mem: Assume all dynamic packet data is array allocated
[gem5.git] / src / cpu / simple / timing.cc
1 /*
2 * Copyright (c) 2010-2013 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Steve Reinhardt
41 */
42
43 #include "arch/locked_mem.hh"
44 #include "arch/mmapped_ipr.hh"
45 #include "arch/utility.hh"
46 #include "base/bigint.hh"
47 #include "config/the_isa.hh"
48 #include "cpu/simple/timing.hh"
49 #include "cpu/exetrace.hh"
50 #include "debug/Config.hh"
51 #include "debug/Drain.hh"
52 #include "debug/ExecFaulting.hh"
53 #include "debug/SimpleCPU.hh"
54 #include "mem/packet.hh"
55 #include "mem/packet_access.hh"
56 #include "params/TimingSimpleCPU.hh"
57 #include "sim/faults.hh"
58 #include "sim/full_system.hh"
59 #include "sim/system.hh"
60
61 #include "debug/Mwait.hh"
62
63 using namespace std;
64 using namespace TheISA;
65
66 void
67 TimingSimpleCPU::init()
68 {
69 BaseCPU::init();
70
71 // Initialise the ThreadContext's memory proxies
72 tcBase()->initMemProxies(tcBase());
73
74 if (FullSystem && !params()->switched_out) {
75 for (int i = 0; i < threadContexts.size(); ++i) {
76 ThreadContext *tc = threadContexts[i];
77 // initialize CPU, including PC
78 TheISA::initCPU(tc, _cpuId);
79 }
80 }
81 }
82
83 void
84 TimingSimpleCPU::TimingCPUPort::TickEvent::schedule(PacketPtr _pkt, Tick t)
85 {
86 pkt = _pkt;
87 cpu->schedule(this, t);
88 }
89
90 TimingSimpleCPU::TimingSimpleCPU(TimingSimpleCPUParams *p)
91 : BaseSimpleCPU(p), fetchTranslation(this), icachePort(this),
92 dcachePort(this), ifetch_pkt(NULL), dcache_pkt(NULL), previousCycle(0),
93 fetchEvent(this), drainManager(NULL)
94 {
95 _status = Idle;
96
97 system->totalNumInsts = 0;
98 }
99
100
101
102 TimingSimpleCPU::~TimingSimpleCPU()
103 {
104 }
105
106 unsigned int
107 TimingSimpleCPU::drain(DrainManager *drain_manager)
108 {
109 assert(!drainManager);
110 if (switchedOut())
111 return 0;
112
113 if (_status == Idle ||
114 (_status == BaseSimpleCPU::Running && isDrained())) {
115 DPRINTF(Drain, "No need to drain.\n");
116 return 0;
117 } else {
118 drainManager = drain_manager;
119 DPRINTF(Drain, "Requesting drain: %s\n", pcState());
120
121 // The fetch event can become descheduled if a drain didn't
122 // succeed on the first attempt. We need to reschedule it if
123 // the CPU is waiting for a microcode routine to complete.
124 if (_status == BaseSimpleCPU::Running && !fetchEvent.scheduled())
125 schedule(fetchEvent, clockEdge());
126
127 return 1;
128 }
129 }
130
131 void
132 TimingSimpleCPU::drainResume()
133 {
134 assert(!fetchEvent.scheduled());
135 assert(!drainManager);
136 if (switchedOut())
137 return;
138
139 DPRINTF(SimpleCPU, "Resume\n");
140 verifyMemoryMode();
141
142 assert(!threadContexts.empty());
143 if (threadContexts.size() > 1)
144 fatal("The timing CPU only supports one thread.\n");
145
146 if (thread->status() == ThreadContext::Active) {
147 schedule(fetchEvent, nextCycle());
148 _status = BaseSimpleCPU::Running;
149 notIdleFraction = 1;
150 } else {
151 _status = BaseSimpleCPU::Idle;
152 notIdleFraction = 0;
153 }
154 }
155
156 bool
157 TimingSimpleCPU::tryCompleteDrain()
158 {
159 if (!drainManager)
160 return false;
161
162 DPRINTF(Drain, "tryCompleteDrain: %s\n", pcState());
163 if (!isDrained())
164 return false;
165
166 DPRINTF(Drain, "CPU done draining, processing drain event\n");
167 drainManager->signalDrainDone();
168 drainManager = NULL;
169
170 return true;
171 }
172
173 void
174 TimingSimpleCPU::switchOut()
175 {
176 BaseSimpleCPU::switchOut();
177
178 assert(!fetchEvent.scheduled());
179 assert(_status == BaseSimpleCPU::Running || _status == Idle);
180 assert(!stayAtPC);
181 assert(microPC() == 0);
182
183 updateCycleCounts();
184 }
185
186
187 void
188 TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
189 {
190 BaseSimpleCPU::takeOverFrom(oldCPU);
191
192 previousCycle = curCycle();
193 }
194
195 void
196 TimingSimpleCPU::verifyMemoryMode() const
