ISA: Replace the translate functions in the TLBs with translateAtomic.
[gem5.git] / src / cpu / simple / timing.cc
1 /*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31 #include "arch/locked_mem.hh"
32 #include "arch/mmaped_ipr.hh"
33 #include "arch/utility.hh"
34 #include "base/bigint.hh"
35 #include "cpu/exetrace.hh"
36 #include "cpu/simple/timing.hh"
37 #include "mem/packet.hh"
38 #include "mem/packet_access.hh"
39 #include "params/TimingSimpleCPU.hh"
40 #include "sim/system.hh"
41
42 using namespace std;
43 using namespace TheISA;
44
45 Port *
46 TimingSimpleCPU::getPort(const std::string &if_name, int idx)
47 {
48 if (if_name == "dcache_port")
49 return &dcachePort;
50 else if (if_name == "icache_port")
51 return &icachePort;
52 else
53 panic("No Such Port\n");
54 }
55
56 void
57 TimingSimpleCPU::init()
58 {
59 BaseCPU::init();
60 #if FULL_SYSTEM
61 for (int i = 0; i < threadContexts.size(); ++i) {
62 ThreadContext *tc = threadContexts[i];
63
64 // initialize CPU, including PC
65 TheISA::initCPU(tc, _cpuId);
66 }
67 #endif
68 }
69
70 Tick
71 TimingSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt)
72 {
73 panic("TimingSimpleCPU doesn't expect recvAtomic callback!");
74 return curTick;
75 }
76
77 void
78 TimingSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt)
79 {
80 //No internal storage to update, jusst return
81 return;
82 }
83
84 void
85 TimingSimpleCPU::CpuPort::recvStatusChange(Status status)
86 {
87 if (status == RangeChange) {
88 if (!snoopRangeSent) {
89 snoopRangeSent = true;
90 sendStatusChange(Port::RangeChange);
91 }
92 return;
93 }
94
95 panic("TimingSimpleCPU doesn't expect recvStatusChange callback!");
96 }
97
98
99 void
100 TimingSimpleCPU::CpuPort::TickEvent::schedule(PacketPtr _pkt, Tick t)
101 {
102 pkt = _pkt;
103 cpu->schedule(this, t);
104 }
105
106 TimingSimpleCPU::TimingSimpleCPU(TimingSimpleCPUParams *p)
107 : BaseSimpleCPU(p), icachePort(this, p->clock), dcachePort(this, p->clock), fetchEvent(this)
108 {
109 _status = Idle;
110
111 icachePort.snoopRangeSent = false;
112 dcachePort.snoopRangeSent = false;
113
114 ifetch_pkt = dcache_pkt = NULL;
115 drainEvent = NULL;
116 previousTick = 0;
117 changeState(SimObject::Running);
118 }
119
120
121 TimingSimpleCPU::~TimingSimpleCPU()
122 {
123 }
124
125 void
126 TimingSimpleCPU::serialize(ostream &os)
127 {
128 SimObject::State so_state = SimObject::getState();
129 SERIALIZE_ENUM(so_state);
130 BaseSimpleCPU::serialize(os);
131 }
132
133 void
134 TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
135 {
136 SimObject::State so_state;
137 UNSERIALIZE_ENUM(so_state);
138 BaseSimpleCPU::unserialize(cp, section);
139 }
140
141 unsigned int
142 TimingSimpleCPU::drain(Event *drain_event)
143 {
144 // TimingSimpleCPU is ready to drain if it's not waiting for
145 // an access to complete.
146 if (_status == Idle || _status == Running || _status == SwitchedOut) {
147 changeState(SimObject::Drained);
148 return 0;
149 } else {
150 changeState(SimObject::Draining);
151 drainEvent = drain_event;
152 return 1;
153 }
154 }
155
156 void
157 TimingSimpleCPU::resume()
158 {
159 DPRINTF(SimpleCPU, "Resume\n");
160 if (_status != SwitchedOut && _status != Idle) {
161 assert(system->getMemoryMode() == Enums::timing);
162
163 if (fetchEvent.scheduled())
164 deschedule(fetchEvent);
165
166 schedule(fetchEvent, nextCycle());
167 }
168
169 changeState(SimObject::Running);
170 }
171
172 void
173 TimingSimpleCPU::switchOut()
174 {
175 assert(_status == Running || _status == Idle);
176 _status = SwitchedOut;
177 numCycles += tickToCycles(curTick - previousTick);
178
179 // If we've been scheduled to resume but are then told to switch out,
180 // we'll need to cancel it.
