memory mode information now contained in system object
[gem5.git] / src / cpu / simple / timing.cc
1 /*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31 #include "arch/utility.hh"
32 #include "cpu/exetrace.hh"
33 #include "cpu/simple/timing.hh"
34 #include "mem/packet_impl.hh"
35 #include "sim/builder.hh"
36 #include "sim/system.hh"
37
38 using namespace std;
39 using namespace TheISA;
40
41 Port *
42 TimingSimpleCPU::getPort(const std::string &if_name, int idx)
43 {
44 if (if_name == "dcache_port")
45 return &dcachePort;
46 else if (if_name == "icache_port")
47 return &icachePort;
48 else
49 panic("No Such Port\n");
50 }
51
52 void
53 TimingSimpleCPU::init()
54 {
55 BaseCPU::init();
56 #if FULL_SYSTEM
57 for (int i = 0; i < threadContexts.size(); ++i) {
58 ThreadContext *tc = threadContexts[i];
59
60 // initialize CPU, including PC
61 TheISA::initCPU(tc, tc->readCpuId());
62 }
63 #endif
64 }
65
66 Tick
67 TimingSimpleCPU::CpuPort::recvAtomic(Packet *pkt)
68 {
69 panic("TimingSimpleCPU doesn't expect recvAtomic callback!");
70 return curTick;
71 }
72
73 void
74 TimingSimpleCPU::CpuPort::recvFunctional(Packet *pkt)
75 {
76 panic("TimingSimpleCPU doesn't expect recvFunctional callback!");
77 }
78
79 void
80 TimingSimpleCPU::CpuPort::recvStatusChange(Status status)
81 {
82 if (status == RangeChange)
83 return;
84
85 panic("TimingSimpleCPU doesn't expect recvStatusChange callback!");
86 }
87
88 TimingSimpleCPU::TimingSimpleCPU(Params *p)
89 : BaseSimpleCPU(p), icachePort(this), dcachePort(this)
90 {
91 _status = Idle;
92 ifetch_pkt = dcache_pkt = NULL;
93 drainEvent = NULL;
94 fetchEvent = NULL;
95 changeState(SimObject::Running);
96 }
97
98
99 TimingSimpleCPU::~TimingSimpleCPU()
100 {
101 }
102
103 void
104 TimingSimpleCPU::serialize(ostream &os)
105 {
106 SERIALIZE_ENUM(_status);
107 BaseSimpleCPU::serialize(os);
108 }
109
110 void
111 TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
112 {
113 UNSERIALIZE_ENUM(_status);
114 BaseSimpleCPU::unserialize(cp, section);
115 }
116
117 unsigned int
118 TimingSimpleCPU::drain(Event *drain_event)
119 {
120 // TimingSimpleCPU is ready to drain if it's not waiting for
121 // an access to complete.
122 if (status() == Idle || status() == Running || status() == SwitchedOut) {
123 changeState(SimObject::Drained);
124 return 0;
125 } else {
126 changeState(SimObject::Draining);
127 drainEvent = drain_event;
128 return 1;
129 }
130 }
131
132 void
133 TimingSimpleCPU::resume()
134 {
135 if (_status != SwitchedOut && _status != Idle) {
136 // Delete the old event if it existed.
137 if (fetchEvent) {
138 assert(!fetchEvent->scheduled());
139 delete fetchEvent;
140 }
141
142 fetchEvent =
143 new EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch>(this, false);
144 fetchEvent->schedule(curTick);
145 }
146
147 assert(system->getMemoryMode() == System::Timing);
148 changeState(SimObject::Running);
149 }
150
151 void
152 TimingSimpleCPU::switchOut()
153 {
154 assert(status() == Running || status() == Idle);
155 _status = SwitchedOut;
156
157 // If we've been scheduled to resume but are then told to switch out,
158 // we'll need to cancel it.
159 if (fetchEvent && fetchEvent->scheduled())
160 fetchEvent->deschedule();
161 }
162
163
164 void
165 TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
166 {
167 BaseCPU::takeOverFrom(oldCPU);
168
169 // if any of this CPU's ThreadContexts are active, mark the CPU as
170 // running and schedule its tick event.