197 {
198 if (!system->isTimingMode()) {
199 fatal("The timing CPU requires the memory system to be in "
200 "'timing' mode.\n");
201 }
202 }
203
204 void
205 TimingSimpleCPU::activateContext(ThreadID thread_num)
206 {
207 DPRINTF(SimpleCPU, "ActivateContext %d\n", thread_num);
208
209 assert(thread_num == 0);
210 assert(thread);
211
212 assert(_status == Idle);
213
214 notIdleFraction = 1;
215 _status = BaseSimpleCPU::Running;
216
217 // kick things off by initiating the fetch of the next instruction
218 schedule(fetchEvent, clockEdge(Cycles(0)));
219 }
220
221
222 void
223 TimingSimpleCPU::suspendContext(ThreadID thread_num)
224 {
225 DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
226
227 assert(thread_num == 0);
228 assert(thread);
229
230 if (_status == Idle)
231 return;
232
233 assert(_status == BaseSimpleCPU::Running);
234
235 // just change status to Idle... if status != Running,
236 // completeInst() will not initiate fetch of next instruction.
237
238 notIdleFraction = 0;
239 _status = Idle;
240 }
241
242 bool
243 TimingSimpleCPU::handleReadPacket(PacketPtr pkt)
244 {
245 RequestPtr req = pkt->req;
246
247 // We're about the issues a locked load, so tell the monitor
248 // to start caring about this address
249 if (pkt->isRead() && pkt->req->isLLSC()) {
250 TheISA::handleLockedRead(thread, pkt->req);
251 }
252 if (req->isMmappedIpr()) {
253 Cycles delay = TheISA::handleIprRead(thread->getTC(), pkt);
254 new IprEvent(pkt, this, clockEdge(delay));
255 _status = DcacheWaitResponse;
256 dcache_pkt = NULL;
257 } else if (!dcachePort.sendTimingReq(pkt)) {
258 _status = DcacheRetry;
259 dcache_pkt = pkt;
260 } else {
261 _status = DcacheWaitResponse;
262 // memory system takes ownership of packet
263 dcache_pkt = NULL;
264 }
265 return dcache_pkt == NULL;
266 }
267
268 void
269 TimingSimpleCPU::sendData(RequestPtr req, uint8_t *data, uint64_t *res,
270 bool read)
271 {
272 PacketPtr pkt;
273 buildPacket(pkt, req, read);
274 pkt->dataDynamic<uint8_t>(data);
275 if (req->getFlags().isSet(Request::NO_ACCESS)) {
276 assert(!dcache_pkt);
277 pkt->makeResponse();
278 completeDataAccess(pkt);
279 } else if (read) {
280 handleReadPacket(pkt);
281 } else {
282 bool do_access = true; // flag to suppress cache access
283
284 if (req->isLLSC()) {
285 do_access = TheISA::handleLockedWrite(thread, req, dcachePort.cacheBlockMask);
286 } else if (req->isCondSwap()) {
287 assert(res);
288 req->setExtraData(*res);
289 }
290
291 if (do_access) {
292 dcache_pkt = pkt;
293 handleWritePacket();
294 } else {
295 _status = DcacheWaitResponse;
296 completeDataAccess(pkt);
297 }
298 }
299 }
300
301 void
302 TimingSimpleCPU::sendSplitData(RequestPtr req1, RequestPtr req2,
303 RequestPtr req, uint8_t *data, bool read)
304 {
305 PacketPtr pkt1, pkt2;
306 buildSplitPacket(pkt1, pkt2, req1, req2, req, data, read);
307 if (req->getFlags().isSet(Request::NO_ACCESS)) {
308 assert(!dcache_pkt);
309 pkt1->makeResponse();
310 completeDataAccess(pkt1);
311 } else if (read) {
312 SplitFragmentSenderState * send_state =
313 dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
314 if (handleReadPacket(pkt1)) {
315 send_state->clearFromParent();
316 send_state = dynamic_cast<SplitFragmentSenderState *>(
317 pkt2->senderState);
318 if (handleReadPacket(pkt2)) {
319 send_state->clearFromParent();
320 }
321 }
322 } else {
323 dcache_pkt = pkt1;
324 SplitFragmentSenderState * send_state =
325 dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
326 if (handleWritePacket()) {
327 send_state->clearFromParent();
328 dcache_pkt = pkt2;
329 send_state = dynamic_cast<SplitFragmentSenderState *>(
330 pkt2->senderState);
331 if (handleWritePacket()) {
332 send_state->clearFromParent();
333 }
334 }
335 }
336 }
337
338 void
339 TimingSimpleCPU::translationFault(const Fault &fault)
340 {
341 // fault may be NoFault in cases where a fault is suppressed,
342 // for instance prefetches.