181 if (fetchEvent.scheduled())
182 deschedule(fetchEvent);
183 }
184
185
186 void
187 TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
188 {
189 BaseCPU::takeOverFrom(oldCPU, &icachePort, &dcachePort);
190
191 // if any of this CPU's ThreadContexts are active, mark the CPU as
192 // running and schedule its tick event.
193 for (int i = 0; i < threadContexts.size(); ++i) {
194 ThreadContext *tc = threadContexts[i];
195 if (tc->status() == ThreadContext::Active && _status != Running) {
196 _status = Running;
197 break;
198 }
199 }
200
201 if (_status != Running) {
202 _status = Idle;
203 }
204 assert(threadContexts.size() == 1);
205 previousTick = curTick;
206 }
207
208
209 void
210 TimingSimpleCPU::activateContext(int thread_num, int delay)
211 {
212 DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
213
214 assert(thread_num == 0);
215 assert(thread);
216
217 assert(_status == Idle);
218
219 notIdleFraction++;
220 _status = Running;
221
222 // kick things off by initiating the fetch of the next instruction
223 schedule(fetchEvent, nextCycle(curTick + ticks(delay)));
224 }
225
226
227 void
228 TimingSimpleCPU::suspendContext(int thread_num)
229 {
230 DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
231
232 assert(thread_num == 0);
233 assert(thread);
234
235 assert(_status == Running);
236
237 // just change status to Idle... if status != Running,
238 // completeInst() will not initiate fetch of next instruction.
239
240 notIdleFraction--;
241 _status = Idle;
242 }
243
244 bool
245 TimingSimpleCPU::handleReadPacket(PacketPtr pkt)
246 {
247 RequestPtr req = pkt->req;
248 if (req->isMmapedIpr()) {
249 Tick delay;
250 delay = TheISA::handleIprRead(thread->getTC(), pkt);
251 new IprEvent(pkt, this, nextCycle(curTick + delay));
252 _status = DcacheWaitResponse;
253 dcache_pkt = NULL;
254 } else if (!dcachePort.sendTiming(pkt)) {
255 _status = DcacheRetry;
256 dcache_pkt = pkt;
257 } else {
258 _status = DcacheWaitResponse;
259 // memory system takes ownership of packet
260 dcache_pkt = NULL;
261 }
262 return dcache_pkt == NULL;
263 }
264
265 Fault
266 TimingSimpleCPU::buildSplitPacket(PacketPtr &pkt1, PacketPtr &pkt2,
267 RequestPtr &req, Addr split_addr, uint8_t *data, bool read)
268 {
269 Fault fault;
270 RequestPtr req1, req2;
271 assert(!req->isLocked() && !req->isSwap());
272 req->splitOnVaddr(split_addr, req1, req2);
273
274 pkt1 = pkt2 = NULL;
275 if ((fault = buildPacket(pkt1, req1, read)) != NoFault ||
276 (fault = buildPacket(pkt2, req2, read)) != NoFault) {
277 delete req;
278 delete req1;
279 delete pkt1;
280 req = NULL;
281 pkt1 = NULL;
282 return fault;
283 }
284
285 assert(!req1->isMmapedIpr() && !req2->isMmapedIpr());
286
287 req->setPhys(req1->getPaddr(), req->getSize(), req1->getFlags());
288 PacketPtr pkt = new Packet(req, pkt1->cmd.responseCommand(),
289 Packet::Broadcast);
290 if (req->getFlags().isSet(Request::NO_ACCESS)) {