171 for (int i = 0; i < threadContexts.size(); ++i) {
172 ThreadContext *tc = threadContexts[i];
173 if (tc->status() == ThreadContext::Active && _status != Running) {
174 _status = Running;
175 break;
176 }
177 }
178 }
179
180
181 void
182 TimingSimpleCPU::activateContext(int thread_num, int delay)
183 {
184 assert(thread_num == 0);
185 assert(thread);
186
187 assert(_status == Idle);
188
189 notIdleFraction++;
190 _status = Running;
191 // kick things off by initiating the fetch of the next instruction
192 fetchEvent =
193 new EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch>(this, false);
194 fetchEvent->schedule(curTick + cycles(delay));
195 }
196
197
198 void
199 TimingSimpleCPU::suspendContext(int thread_num)
200 {
201 assert(thread_num == 0);
202 assert(thread);
203
204 assert(_status == Running);
205
206 // just change status to Idle... if status != Running,
207 // completeInst() will not initiate fetch of next instruction.
208
209 notIdleFraction--;
210 _status = Idle;
211 }
212
213
214 template <class T>
215 Fault
216 TimingSimpleCPU::read(Addr addr, T &data, unsigned flags)
217 {
218 // need to fill in CPU & thread IDs here
219 Request *data_read_req = new Request();
220 data_read_req->setThreadContext(0,0); //Need CPU/Thread IDS HERE
221 data_read_req->setVirt(0, addr, sizeof(T), flags, thread->readPC());
222
223 if (traceData) {
224 traceData->setAddr(data_read_req->getVaddr());
225 }
226
227 // translate to physical address
228 Fault fault = thread->translateDataReadReq(data_read_req);
229
230 // Now do the access.
231 if (fault == NoFault) {
232 Packet *data_read_pkt =
233 new Packet(data_read_req, Packet::ReadReq, Packet::Broadcast);
234 data_read_pkt->dataDynamic<T>(new T);
235
236 if (!dcachePort.sendTiming(data_read_pkt)) {
237 _status = DcacheRetry;
238 dcache_pkt = data_read_pkt;
239 } else {
240 _status = DcacheWaitResponse;
241 dcache_pkt = NULL;
242 }
243 }
244
245 // This will need a new way to tell if it has a dcache attached.
246 if (data_read_req->getFlags() & UNCACHEABLE)
247 recordEvent("Uncached Read");
248
249 return fault;
250 }
251
252 #ifndef DOXYGEN_SHOULD_SKIP_THIS
253
254 template
255 Fault
256 TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
257
258 template
259 Fault
260 TimingSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
261
262 template
263 Fault
264 TimingSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
265
266 template
267 Fault
268 TimingSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
269
270 #endif //DOXYGEN_SHOULD_SKIP_THIS
271
272 template<>
273 Fault
274 TimingSimpleCPU::read(Addr addr, double &data, unsigned flags)
275 {
276 return read(addr, *(uint64_t*)&data, flags);
277 }
278
279 template<>
280 Fault
281 TimingSimpleCPU::read(Addr addr, float &data, unsigned flags)
282 {
283 return read(addr, *(uint32_t*)&data, flags);
284 }
285
286
287 template<>
288 Fault
289 TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
290 {
291 return read(addr, (uint32_t&)data, flags);
292 }
293
294
295 template <class T>
296 Fault
297 TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
298 {
299 // need to fill in CPU & thread IDs here
300 Request *data_write_req = new Request();
301 data_write_req->setThreadContext(0,0); //Need CPU/Thread IDS HERE
302 data_write_req->setVirt(0, addr, sizeof(T), flags, thread->readPC());
303
304 // translate to physical address
305 Fault fault = thread->translateDataWriteReq(data_write_req);
306 // Now do the access.
307 if (fault == NoFault) {
308 Packet *data_write_pkt =
309 new Packet(data_write_req, Packet::WriteReq, Packet::Broadcast);
310 data_write_pkt->allocate();
311 data_write_pkt->set(data);
312
313 if (!dcachePort.sendTiming(data_write_pkt)) {
314 _status = DcacheRetry;
315 dcache_pkt = data_write_pkt;
316 } else {
317 _status = DcacheWaitResponse;
318 dcache_pkt = NULL;
319 }
320 }
321
322 // This will need a new way to tell if it's hooked up to a cache or not.
323 if (data_write_req->getFlags() & UNCACHEABLE)
324 recordEvent("Uncached Write");
325
326 // If the write needs to have a fault on the access, consider calling
327 // changeStatus() and changing it to "bad addr write" or something.
