(PacketPtr pkt)
636 {
637 DPRINTF(SimpleCPU, "Complete ICache Fetch for addr %#x\n", pkt ?
638 pkt->getAddr() : 0);
639
640 // received a response from the icache: execute the received
641 // instruction
642
643 assert(!pkt || !pkt->isError());
644 assert(_status == IcacheWaitResponse);
645
646 _status = Running;
647
648 numCycles += tickToCycles(curTick() - previousTick);
649 previousTick = curTick();
650
651 if (getState() == SimObject::Draining) {
652 if (pkt) {
653 delete pkt->req;
654 delete pkt;
655 }
656
657 completeDrain();
658 return;
659 }
660
661 preExecute();
662 if (curStaticInst && curStaticInst->isMemRef()) {
663 // load or store: just send to dcache
664 Fault fault = curStaticInst->initiateAcc(this, traceData);
665
666 // If we're not running now the instruction will complete in a dcache
667 // response callback or the instruction faulted and has started an
668 // ifetch
669 if (_status == Running) {
670 if (fault != NoFault && traceData) {
671 // If there was a fault, we shouldn't trace this instruction.
672 delete traceData;
673 traceData = NULL;
674 }
675
676 postExecute();
677 // @todo remove me after debugging with legion done
678 if (curStaticInst && (!curStaticInst->isMicroop() ||
679 curStaticInst->isFirstMicroop()))
680 instCnt++;
681 advanceInst(fault);
682 }
683 } else if (curStaticInst) {
684 // non-memory instruction: execute completely now
685 Fault fault = curStaticInst->execute(this, traceData);
686
687 // keep an instruction count
688 if (fault == NoFault)
689 countInst();
690 else if (traceData && !DTRACE(ExecFaulting)) {
691 delete traceData;
692 traceData = NULL;
693 }
694
695 postExecute();
696 // @todo remove me after debugging with legion done
697 if (curStaticInst && (!curStaticInst->isMicroop() ||
698 curStaticInst->isFirstMicroop()))
699 instCnt++;
700 advanceInst(fault);
701 } else {
702 advanceInst(NoFault);
703 }
704
705 if (pkt) {
706 delete pkt->req;
707 delete pkt;
708 }
709 }
710
711 void
712 TimingSimpleCPU::IcachePort::ITickEvent::process()
713 {
714 cpu->completeIfetch(pkt);
715 }
716
717 bool
718 TimingSimpleCPU::IcachePort::recvTimingResp(PacketPtr pkt)
719 {
720 if (!pkt->wasNacked()) {
721 DPRINTF(SimpleCPU, "Received timing response %#x\n", pkt->getAddr());
722 // delay processing of returned data until next CPU clock edge
723 Tick next_tick = cpu->nextCycle(curTick());
724
725 if (next_tick == curTick())
726 cpu->completeIfetch(pkt);
727 else
728 tickEvent.schedule(pkt, next_tick);
729
730 return true;
731 } else {
732 assert(cpu->_status == IcacheWaitResponse);
733 pkt->reinitNacked();
734 if (!sendTimingReq(pkt)) {
735 cpu->_status = IcacheRetry;
736 cpu->ifetch_pkt = pkt;
737 }
738 }
739
740 return true;
741 }
742
743 void
744 TimingSimpleCPU::IcachePort::recvRetry()
745 {
746 // we shouldn't get a retry unless we have a packet that we're
747 // waiting to transmit
748 assert(cpu->ifetch_pkt != NULL);
749 assert(cpu->_status == IcacheRetry);
750 PacketPtr tmp = cpu->ifetch_pkt;
751 if (sendTimingReq(tmp)) {
752 cpu->_status = IcacheWaitResponse;
753 cpu->ifetch_pkt = NULL;
754 }
755 }
756
757 void
758 TimingSimpleCPU::completeDataAccess(PacketPtr pkt)
759 {
760 // received a response from the dcache: complete the load or store
761 // instruction
762 assert(!pkt->isError());
763 assert(_status == DcacheWaitResponse || _status == DTBWaitResponse ||
764 pkt->req->getFlags().isSet(Request::NO_ACCESS));
765
766 numCycles += tickToCycles(curTick() - previousTick);
767 previousTick = curTick();
768
769 if (pkt->senderState) {
770 SplitFragmentSenderState * send_state =
771 dynamic_cast<SplitFragmentSenderState *>(pkt->senderState);
772 assert(send_state);
773 delete pkt->req;
774 delete pkt;
775 PacketPtr big_pkt = send_state->bigPkt;
776 delete send_state;
777
778 SplitMainSenderState * main_send_state =
779 dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
780 assert(main_send_state);
781 // Record the fact that this packet is no longer outstanding.
782 assert(main_send_state->outstanding != 0);
783 main_send_state->outstanding--;
784
785 if (main_send_state->outstanding) {
786 return;
787 } else {
788 delete main_send_state;
789 big_pkt->senderState = NULL;
790 pkt = big_pkt;
791 }
792 }
793
794 _status = Running;
795
796 Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
797
798 // keep an instruction count
799 if (fault == NoFault)
800 countInst();
801 else if (traceData) {
802 // If there was a fault, we shouldn't trace this instruction.
