Switch out fixes for CPUs.
[gem5.git] / src / cpu / simple / timing.cc
1 /*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31 #include "arch/utility.hh"
32 #include "cpu/exetrace.hh"
33 #include "cpu/simple/timing.hh"
34 #include "mem/packet_impl.hh"
35 #include "sim/builder.hh"
36
37 using namespace std;
38 using namespace TheISA;
39
40
41 void
42 TimingSimpleCPU::init()
43 {
44 //Create Memory Ports (conect them up)
45 Port *mem_dport = mem->getPort("");
46 dcachePort.setPeer(mem_dport);
47 mem_dport->setPeer(&dcachePort);
48
49 Port *mem_iport = mem->getPort("");
50 icachePort.setPeer(mem_iport);
51 mem_iport->setPeer(&icachePort);
52
53 BaseCPU::init();
54 #if FULL_SYSTEM
55 for (int i = 0; i < threadContexts.size(); ++i) {
56 ThreadContext *tc = threadContexts[i];
57
58 // initialize CPU, including PC
59 TheISA::initCPU(tc, tc->readCpuId());
60 }
61 #endif
62 }
63
64 Tick
65 TimingSimpleCPU::CpuPort::recvAtomic(Packet *pkt)
66 {
67 panic("TimingSimpleCPU doesn't expect recvAtomic callback!");
68 return curTick;
69 }
70
71 void
72 TimingSimpleCPU::CpuPort::recvFunctional(Packet *pkt)
73 {
74 panic("TimingSimpleCPU doesn't expect recvFunctional callback!");
75 }
76
77 void
78 TimingSimpleCPU::CpuPort::recvStatusChange(Status status)
79 {
80 if (status == RangeChange)
81 return;
82
83 panic("TimingSimpleCPU doesn't expect recvStatusChange callback!");
84 }
85
86 TimingSimpleCPU::TimingSimpleCPU(Params *p)
87 : BaseSimpleCPU(p), icachePort(this), dcachePort(this)
88 {
89 _status = Idle;
90 ifetch_pkt = dcache_pkt = NULL;
91 drainEvent = NULL;
92 fetchEvent = NULL;
93 state = SimObject::Timing;
94 }
95
96
97 TimingSimpleCPU::~TimingSimpleCPU()
98 {
99 }
100
101 void
102 TimingSimpleCPU::serialize(ostream &os)
103 {
104 SERIALIZE_ENUM(_status);
105 BaseSimpleCPU::serialize(os);
106 }
107
108 void
109 TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
110 {
111 UNSERIALIZE_ENUM(_status);
112 BaseSimpleCPU::unserialize(cp, section);
113 }
114
115 bool
116 TimingSimpleCPU::drain(Event *drain_event)
117 {
118 // TimingSimpleCPU is ready to drain if it's not waiting for
119 // an access to complete.
120 if (status() == Idle || status() == Running || status() == SwitchedOut) {
121 changeState(SimObject::DrainedTiming);
122 return true;
123 } else {
124 changeState(SimObject::Draining);
125 drainEvent = drain_event;
126 return false;
127 }
128 }
129
130 void
131 TimingSimpleCPU::resume()
132 {
133 if (_status != SwitchedOut && _status != Idle) {
134 // Delete the old event if it existed.
135 if (fetchEvent) {
136 assert(!fetchEvent->scheduled());
137 delete fetchEvent;
138 }
139
140 fetchEvent =
141 new EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch>(this, false);
142 fetchEvent->schedule(curTick);
143 }
144 }
145
146 void
147 TimingSimpleCPU::setMemoryMode(State new_mode)
148 {
149 assert(new_mode == SimObject::Timing);
150 }
151
152 void
153 TimingSimpleCPU::switchOut()
154 {
155 assert(status() == Running || status() == Idle);
156 _status = SwitchedOut;
157
158 // If we've been scheduled to resume but are then told to switch out,
159 // we'll need to cancel it.
160 if (fetchEvent && fetchEvent->scheduled())
161 fetchEvent->deschedule();
162 }
163
164
165 void
166 TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
167 {
168 BaseCPU::takeOverFrom(oldCPU);
169
170 // if any of this CPU's ThreadContexts are active, mark the CPU as
171 // running and schedule its tick event.