328 return fault;
329 }
330
331
332 #ifndef DOXYGEN_SHOULD_SKIP_THIS
333 template
334 Fault
335 TimingSimpleCPU::write(uint64_t data, Addr addr,
336 unsigned flags, uint64_t *res);
337
338 template
339 Fault
340 TimingSimpleCPU::write(uint32_t data, Addr addr,
341 unsigned flags, uint64_t *res);
342
343 template
344 Fault
345 TimingSimpleCPU::write(uint16_t data, Addr addr,
346 unsigned flags, uint64_t *res);
347
348 template
349 Fault
350 TimingSimpleCPU::write(uint8_t data, Addr addr,
351 unsigned flags, uint64_t *res);
352
353 #endif //DOXYGEN_SHOULD_SKIP_THIS
354
355 template<>
356 Fault
357 TimingSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
358 {
359 return write(*(uint64_t*)&data, addr, flags, res);
360 }
361
362 template<>
363 Fault
364 TimingSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
365 {
366 return write(*(uint32_t*)&data, addr, flags, res);
367 }
368
369
370 template<>
371 Fault
372 TimingSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
373 {
374 return write((uint32_t)data, addr, flags, res);
375 }
376
377
378 void
379 TimingSimpleCPU::fetch()
380 {
381 checkForInterrupts();
382
383 // need to fill in CPU & thread IDs here
384 Request *ifetch_req = new Request();
385 ifetch_req->setThreadContext(0,0); //Need CPU/Thread IDS HERE
386 Fault fault = setupFetchRequest(ifetch_req);
387
388 ifetch_pkt = new Packet(ifetch_req, Packet::ReadReq, Packet::Broadcast);
389 ifetch_pkt->dataStatic(&inst);
390
391 if (fault == NoFault) {
392 if (!icachePort.sendTiming(ifetch_pkt)) {
393 // Need to wait for retry
394 _status = IcacheRetry;
395 } else {
396 // Need to wait for cache to respond
397 _status = IcacheWaitResponse;
398 // ownership of packet transferred to memory system
399 ifetch_pkt = NULL;
400 }
401 } else {
402 // fetch fault: advance directly to next instruction (fault handler)
403 advanceInst(fault);
404 }
405 }
406
407
408 void
409 TimingSimpleCPU::advanceInst(Fault fault)
410 {
411 advancePC(fault);
412
413 if (_status == Running) {
414 // kick off fetch of next instruction... callback from icache
415 // response will cause that instruction to be executed,
416 // keeping the CPU running.
417 fetch();
418 }
419 }
420
421
422 void
423 TimingSimpleCPU::completeIfetch(Packet *pkt)
424 {
425 // received a response from the icache: execute the received
426 // instruction
427 assert(pkt->result == Packet::Success);
428 assert(_status == IcacheWaitResponse);
429
430 _status = Running;
431
432 delete pkt->req;
433 delete pkt;
434
435 if (getState() == SimObject::Draining) {
436 completeDrain();
437 return;
438 }
439
440 preExecute();
441 if (curStaticInst->isMemRef() && !curStaticInst->isDataPrefetch()) {
442 // load or store: just send to dcache
443 Fault fault = curStaticInst->initiateAcc(this, traceData);
444 if (fault == NoFault) {
445 // successfully initiated access: instruction will
446 // complete in dcache response callback
447 assert(_status == DcacheWaitResponse);
448 } else {
449 // fault: complete now to invoke fault handler
450 postExecute();
451 advanceInst(fault);
452 }
453 } else {
454 // non-memory instruction: execute completely now
455 Fault fault = curStaticInst->execute(this, traceData);
456 postExecute();
457 advanceInst(fault);
458 }
459 }
460
461
462 bool
463 TimingSimpleCPU::IcachePort::recvTiming(Packet *pkt)
464 {
465 cpu->completeIfetch(pkt);
466 return true;
467 }
468
469 void
470 TimingSimpleCPU::IcachePort::recvRetry()
471 {
472 // we shouldn't get a retry unless we have a packet that we're
473 // waiting to transmit
474 assert(cpu->ifetch_pkt != NULL);
475 assert(cpu->_status == IcacheRetry);
476 Packet *tmp = cpu->ifetch_pkt;
477 if (sendTiming(tmp)) {
478 cpu->_status = IcacheWaitResponse;
479 cpu->ifetch_pkt = NULL;
480 }
481 }
482
483 void
484 TimingSimpleCPU::completeDataAccess(Packet *pkt)
485 {
486 // received a response from the dcache: complete the load or store
487 // instruction
488 assert(pkt->result == Packet::Success);
489 assert(_status == DcacheWaitResponse);
490 _status = Running;
491