291 delete req1;
292 delete pkt1;
293 delete req2;
294 delete pkt2;
295 pkt1 = pkt;
296 pkt2 = NULL;
297 return NoFault;
298 }
299
300 pkt->dataDynamic<uint8_t>(data);
301 pkt1->dataStatic<uint8_t>(data);
302 pkt2->dataStatic<uint8_t>(data + req1->getSize());
303
304 SplitMainSenderState * main_send_state = new SplitMainSenderState;
305 pkt->senderState = main_send_state;
306 main_send_state->fragments[0] = pkt1;
307 main_send_state->fragments[1] = pkt2;
308 main_send_state->outstanding = 2;
309 pkt1->senderState = new SplitFragmentSenderState(pkt, 0);
310 pkt2->senderState = new SplitFragmentSenderState(pkt, 1);
311 return fault;
312 }
313
314 Fault
315 TimingSimpleCPU::buildPacket(PacketPtr &pkt, RequestPtr &req, bool read)
316 {
317 Fault fault = thread->dtb->translateAtomic(req, tc, !read);
318 MemCmd cmd;
319 if (fault != NoFault) {
320 delete req;
321 req = NULL;
322 pkt = NULL;
323 return fault;
324 } else if (read) {
325 cmd = MemCmd::ReadReq;
326 if (req->isLocked())
327 cmd = MemCmd::LoadLockedReq;
328 } else {
329 cmd = MemCmd::WriteReq;
330 if (req->isLocked()) {
331 cmd = MemCmd::StoreCondReq;
332 } else if (req->isSwap()) {
333 cmd = MemCmd::SwapReq;
334 }
335 }
336 pkt = new Packet(req, cmd, Packet::Broadcast);
337 return NoFault;
338 }
339
340 template <class T>
341 Fault
342 TimingSimpleCPU::read(Addr addr, T &data, unsigned flags)
343 {
344 Fault fault;
345 const int asid = 0;
346 const int thread_id = 0;
347 const Addr pc = thread->readPC();
348 int block_size = dcachePort.peerBlockSize();
349 int data_size = sizeof(T);
350
351 PacketPtr pkt;
352 RequestPtr req = new Request(asid, addr, data_size,
353 flags, pc, _cpuId, thread_id);
354
355 Addr split_addr = roundDown(addr + data_size - 1, block_size);
356 assert(split_addr <= addr || split_addr - addr < block_size);
357
358 if (split_addr > addr) {
359 PacketPtr pkt1, pkt2;
360 Fault fault = this->buildSplitPacket(pkt1, pkt2, req,
361 split_addr, (uint8_t *)(new T), true);
362 if (fault != NoFault)
363 return fault;
364 if (req->getFlags().isSet(Request::NO_ACCESS)) {
365 dcache_pkt = pkt1;
366 } else if (handleReadPacket(pkt1)) {
367 SplitFragmentSenderState * send_state =
368 dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
369 send_state->clearFromParent();
370 if (handleReadPacket(pkt2)) {
371 send_state =
372 dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
373 send_state->clearFromParent();
374 }
375 }
376 } else {
377 Fault fault = buildPacket(pkt, req, true);
378 if (fault != NoFault) {
379 return fault;
380 }
381 if (req->getFlags().isSet(Request::NO_ACCESS)) {
382 dcache_pkt = pkt;
383 } else {
384 pkt->dataDynamic<T>(new T);
385 handleReadPacket(pkt);
386 }
387 }
388
389 if (traceData) {
390 traceData->setData(data);
391 traceData->setAddr(addr);
392 }
393
394 // This will need a new way to tell if it has a dcache attached.