343 updateCycleCounts();
344
345 if (traceData) {
346 // Since there was a fault, we shouldn't trace this instruction.
347 delete traceData;
348 traceData = NULL;
349 }
350
351 postExecute();
352
353 advanceInst(fault);
354 }
355
356 void
357 TimingSimpleCPU::buildPacket(PacketPtr &pkt, RequestPtr req, bool read)
358 {
359 pkt = read ? Packet::createRead(req) : Packet::createWrite(req);
360 }
361
362 void
363 TimingSimpleCPU::buildSplitPacket(PacketPtr &pkt1, PacketPtr &pkt2,
364 RequestPtr req1, RequestPtr req2, RequestPtr req,
365 uint8_t *data, bool read)
366 {
367 pkt1 = pkt2 = NULL;
368
369 assert(!req1->isMmappedIpr() && !req2->isMmappedIpr());
370
371 if (req->getFlags().isSet(Request::NO_ACCESS)) {
372 buildPacket(pkt1, req, read);
373 return;
374 }
375
376 buildPacket(pkt1, req1, read);
377 buildPacket(pkt2, req2, read);
378
379 req->setPhys(req1->getPaddr(), req->getSize(), req1->getFlags(), dataMasterId());
380 PacketPtr pkt = new Packet(req, pkt1->cmd.responseCommand());
381
382 pkt->dataDynamic<uint8_t>(data);
383 pkt1->dataStatic<uint8_t>(data);
384 pkt2->dataStatic<uint8_t>(data + req1->getSize());
385
386 SplitMainSenderState * main_send_state = new SplitMainSenderState;
387 pkt->senderState = main_send_state;
388 main_send_state->fragments[0] = pkt1;
389 main_send_state->fragments[1] = pkt2;
390 main_send_state->outstanding = 2;
391 pkt1->senderState = new SplitFragmentSenderState(pkt, 0);
392 pkt2->senderState = new SplitFragmentSenderState(pkt, 1);
393 }
394
395 Fault
396 TimingSimpleCPU::readMem(Addr addr, uint8_t *data,
397 unsigned size, unsigned flags)
398 {
399 Fault fault;
400 const int asid = 0;
401 const ThreadID tid = 0;
402 const Addr pc = thread->instAddr();
403 unsigned block_size = cacheLineSize();
404 BaseTLB::Mode mode = BaseTLB::Read;
405
406 if (traceData) {
407 traceData->setAddr(addr);
408 }
409
410 RequestPtr req = new Request(asid, addr, size,
411 flags, dataMasterId(), pc, _cpuId, tid);
412
413 req->taskId(taskId());
414
415 Addr split_addr = roundDown(addr + size - 1, block_size);
416 assert(split_addr <= addr || split_addr - addr < block_size);
417
418 _status = DTBWaitResponse;
419 if (split_addr > addr) {
420 RequestPtr req1, req2;
421 assert(!req->isLLSC() && !req->isSwap());
422 req->splitOnVaddr(split_addr, req1, req2);
423
424 WholeTranslationState *state =
425 new WholeTranslationState(req, req1, req2, new uint8_t[size],
426 NULL, mode);
427 DataTranslation<TimingSimpleCPU *> *trans1 =
428 new DataTranslation<TimingSimpleCPU *>(this, state, 0);
429 DataTranslation<TimingSimpleCPU *> *trans2 =
430 new DataTranslation<TimingSimpleCPU *>(this, state, 1);
431
432 thread->dtb->translateTiming(req1, tc, trans1, mode);
433 thread->dtb->translateTiming(req2, tc, trans2, mode);
434 } else {
435 WholeTranslationState *state =
436 new WholeTranslationState(req, new uint8_t[size], NULL, mode);
437 DataTranslation<TimingSimpleCPU *> *translation
438 = new DataTranslation<TimingSimpleCPU *>(this, state);
439 thread->dtb->translateTiming(req, tc, translation, mode);
440 }
441
442 return NoFault;
443 }
444
445 bool
446 TimingSimpleCPU::handleWritePacket()
447 {
448 RequestPtr req = dcache_pkt->req;
449 if (req->isMmappedIpr()) {