492 if (getState() == SimObject::Draining) {
493 completeDrain();
494
495 delete pkt->req;
496 delete pkt;
497
498 return;
499 }
500
501 Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
502
503 delete pkt->req;
504 delete pkt;
505
506 postExecute();
507 advanceInst(fault);
508 }
509
510
511 void
512 TimingSimpleCPU::completeDrain()
513 {
514 DPRINTF(Config, "Done draining\n");
515 changeState(SimObject::Drained);
516 drainEvent->process();
517 }
518
519 bool
520 TimingSimpleCPU::DcachePort::recvTiming(Packet *pkt)
521 {
522 cpu->completeDataAccess(pkt);
523 return true;
524 }
525
526 void
527 TimingSimpleCPU::DcachePort::recvRetry()
528 {
529 // we shouldn't get a retry unless we have a packet that we're
530 // waiting to transmit
531 assert(cpu->dcache_pkt != NULL);
532 assert(cpu->_status == DcacheRetry);
533 Packet *tmp = cpu->dcache_pkt;
534 if (sendTiming(tmp)) {
535 cpu->_status = DcacheWaitResponse;
536 cpu->dcache_pkt = NULL;
537 }
538 }
539
540
541 ////////////////////////////////////////////////////////////////////////
542 //
543 // TimingSimpleCPU Simulation Object
544 //
545 BEGIN_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
546
547 Param<Counter> max_insts_any_thread;
548 Param<Counter> max_insts_all_threads;
549 Param<Counter> max_loads_any_thread;
550 Param<Counter> max_loads_all_threads;
551 SimObjectParam<MemObject *> mem;
552 SimObjectParam<System *> system;
553
554 #if FULL_SYSTEM
555 SimObjectParam<AlphaITB *> itb;
556 SimObjectParam<AlphaDTB *> dtb;
557 Param<int> cpu_id;
558 Param<Tick> profile;
559 #else
560 SimObjectParam<Process *> workload;
561 #endif // FULL_SYSTEM
562
563 Param<int> clock;
564
565 Param<bool> defer_registration;
566 Param<int> width;
567 Param<bool> function_trace;
568 Param<Tick> function_trace_start;
569 Param<bool> simulate_stalls;
570
571 END_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
572
573 BEGIN_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
574
575 INIT_PARAM(max_insts_any_thread,
576 "terminate when any thread reaches this inst count"),
577 INIT_PARAM(max_insts_all_threads,
578 "terminate when all threads have reached this inst count"),
579 INIT_PARAM(max_loads_any_thread,
580 "terminate when any thread reaches this load count"),
581 INIT_PARAM(max_loads_all_threads,
582 "terminate when all threads have reached this load count"),
583 INIT_PARAM(mem, "memory"),
584 INIT_PARAM(system, "system object"),
585
586 #if FULL_SYSTEM
587 INIT_PARAM(itb, "Instruction TLB"),
588 INIT_PARAM(dtb, "Data TLB"),
589 INIT_PARAM(cpu_id, "processor ID"),
590 INIT_PARAM(profile, ""),
591 #else
592 INIT_PARAM(workload, "processes to run"),
593 #endif // FULL_SYSTEM
594
595 INIT_PARAM(clock, "clock speed"),
596 INIT_PARAM(defer_registration, "defer system registration (for sampling)"),
597 INIT_PARAM(width, "cpu width"),
598 INIT_PARAM(function_trace, "Enable function trace"),
599 INIT_PARAM(function_trace_start, "Cycle to start function trace"),
600 INIT_PARAM(simulate_stalls, "Simulate cache stall cycles")
601
602 END_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
603
604
605 CREATE_SIM_OBJECT(TimingSimpleCPU)
606 {
607 TimingSimpleCPU::Params *params = new TimingSimpleCPU::Params();
608 params->name = getInstanceName();
609 params->numberOfThreads = 1;
610 params->max_insts_any_thread = max_insts_any_thread;
611 params->max_insts_all_threads = max_insts_all_threads;
612 params->max_loads_any_thread = max_loads_any_thread;
613 params->max_loads_all_threads = max_loads_all_threads;
614 params->deferRegistration = defer_registration;
615 params->clock = clock;
616 params->functionTrace = function_trace;
617 params->functionTraceStart = function_trace_start;
618 params->mem = mem;
619 params->system = system;
620
621 #if FULL_SYSTEM
622 params->itb = itb;
623 params->dtb = dtb;
624 params->cpu_id = cpu_id;
625 params->profile = profile;
626 #else
627 params->process = workload;
628 #endif
629
630 TimingSimpleCPU *cpu = new TimingSimpleCPU(params);
631 return cpu;
632 }
633
634 REGISTER_SIM_OBJECT("TimingSimpleCPU", TimingSimpleCPU)
635