172 for (int i = 0; i < threadContexts.size(); ++i) {
173 ThreadContext *tc = threadContexts[i];
174 if (tc->status() == ThreadContext::Active && _status != Running) {
175 _status = Running;
176 break;
177 }
178 }
179 }
180
181
182 void
183 TimingSimpleCPU::activateContext(int thread_num, int delay)
184 {
185 assert(thread_num == 0);
186 assert(thread);
187
188 assert(_status == Idle);
189
190 notIdleFraction++;
191 _status = Running;
192 // kick things off by initiating the fetch of the next instruction
193 fetchEvent =
194 new EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch>(this, false);
195 fetchEvent->schedule(curTick + cycles(delay));
196 }
197
198
199 void
200 TimingSimpleCPU::suspendContext(int thread_num)
201 {
202 assert(thread_num == 0);
203 assert(thread);
204
205 assert(_status == Running);
206
207 // just change status to Idle... if status != Running,
208 // completeInst() will not initiate fetch of next instruction.
209
210 notIdleFraction--;
211 _status = Idle;
212 }
213
214
215 template <class T>
216 Fault
217 TimingSimpleCPU::read(Addr addr, T &data, unsigned flags)
218 {
219 // need to fill in CPU & thread IDs here
220 Request *data_read_req = new Request();
221 data_read_req->setThreadContext(0,0); //Need CPU/Thread IDS HERE
222 data_read_req->setVirt(0, addr, sizeof(T), flags, thread->readPC());
223
224 if (traceData) {
225 traceData->setAddr(data_read_req->getVaddr());
226 }
227
228 // translate to physical address
229 Fault fault = thread->translateDataReadReq(data_read_req);
230
231 // Now do the access.
232 if (fault == NoFault) {
233 Packet *data_read_pkt =
234 new Packet(data_read_req, Packet::ReadReq, Packet::Broadcast);
235 data_read_pkt->dataDynamic<T>(new T);
236
237 if (!dcachePort.sendTiming(data_read_pkt)) {
238 _status = DcacheRetry;
239 dcache_pkt = data_read_pkt;
240 } else {
241 _status = DcacheWaitResponse;
242 dcache_pkt = NULL;
243 }
244 }
245
246 // This will need a new way to tell if it has a dcache attached.
247 if (data_read_req->getFlags() & UNCACHEABLE)
248 recordEvent("Uncached Read");
249
250 return fault;
251 }
252
253 #ifndef DOXYGEN_SHOULD_SKIP_THIS
254
255 template
256 Fault
257 TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
258
259 template
260 Fault
261 TimingSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
262
263 template
264 Fault
265 TimingSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
266
267 template
268 Fault
269 TimingSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
270
271 #endif //DOXYGEN_SHOULD_SKIP_THIS
272
273 template<>
274 Fault
275 TimingSimpleCPU::read(Addr addr, double &data, unsigned flags)
276 {
277 return read(addr, *(uint64_t*)&data, flags);
278 }
279
280 template<>
281 Fault
282 TimingSimpleCPU::read(Addr addr, float &data, unsigned flags)
283 {
284 return read(addr, *(uint32_t*)&data, flags);
285 }
286
287
288 template<>
289 Fault
290 TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
291 {
292 return read(addr, (uint32_t&)data, flags);
293 }
294
295
296 template <class T>
297 Fault
298 TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
299 {
300 // need to fill in CPU & thread IDs here
301 Request *data_write_req = new Request();
302 data_write_req->setThreadContext(0,0); //Need CPU/Thread IDS HERE
303 data_write_req->setVirt(0, addr, sizeof(T), flags, thread->readPC());
304
305 // translate to physical address
306 Fault fault = thread->translateDataWriteReq(data_write_req);
307 // Now do the access.
308 if (fault == NoFault) {
309 Packet *data_write_pkt =
310 new Packet(data_write_req, Packet::WriteReq, Packet::Broadcast);
311 data_write_pkt->allocate();
312 data_write_pkt->set(data);
313
314 if (!dcachePort.sendTiming(data_write_pkt)) {
315 _status = DcacheRetry;
316 dcache_pkt = data_write_pkt;
317 } else {
318 _status = DcacheWaitResponse;
319 dcache_pkt = NULL;
320 }
321 }
322
323 // This will need a new way to tell if it's hooked up to a cache or not.
324 if (data_write_req->getFlags() & UNCACHEABLE)
325 recordEvent("Uncached Write");
326
327 // If the write needs to have a fault on the access, consider calling
328 // changeStatus() and changing it to "bad addr write" or something.