450 Cycles delay = TheISA::handleIprWrite(thread->getTC(), dcache_pkt);
451 new IprEvent(dcache_pkt, this, clockEdge(delay));
452 _status = DcacheWaitResponse;
453 dcache_pkt = NULL;
454 } else if (!dcachePort.sendTimingReq(dcache_pkt)) {
455 _status = DcacheRetry;
456 } else {
457 _status = DcacheWaitResponse;
458 // memory system takes ownership of packet
459 dcache_pkt = NULL;
460 }
461 return dcache_pkt == NULL;
462 }
463
464 Fault
465 TimingSimpleCPU::writeMem(uint8_t *data, unsigned size,
466 Addr addr, unsigned flags, uint64_t *res)
467 {
468 uint8_t *newData = new uint8_t[size];
469 const int asid = 0;
470 const ThreadID tid = 0;
471 const Addr pc = thread->instAddr();
472 unsigned block_size = cacheLineSize();
473 BaseTLB::Mode mode = BaseTLB::Write;
474
475 if (data == NULL) {
476 assert(flags & Request::CACHE_BLOCK_ZERO);
477 // This must be a cache block cleaning request
478 memset(newData, 0, size);
479 } else {
480 memcpy(newData, data, size);
481 }
482
483 if (traceData) {
484 traceData->setAddr(addr);
485 }
486
487 RequestPtr req = new Request(asid, addr, size,
488 flags, dataMasterId(), pc, _cpuId, tid);
489
490 req->taskId(taskId());
491
492 Addr split_addr = roundDown(addr + size - 1, block_size);
493 assert(split_addr <= addr || split_addr - addr < block_size);
494
495 _status = DTBWaitResponse;
496 if (split_addr > addr) {
497 RequestPtr req1, req2;
498 assert(!req->isLLSC() && !req->isSwap());
499 req->splitOnVaddr(split_addr, req1, req2);
500
501 WholeTranslationState *state =
502 new WholeTranslationState(req, req1, req2, newData, res, mode);
503 DataTranslation<TimingSimpleCPU *> *trans1 =
504 new DataTranslation<TimingSimpleCPU *>(this, state, 0);
505 DataTranslation<TimingSimpleCPU *> *trans2 =
506 new DataTranslation<TimingSimpleCPU *>(this, state, 1);
507
508 thread->dtb->translateTiming(req1, tc, trans1, mode);
509 thread->dtb->translateTiming(req2, tc, trans2, mode);
510 } else {
511 WholeTranslationState *state =
512 new WholeTranslationState(req, newData, res, mode);
513 DataTranslation<TimingSimpleCPU *> *translation =
514 new DataTranslation<TimingSimpleCPU *>(this, state);
515 thread->dtb->translateTiming(req, tc, translation, mode);
516 }
517
518 // Translation faults will be returned via finishTranslation()
519 return NoFault;
520 }
521
522
523 void
524 TimingSimpleCPU::finishTranslation(WholeTranslationState *state)
525 {
526 _status = BaseSimpleCPU::Running;
527
528 if (state->getFault() != NoFault) {
529 if (state->isPrefetch()) {
530 state->setNoFault();
531 }
532 delete [] state->data;
533 state->deleteReqs();
534 translationFault(state->getFault());
535 } else {
536 if (!state->isSplit) {
537 sendData(state->mainReq, state->data, state->res,
538 state->mode == BaseTLB::Read);
539 } else {
540 sendSplitData(state->sreqLow, state->sreqHigh, state->mainReq,
541 state->data, state->mode == BaseTLB::Read);
542 }
543 }
544
545 delete state;
546 }
547
548
549 void
550 TimingSimpleCPU::fetch()
551 {
552 DPRINTF(SimpleCPU, "Fetch\n");
553
554 if (!curStaticInst || !curStaticInst->isDelayedCommit())
555 checkForInterrupts();
556
557 checkPcEventQueue();
558
559 // We must have just got suspended by a PC event
560 if (_status == Idle)
561 return;