395 if (req->isUncacheable())
396 recordEvent("Uncached Read");
397
398 return NoFault;
399 }
400
401 #ifndef DOXYGEN_SHOULD_SKIP_THIS
402
403 template
404 Fault
405 TimingSimpleCPU::read(Addr addr, Twin64_t &data, unsigned flags);
406
407 template
408 Fault
409 TimingSimpleCPU::read(Addr addr, Twin32_t &data, unsigned flags);
410
411 template
412 Fault
413 TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
414
415 template
416 Fault
417 TimingSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
418
419 template
420 Fault
421 TimingSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
422
423 template
424 Fault
425 TimingSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
426
427 #endif //DOXYGEN_SHOULD_SKIP_THIS
428
429 template<>
430 Fault
431 TimingSimpleCPU::read(Addr addr, double &data, unsigned flags)
432 {
433 return read(addr, *(uint64_t*)&data, flags);
434 }
435
436 template<>
437 Fault
438 TimingSimpleCPU::read(Addr addr, float &data, unsigned flags)
439 {
440 return read(addr, *(uint32_t*)&data, flags);
441 }
442
443
444 template<>
445 Fault
446 TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
447 {
448 return read(addr, (uint32_t&)data, flags);
449 }
450
451 bool
452 TimingSimpleCPU::handleWritePacket()
453 {
454 RequestPtr req = dcache_pkt->req;
455 if (req->isMmapedIpr()) {
456 Tick delay;
457 delay = TheISA::handleIprWrite(thread->getTC(), dcache_pkt);
458 new IprEvent(dcache_pkt, this, nextCycle(curTick + delay));
459 _status = DcacheWaitResponse;
460 dcache_pkt = NULL;
461 } else if (!dcachePort.sendTiming(dcache_pkt)) {
462 _status = DcacheRetry;
463 } else {
464 _status = DcacheWaitResponse;
465 // memory system takes ownership of packet
466 dcache_pkt = NULL;
467 }
468 return dcache_pkt == NULL;
469 }
470
471 template <class T>
472 Fault
473 TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
474 {
475 const int asid = 0;
476 const int thread_id = 0;
477 const Addr pc = thread->readPC();
478 int block_size = dcachePort.peerBlockSize();
479 int data_size = sizeof(T);
480
481 RequestPtr req = new Request(asid, addr, data_size,
482 flags, pc, _cpuId, thread_id);
483
484 Addr split_addr = roundDown(addr + data_size - 1, block_size);
485 assert(split_addr <= addr || split_addr - addr < block_size);
486
487 if (split_addr > addr) {
488 PacketPtr pkt1, pkt2;
489 T *dataP = new T;
490 *dataP = data;
491 Fault fault = this->buildSplitPacket(pkt1, pkt2, req, split_addr,
492 (uint8_t *)dataP, false);
493 if (fault != NoFault)
494 return fault;
495 dcache_pkt = pkt1;
496 if (!req->getFlags().isSet(Request::NO_ACCESS)) {
497 if (handleWritePacket()) {
498 SplitFragmentSenderState * send_state =
499 dynamic_cast<SplitFragmentSenderState *>(
500 pkt1->senderState);
501 send_state->clearFromParent();
502 dcache_pkt = pkt2;
503 if (handleReadPacket(pkt2)) {
504 send_state =
505 dynamic_cast<SplitFragmentSenderState *>(
506 pkt1->senderState);
507 send_state->clearFromParent();
508 }
509 }
510 }
511 } else {
512 bool do_access = true; // flag to suppress cache access
513
514 Fault fault = buildPacket(dcache_pkt, req, false);
515 if (fault != NoFault)
516 return fault;
517
518 if (!req->getFlags().isSet(Request::NO_ACCESS)) {
519 if (req->isLocked()) {
520 do_access = TheISA::handleLockedWrite(thread, req);
521 } else if (req->isCondSwap()) {
522 assert(res);
523 req->setExtraData(*res);
524 }
525
526 dcache_pkt->allocate();
527 if (req->isMmapedIpr())
528 dcache_pkt->set(htog(data));
529 else
530 dcache_pkt->set(data);
531
532 if (do_access)
533 handleWritePacket();
534 }
535 }
536
537 if (traceData) {
538 traceData->setAddr(req->getVaddr());
539 traceData->setData(data);
540 }
541
542 // This will need a new way to tell if it's hooked up to a cache or not.
543 if (req->isUncacheable())
544 recordEvent("Uncached Write");
545
546 // If the write needs to have a fault on the access, consider calling
547 // changeStatus() and changing it to "bad addr write" or something.