803 delete traceData;
804 traceData = NULL;
805 }
806
807 // the locked flag may be cleared on the response packet, so check
808 // pkt->req and not pkt to see if it was a load-locked
809 if (pkt->isRead() && pkt->req->isLLSC()) {
810 TheISA::handleLockedRead(thread, pkt->req);
811 }
812
813 delete pkt->req;
814 delete pkt;
815
816 postExecute();
817
818 if (getState() == SimObject::Draining) {
819 advancePC(fault);
820 completeDrain();
821
822 return;
823 }
824
825 advanceInst(fault);
826 }
827
828
829 void
830 TimingSimpleCPU::completeDrain()
831 {
832 DPRINTF(Config, "Done draining\n");
833 changeState(SimObject::Drained);
834 drainEvent->process();
835 }
836
837 bool
838 TimingSimpleCPU::DcachePort::recvTimingResp(PacketPtr pkt)
839 {
840 if (!pkt->wasNacked()) {
841 // delay processing of returned data until next CPU clock edge
842 Tick next_tick = cpu->nextCycle(curTick());
843
844 if (next_tick == curTick()) {
845 cpu->completeDataAccess(pkt);
846 } else {
847 if (!tickEvent.scheduled()) {
848 tickEvent.schedule(pkt, next_tick);
849 } else {
850 // In the case of a split transaction and a cache that is
851 // faster than a CPU we could get two responses before
852 // next_tick expires
853 if (!retryEvent.scheduled())
854 cpu->schedule(retryEvent, next_tick);
855 return false;
856 }
857 }
858
859 return true;
860 } else {
861 assert(cpu->_status == DcacheWaitResponse);
862 pkt->reinitNacked();
863 if (!sendTimingReq(pkt)) {
864 cpu->_status = DcacheRetry;
865 cpu->dcache_pkt = pkt;
866 }
867 }
868
869 return true;
870 }
871
872 void
873 TimingSimpleCPU::DcachePort::DTickEvent::process()
874 {
875 cpu->completeDataAccess(pkt);
876 }
877
878 void
879 TimingSimpleCPU::DcachePort::recvRetry()
880 {
881 // we shouldn't get a retry unless we have a packet that we're
882 // waiting to transmit
883 assert(cpu->dcache_pkt != NULL);
884 assert(cpu->_status == DcacheRetry);
885 PacketPtr tmp = cpu->dcache_pkt;
886 if (tmp->senderState) {
887 // This is a packet from a split access.
888 SplitFragmentSenderState * send_state =
889 dynamic_cast<SplitFragmentSenderState *>(tmp->senderState);
890 assert(send_state);
891 PacketPtr big_pkt = send_state->bigPkt;
892
893 SplitMainSenderState * main_send_state =
894 dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
895 assert(main_send_state);
896
897 if (sendTimingReq(tmp)) {
898 // If we were able to send without retrying, record that fact
899 // and try sending the other fragment.
900 send_state->clearFromParent();
901 int other_index = main_send_state->getPendingFragment();
902 if (other_index > 0) {
903 tmp = main_send_state->fragments[other_index];
904 cpu->dcache_pkt = tmp;
905 if ((big_pkt->isRead() && cpu->handleReadPacket(tmp)) ||
906 (big_pkt->isWrite() && cpu->handleWritePacket())) {
907 main_send_state->fragments[other_index] = NULL;
908 }
909 } else {
910 cpu->_status = DcacheWaitResponse;
911 // memory system takes ownership of packet
912 cpu->dcache_pkt = NULL;
913 }
914 }
915 } else if (sendTimingReq(tmp)) {
916 cpu->_status = DcacheWaitResponse;
917 // memory system takes ownership of packet
918 cpu->dcache_pkt = NULL;
919 }
920 }
921
922 TimingSimpleCPU::IprEvent::IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu,
923 Tick t)
924 : pkt(_pkt), cpu(_cpu)
925 {
926 cpu->schedule(this, t);
927 }
928
929 void
930 TimingSimpleCPU::IprEvent::process()
931 {
932 cpu->completeDataAccess(pkt);
933 }
934
935 const char *
936 TimingSimpleCPU::IprEvent::description() const
937 {
938 return "Timing Simple CPU Delay IPR event";
939 }
940
941
942 void
943 TimingSimpleCPU::printAddr(Addr a)
944 {
945 dcachePort.printAddr(a);
946 }
947
948
949 ////////////////////////////////////////////////////////////////////////
950 //
951 // TimingSimpleCPU Simulation Object
952 //
953 TimingSimpleCPU *
954 TimingSimpleCPUParams::create()
955 {
956 numThreads = 1;
957 if (!FullSystem && workload.size() != 1)
958 panic("only one workload allowed");
959 return new TimingSimpleCPU(this);
960 }