562
563 TheISA::PCState pcState = thread->pcState();
564 bool needToFetch = !isRomMicroPC(pcState.microPC()) && !curMacroStaticInst;
565
566 if (needToFetch) {
567 _status = BaseSimpleCPU::Running;
568 Request *ifetch_req = new Request();
569 ifetch_req->taskId(taskId());
570 ifetch_req->setThreadContext(_cpuId, /* thread ID */ 0);
571 setupFetchRequest(ifetch_req);
572 DPRINTF(SimpleCPU, "Translating address %#x\n", ifetch_req->getVaddr());
573 thread->itb->translateTiming(ifetch_req, tc, &fetchTranslation,
574 BaseTLB::Execute);
575 } else {
576 _status = IcacheWaitResponse;
577 completeIfetch(NULL);
578
579 updateCycleCounts();
580 }
581 }
582
583
584 void
585 TimingSimpleCPU::sendFetch(const Fault &fault, RequestPtr req,
586 ThreadContext *tc)
587 {
588 if (fault == NoFault) {
589 DPRINTF(SimpleCPU, "Sending fetch for addr %#x(pa: %#x)\n",
590 req->getVaddr(), req->getPaddr());
591 ifetch_pkt = new Packet(req, MemCmd::ReadReq);
592 ifetch_pkt->dataStatic(&inst);
593 DPRINTF(SimpleCPU, " -- pkt addr: %#x\n", ifetch_pkt->getAddr());
594
595 if (!icachePort.sendTimingReq(ifetch_pkt)) {
596 // Need to wait for retry
597 _status = IcacheRetry;
598 } else {
599 // Need to wait for cache to respond
600 _status = IcacheWaitResponse;
601 // ownership of packet transferred to memory system
602 ifetch_pkt = NULL;
603 }
604 } else {
605 DPRINTF(SimpleCPU, "Translation of addr %#x faulted\n", req->getVaddr());
606 delete req;
607 // fetch fault: advance directly to next instruction (fault handler)
608 _status = BaseSimpleCPU::Running;
609 advanceInst(fault);
610 }
611
612 updateCycleCounts();
613 }
614
615
616 void
617 TimingSimpleCPU::advanceInst(const Fault &fault)
618 {
619 if (_status == Faulting)
620 return;
621
622 if (fault != NoFault) {
623 advancePC(fault);
624 DPRINTF(SimpleCPU, "Fault occured, scheduling fetch event\n");
625 reschedule(fetchEvent, clockEdge(), true);
626 _status = Faulting;
627 return;
628 }
629
630
631 if (!stayAtPC)
632 advancePC(fault);
633
634 if (tryCompleteDrain())
635 return;
636
637 if (_status == BaseSimpleCPU::Running) {
638 // kick off fetch of next instruction... callback from icache
639 // response will cause that instruction to be executed,
640 // keeping the CPU running.
641 fetch();
642 }
643 }
644
645
646 void
647 TimingSimpleCPU::completeIfetch(PacketPtr pkt)
648 {
649 DPRINTF(SimpleCPU, "Complete ICache Fetch for addr %#x\n", pkt ?
650 pkt->getAddr() : 0);
651
652 // received a response from the icache: execute the received
653 // instruction
654 assert(!pkt || !pkt->isError());
655 assert(_status == IcacheWaitResponse);
656
657 _status = BaseSimpleCPU::Running;
658
659 updateCycleCounts();
660
661 if (pkt)
662 pkt->req->setAccessLatency();
663
664
665 preExecute();
666 if (curStaticInst && curStaticInst->isMemRef()) {
667 // load or store: just send to dcache
668 Fault fault = curStaticInst->initiateAcc(this, traceData);
669
670 // If we're not running now the instruction will complete in a dcache
671 // response callback or the instruction faulted and has started an
672 // ifetch
673 if (_status == BaseSimpleCPU::Running) {
674 if (fault != NoFault && traceData) {
675 // If there was a fault, we shouldn't trace this instruction.