548 return NoFault;
549 }
550
551
552 #ifndef DOXYGEN_SHOULD_SKIP_THIS
553 template
554 Fault
555 TimingSimpleCPU::write(Twin32_t data, Addr addr,
556 unsigned flags, uint64_t *res);
557
558 template
559 Fault
560 TimingSimpleCPU::write(Twin64_t data, Addr addr,
561 unsigned flags, uint64_t *res);
562
563 template
564 Fault
565 TimingSimpleCPU::write(uint64_t data, Addr addr,
566 unsigned flags, uint64_t *res);
567
568 template
569 Fault
570 TimingSimpleCPU::write(uint32_t data, Addr addr,
571 unsigned flags, uint64_t *res);
572
573 template
574 Fault
575 TimingSimpleCPU::write(uint16_t data, Addr addr,
576 unsigned flags, uint64_t *res);
577
578 template
579 Fault
580 TimingSimpleCPU::write(uint8_t data, Addr addr,
581 unsigned flags, uint64_t *res);
582
583 #endif //DOXYGEN_SHOULD_SKIP_THIS
584
585 template<>
586 Fault
587 TimingSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
588 {
589 return write(*(uint64_t*)&data, addr, flags, res);
590 }
591
592 template<>
593 Fault
594 TimingSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
595 {
596 return write(*(uint32_t*)&data, addr, flags, res);
597 }
598
599
600 template<>
601 Fault
602 TimingSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
603 {
604 return write((uint32_t)data, addr, flags, res);
605 }
606
607
608 void
609 TimingSimpleCPU::fetch()
610 {
611 DPRINTF(SimpleCPU, "Fetch\n");
612
613 if (!curStaticInst || !curStaticInst->isDelayedCommit())
614 checkForInterrupts();
615
616 checkPcEventQueue();
617
618 bool fromRom = isRomMicroPC(thread->readMicroPC());
619
620 if (!fromRom) {
621 Request *ifetch_req = new Request();
622 ifetch_req->setThreadContext(_cpuId, /* thread ID */ 0);
623 Fault fault = setupFetchRequest(ifetch_req);
624
625 ifetch_pkt = new Packet(ifetch_req, MemCmd::ReadReq, Packet::Broadcast);
626 ifetch_pkt->dataStatic(&inst);
627
628 if (fault == NoFault) {
629 if (!icachePort.sendTiming(ifetch_pkt)) {
630 // Need to wait for retry
631 _status = IcacheRetry;
632 } else {
633 // Need to wait for cache to respond
634 _status = IcacheWaitResponse;
635 // ownership of packet transferred to memory system
636 ifetch_pkt = NULL;
637 }
638 } else {
639 delete ifetch_req;
640 delete ifetch_pkt;
641 // fetch fault: advance directly to next instruction (fault handler)
642 advanceInst(fault);
643 }
644 } else {
645 _status = IcacheWaitResponse;
646 completeIfetch(NULL);
647 }
648
649 numCycles += tickToCycles(curTick - previousTick);
650 previousTick = curTick;
651 }
652
653
654 void
655 TimingSimpleCPU::advanceInst(Fault fault)
656 {
657 if (fault != NoFault || !stayAtPC)
658 advancePC(fault);
659
660 if (_status == Running) {
661 // kick off fetch of next instruction... callback from icache
662 // response will cause that instruction to be executed,
663 // keeping the CPU running.