329 return fault;
330 }
331
332
333 #ifndef DOXYGEN_SHOULD_SKIP_THIS
334 template
335 Fault
336 TimingSimpleCPU::write(uint64_t data, Addr addr,
337 unsigned flags, uint64_t *res);
338
339 template
340 Fault
341 TimingSimpleCPU::write(uint32_t data, Addr addr,
342 unsigned flags, uint64_t *res);
343
344 template
345 Fault
346 TimingSimpleCPU::write(uint16_t data, Addr addr,
347 unsigned flags, uint64_t *res);
348
349 template
350 Fault
351 TimingSimpleCPU::write(uint8_t data, Addr addr,
352 unsigned flags, uint64_t *res);
353
354 #endif //DOXYGEN_SHOULD_SKIP_THIS
355
356 template<>
357 Fault
358 TimingSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
359 {
360 return write(*(uint64_t*)&data, addr, flags, res);
361 }
362
363 template<>
364 Fault
365 TimingSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
366 {
367 return write(*(uint32_t*)&data, addr, flags, res);
368 }
369
370
371 template<>
372 Fault
373 TimingSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
374 {
375 return write((uint32_t)data, addr, flags, res);
376 }
377
378
379 void
380 TimingSimpleCPU::fetch()
381 {
382 checkForInterrupts();
383
384 // need to fill in CPU & thread IDs here
385 Request *ifetch_req = new Request();
386 ifetch_req->setThreadContext(0,0); //Need CPU/Thread IDS HERE
387 Fault fault = setupFetchRequest(ifetch_req);
388
389 ifetch_pkt = new Packet(ifetch_req, Packet::ReadReq, Packet::Broadcast);
390 ifetch_pkt->dataStatic(&inst);
391
392 if (fault == NoFault) {
393 if (!icachePort.sendTiming(ifetch_pkt)) {
394 // Need to wait for retry
395 _status = IcacheRetry;
396 } else {
397 // Need to wait for cache to respond
398 _status = IcacheWaitResponse;
399 // ownership of packet transferred to memory system
400 ifetch_pkt = NULL;
401 }
402 } else {
403 // fetch fault: advance directly to next instruction (fault handler)
404 advanceInst(fault);
405 }
406 }
407
408
409 void
410 TimingSimpleCPU::advanceInst(Fault fault)
411 {
412 advancePC(fault);
413
414 if (_status == Running) {
415 // kick off fetch of next instruction... callback from icache
416 // response will cause that instruction to be executed,
417 // keeping the CPU running.
418 fetch();
419 }
420 }
421
422
423 void
424 TimingSimpleCPU::completeIfetch(Packet *pkt)
425 {
426 // received a response from the icache: execute the received
427 // instruction
428 assert(pkt->result == Packet::Success);
429 assert(_status == IcacheWaitResponse);
430
431 _status = Running;
432
433 delete pkt->req;
434 delete pkt;
435
436 if (getState() == SimObject::Draining) {
437 completeDrain();
438 return;
439 }
440
441 preExecute();
442 if (curStaticInst->isMemRef() && !curStaticInst->isDataPrefetch()) {
443 // load or store: just send to dcache
444 Fault fault = curStaticInst->initiateAcc(this, traceData);
445 if (fault == NoFault) {
446 // successfully initiated access: instruction will
447 // complete in dcache response callback
448 assert(_status == DcacheWaitResponse);
449 } else {
450 // fault: complete now to invoke fault handler
451 postExecute();
452 advanceInst(fault);
453 }
454 } else {
455 // non-memory instruction: execute completely now
456 Fault fault = curStaticInst->execute(this, traceData);
457 postExecute();
458 advanceInst(fault);
459 }
460 }
461
462
463 bool
464 TimingSimpleCPU::IcachePort::recvTiming(Packet *pkt)
465 {
466 if (cpu->_status == DcacheWaitResponse)
467 cpu->completeDataAccess(pkt);
468 else if (cpu->_status == IcacheWaitResponse)
469 cpu->completeIfetch(pkt);
470 else
471 assert("OOPS" && 0);
472 return true;
473 }
474
475 void
476 TimingSimpleCPU::IcachePort::recvRetry()
477 {
478 // we shouldn't get a retry unless we have a packet that we're
479 // waiting to transmit
480 assert(cpu->ifetch_pkt != NULL);
481 assert(cpu->_status == IcacheRetry);
482 Packet *tmp = cpu->ifetch_pkt;
483 if (sendTiming(tmp)) {
484 cpu->_status = IcacheWaitResponse;
485 cpu->ifetch_pkt = NULL;
486 }
487 }
488
489 void
490 TimingSimpleCPU::completeDataAccess(Packet *pkt)
491 {
492 // received a response from the dcache: complete the load or store
493 // instruction
494 assert(pkt->result == Packet::Success);