676 delete traceData;
677 traceData = NULL;
678 }
679
680 postExecute();
681 // @todo remove me after debugging with legion done
682 if (curStaticInst && (!curStaticInst->isMicroop() ||
683 curStaticInst->isFirstMicroop()))
684 instCnt++;
685 advanceInst(fault);
686 }
687 } else if (curStaticInst) {
688 // non-memory instruction: execute completely now
689 Fault fault = curStaticInst->execute(this, traceData);
690
691 // keep an instruction count
692 if (fault == NoFault)
693 countInst();
694 else if (traceData && !DTRACE(ExecFaulting)) {
695 delete traceData;
696 traceData = NULL;
697 }
698
699 postExecute();
700 // @todo remove me after debugging with legion done
701 if (curStaticInst && (!curStaticInst->isMicroop() ||
702 curStaticInst->isFirstMicroop()))
703 instCnt++;
704 advanceInst(fault);
705 } else {
706 advanceInst(NoFault);
707 }
708
709 if (pkt) {
710 delete pkt->req;
711 delete pkt;
712 }
713 }
714
715 void
716 TimingSimpleCPU::IcachePort::ITickEvent::process()
717 {
718 cpu->completeIfetch(pkt);
719 }
720
721 bool
722 TimingSimpleCPU::IcachePort::recvTimingResp(PacketPtr pkt)
723 {
724 DPRINTF(SimpleCPU, "Received timing response %#x\n", pkt->getAddr());
725 // delay processing of returned data until next CPU clock edge
726 Tick next_tick = cpu->clockEdge();
727
728 if (next_tick == curTick())
729 cpu->completeIfetch(pkt);
730 else
731 tickEvent.schedule(pkt, next_tick);
732
733 return true;
734 }
735
736 void
737 TimingSimpleCPU::IcachePort::recvRetry()
738 {
739 // we shouldn't get a retry unless we have a packet that we're
740 // waiting to transmit
741 assert(cpu->ifetch_pkt != NULL);
742 assert(cpu->_status == IcacheRetry);
743 PacketPtr tmp = cpu->ifetch_pkt;
744 if (sendTimingReq(tmp)) {
745 cpu->_status = IcacheWaitResponse;
746 cpu->ifetch_pkt = NULL;
747 }
748 }
749
750 void
751 TimingSimpleCPU::completeDataAccess(PacketPtr pkt)
752 {
753 // received a response from the dcache: complete the load or store
754 // instruction
755 assert(!pkt->isError());
756 assert(_status == DcacheWaitResponse || _status == DTBWaitResponse ||
757 pkt->req->getFlags().isSet(Request::NO_ACCESS));
758
759 pkt->req->setAccessLatency();
760
761 updateCycleCounts();
762
763 if (pkt->senderState) {
764 SplitFragmentSenderState * send_state =
765 dynamic_cast<SplitFragmentSenderState *>(pkt->senderState);
766 assert(send_state);
767 delete pkt->req;
768 delete pkt;
769 PacketPtr big_pkt = send_state->bigPkt;
770 delete send_state;
771
772 SplitMainSenderState * main_send_state =
773 dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
774 assert(main_send_state);
775 // Record the fact that this packet is no longer outstanding.
776 assert(main_send_state->outstanding != 0);
777 main_send_state->outstanding--;
778
779 if (main_send_state->outstanding) {
780 return;
781 } else {
782 delete main_send_state;
783 big_pkt->senderState = NULL;
784 pkt = big_pkt;
785 }
786 }
787
788 _status = BaseSimpleCPU::Running;
789
790 Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
791
792 // keep an instruction count
793 if (fault == NoFault)
794 countInst();
795 else if (traceData) {
796 // If there was a fault, we shouldn't trace this instruction.
797 delete traceData;
798 traceData = NULL;
799 }
800
801 delete pkt->req;
802 delete pkt;
803
804 postExecute();
805
806 advanceInst(fault);
807 }
808
809 void
810 TimingSimpleCPU::updateCycleCounts()
811 {
812 const Cycles delta(curCycle() - previousCycle);
813
814 numCycles += delta;
815 ppCycles->notify(delta);
816
817 previousCycle = curCycle();
818 }
819
820 void
821 TimingSimpleCPU::DcachePort::recvTimingSnoopReq(PacketPtr pkt)
822 {
823 // X86 ISA: Snooping an invalidation for monitor/mwait
824 if(cpu->getAddrMonitor()->doMonitor(pkt)) {
825 cpu->wakeup();
826 }
827 TheISA::handleLockedSnoop(cpu->thread, pkt, cacheBlockMask);
828 }
829
830 void
831 TimingSimpleCPU::DcachePort::recvFunctionalSnoop(PacketPtr pkt)
832 {
833 // X86 ISA: Snooping an invalidation for monitor/mwait
834 if(cpu->getAddrMonitor()->doMonitor(pkt)) {
835 cpu->wakeup();
836 }
837 }
838
839 bool
840 TimingSimpleCPU::DcachePort::recvTimingResp(PacketPtr pkt)
841 {
842 // delay processing of returned data until next CPU clock edge
843 Tick next_tick = cpu->clockEdge();
844
845 if (next_tick == curTick()) {
846 cpu->completeDataAccess(pkt);
847 } else {
848 if (!tickEvent.scheduled()) {
849 tickEvent.schedule(pkt, next_tick);
850 } else {
851 // In the case of a split transaction and a cache that is
852 // faster than a CPU we could get two responses before
853 // next_tick expires
854 if (!retryEvent.scheduled())
855 cpu->schedule(retryEvent, next_tick);
856 return false;
857 }
858 }
859
860 return true;
861 }
862
863 void
864 TimingSimpleCPU::DcachePort::DTickEvent::process()
865 {
866 cpu->completeDataAccess(pkt);
867 }
868
869 void
870 TimingSimpleCPU::DcachePort::recvRetry()
871 {
872 // we shouldn't get a retry unless we have a packet that we're
873 // waiting to transmit
874 assert(cpu->dcache_pkt != NULL);
875 assert(cpu->_status == DcacheRetry);
876 PacketPtr tmp = cpu->dcache_pkt;
877 if (tmp->senderState) {
878 // This is a packet from a split access.
879 SplitFragmentSenderState * send_state =
880 dynamic_cast<SplitFragmentSenderState *>(tmp->senderState);
881 assert(send_state);
882 PacketPtr big_pkt = send_state->bigPkt;
883
884 SplitMainSenderState * main_send_state =
885 dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
886 assert(main_send_state);
887
888 if (sendTimingReq(tmp)) {
889 // If we were able to send without retrying, record that fact
890 // and try sending the other fragment.
891 send_state->clearFromParent();
892 int other_index = main_send_state->getPendingFragment();
893 if (other_index > 0) {
894 tmp = main_send_state->fragments[other_index];
895 cpu->dcache_pkt = tmp;
896 if ((big_pkt->isRead() && cpu->handleReadPacket(tmp)) ||
897 (big_pkt->isWrite() && cpu->handleWritePacket())) {
898 main_send_state->fragments[other_index] = NULL;
899 }
900 } else {
901 cpu->_status = DcacheWaitResponse;
902 // memory system takes ownership of packet
903 cpu->dcache_pkt = NULL;
904 }
905 }
906 } else if (sendTimingReq(tmp)) {
907 cpu->_status = DcacheWaitResponse;
908 // memory system takes ownership of packet
909 cpu->dcache_pkt = NULL;
910 }
911 }
912
913 TimingSimpleCPU::IprEvent::IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu,
914 Tick t)
915 : pkt(_pkt), cpu(_cpu)
916 {
917 cpu->schedule(this, t);
918 }
919
920 void
921 TimingSimpleCPU::IprEvent::process()
922 {
923 cpu->completeDataAccess(pkt);
924 }
925
926 const char *
927 TimingSimpleCPU::IprEvent::description() const
928 {
929 return "Timing Simple CPU Delay IPR event";
930 }
931
932
933 void
934 TimingSimpleCPU::printAddr(Addr a)
935 {
936 dcachePort.printAddr(a);
937 }
938
939
940 ////////////////////////////////////////////////////////////////////////
941 //
942 // TimingSimpleCPU Simulation Object
943 //
944 TimingSimpleCPU *
945 TimingSimpleCPUParams::create()
946 {
947 numThreads = 1;
948 if (!FullSystem && workload.size() != 1)
949 panic("only one workload allowed");
950 return new TimingSimpleCPU(this);
951 }