495 assert(_status == DcacheWaitResponse);
496 _status = Running;
497
498 if (getState() == SimObject::Draining) {
499 completeDrain();
500
501 delete pkt->req;
502 delete pkt;
503
504 return;
505 }
506
507 Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
508
509 delete pkt->req;
510 delete pkt;
511
512 postExecute();
513 advanceInst(fault);
514 }
515
516
517 void
518 TimingSimpleCPU::completeDrain()
519 {
520 DPRINTF(Config, "Done draining\n");
521 changeState(SimObject::DrainedTiming);
522 drainEvent->process();
523 }
524
525 bool
526 TimingSimpleCPU::DcachePort::recvTiming(Packet *pkt)
527 {
528 cpu->completeDataAccess(pkt);
529 return true;
530 }
531
532 void
533 TimingSimpleCPU::DcachePort::recvRetry()
534 {
535 // we shouldn't get a retry unless we have a packet that we're
536 // waiting to transmit
537 assert(cpu->dcache_pkt != NULL);
538 assert(cpu->_status == DcacheRetry);
539 Packet *tmp = cpu->dcache_pkt;
540 if (sendTiming(tmp)) {
541 cpu->_status = DcacheWaitResponse;
542 cpu->dcache_pkt = NULL;
543 }
544 }
545
546
547 ////////////////////////////////////////////////////////////////////////
548 //
549 // TimingSimpleCPU Simulation Object
550 //
551 BEGIN_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
552
553 Param<Counter> max_insts_any_thread;
554 Param<Counter> max_insts_all_threads;
555 Param<Counter> max_loads_any_thread;
556 Param<Counter> max_loads_all_threads;
557 SimObjectParam<MemObject *> mem;
558
559 #if FULL_SYSTEM
560 SimObjectParam<AlphaITB *> itb;
561 SimObjectParam<AlphaDTB *> dtb;
562 SimObjectParam<System *> system;
563 Param<int> cpu_id;
564 Param<Tick> profile;
565 #else
566 SimObjectParam<Process *> workload;
567 #endif // FULL_SYSTEM
568
569 Param<int> clock;
570
571 Param<bool> defer_registration;
572 Param<int> width;
573 Param<bool> function_trace;
574 Param<Tick> function_trace_start;
575 Param<bool> simulate_stalls;
576
577 END_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
578
579 BEGIN_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
580
581 INIT_PARAM(max_insts_any_thread,
582 "terminate when any thread reaches this inst count"),
583 INIT_PARAM(max_insts_all_threads,
584 "terminate when all threads have reached this inst count"),
585 INIT_PARAM(max_loads_any_thread,
586 "terminate when any thread reaches this load count"),
587 INIT_PARAM(max_loads_all_threads,
588 "terminate when all threads have reached this load count"),
589 INIT_PARAM(mem, "memory"),
590
591 #if FULL_SYSTEM
592 INIT_PARAM(itb, "Instruction TLB"),
593 INIT_PARAM(dtb, "Data TLB"),
594 INIT_PARAM(system, "system object"),
595 INIT_PARAM(cpu_id, "processor ID"),
596 INIT_PARAM(profile, ""),
597 #else
598 INIT_PARAM(workload, "processes to run"),
599 #endif // FULL_SYSTEM
600
601 INIT_PARAM(clock, "clock speed"),
602 INIT_PARAM(defer_registration, "defer system registration (for sampling)"),
603 INIT_PARAM(width, "cpu width"),
604 INIT_PARAM(function_trace, "Enable function trace"),
605 INIT_PARAM(function_trace_start, "Cycle to start function trace"),
606 INIT_PARAM(simulate_stalls, "Simulate cache stall cycles")
607
608 END_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
609
610
611 CREATE_SIM_OBJECT(TimingSimpleCPU)
612 {
613 TimingSimpleCPU::Params *params = new TimingSimpleCPU::Params();
614 params->name = getInstanceName();
615 params->numberOfThreads = 1;
616 params->max_insts_any_thread = max_insts_any_thread;
617 params->max_insts_all_threads = max_insts_all_threads;
618 params->max_loads_any_thread = max_loads_any_thread;
619 params->max_loads_all_threads = max_loads_all_threads;
620 params->deferRegistration = defer_registration;
621 params->clock = clock;
622 params->functionTrace = function_trace;
623 params->functionTraceStart = function_trace_start;
624 params->mem = mem;
625
626 #if FULL_SYSTEM
627 params->itb = itb;
628 params->dtb = dtb;
629 params->system = system;
630 params->cpu_id = cpu_id;
631 params->profile = profile;
632 #else
633 params->process = workload;
634 #endif
635
636 TimingSimpleCPU *cpu = new TimingSimpleCPU(params);
637 return cpu;
638 }
639
640 REGISTER_SIM_OBJECT("TimingSimpleCPU", TimingSimpleCPU)
641