664 fetch();
665 }
666 }
667
668
669 void
670 TimingSimpleCPU::completeIfetch(PacketPtr pkt)
671 {
672 DPRINTF(SimpleCPU, "Complete ICache Fetch\n");
673
674 // received a response from the icache: execute the received
675 // instruction
676
677 assert(!pkt || !pkt->isError());
678 assert(_status == IcacheWaitResponse);
679
680 _status = Running;
681
682 numCycles += tickToCycles(curTick - previousTick);
683 previousTick = curTick;
684
685 if (getState() == SimObject::Draining) {
686 if (pkt) {
687 delete pkt->req;
688 delete pkt;
689 }
690
691 completeDrain();
692 return;
693 }
694
695 preExecute();
696 if (curStaticInst &&
697 curStaticInst->isMemRef() && !curStaticInst->isDataPrefetch()) {
698 // load or store: just send to dcache
699 Fault fault = curStaticInst->initiateAcc(this, traceData);
700 if (_status != Running) {
701 // instruction will complete in dcache response callback
702 assert(_status == DcacheWaitResponse || _status == DcacheRetry);
703 assert(fault == NoFault);
704 } else {
705 if (fault == NoFault) {
706 // Note that ARM can have NULL packets if the instruction gets
707 // squashed due to predication
708 // early fail on store conditional: complete now
709 assert(dcache_pkt != NULL || THE_ISA == ARM_ISA);
710
711 fault = curStaticInst->completeAcc(dcache_pkt, this,
712 traceData);
713 if (dcache_pkt != NULL)
714 {
715 delete dcache_pkt->req;
716 delete dcache_pkt;
717 dcache_pkt = NULL;
718 }
719
720 // keep an instruction count
721 if (fault == NoFault)
722 countInst();
723 } else if (traceData) {
724 // If there was a fault, we shouldn't trace this instruction.
725 delete traceData;
726 traceData = NULL;
727 }
728
729 postExecute();
730 // @todo remove me after debugging with legion done
731 if (curStaticInst && (!curStaticInst->isMicroop() ||
732 curStaticInst->isFirstMicroop()))
733 instCnt++;
734 advanceInst(fault);
735 }
736 } else if (curStaticInst) {
737 // non-memory instruction: execute completely now
738 Fault fault = curStaticInst->execute(this, traceData);
739
740 // keep an instruction count
741 if (fault == NoFault)
742 countInst();
743 else if (traceData) {
744 // If there was a fault, we shouldn't trace this instruction.
745 delete traceData;
746 traceData = NULL;
747 }
748
749 postExecute();
750 // @todo remove me after debugging with legion done
751 if (curStaticInst && (!curStaticInst->isMicroop() ||
752 curStaticInst->isFirstMicroop()))
753 instCnt++;
754 advanceInst(fault);
755 } else {
756 advanceInst(NoFault);
757 }
758
759 if (pkt) {
760 delete pkt->req;
761 delete pkt;
762 }
763 }
764
765 void
766 TimingSimpleCPU::IcachePort::ITickEvent::process()
767 {
768 cpu->completeIfetch(pkt);
769 }
770
771 bool
772 TimingSimpleCPU::IcachePort::recvTiming(PacketPtr pkt)
773 {
774 if (pkt->isResponse() && !pkt->wasNacked()) {
775 // delay processing of returned data until next CPU clock edge
776 Tick next_tick = cpu->nextCycle(curTick);
777
778 if (next_tick == curTick)
779 cpu->completeIfetch(pkt);
780 else
781 tickEvent.schedule(pkt, next_tick);
782
783 return true;
784 }
785 else if (pkt->wasNacked()) {
786 assert(cpu->_status == IcacheWaitResponse);
787 pkt->reinitNacked();
788 if (!sendTiming(pkt)) {
789 cpu->_status = IcacheRetry;
790 cpu->ifetch_pkt = pkt;
791 }
792 }
793 //Snooping a Coherence Request, do nothing
794 return true;
795 }
796
797 void
798 TimingSimpleCPU::IcachePort::recvRetry()
799 {
800 // we shouldn't get a retry unless we have a packet that we're
801 // waiting to transmit
802 assert(cpu->ifetch_pkt != NULL);
803 assert(cpu->_status == IcacheRetry);
804 PacketPtr tmp = cpu->ifetch_pkt;
805 if (sendTiming(tmp)) {
806 cpu->_status = IcacheWaitResponse;
807 cpu->ifetch_pkt = NULL;
808 }
809 }
810
811 void
812 TimingSimpleCPU::completeDataAccess(PacketPtr pkt)
813 {
814 // received a response from the dcache: complete the load or store
815 // instruction
816 assert(!pkt->isError());
817
818 numCycles += tickToCycles(curTick - previousTick);
819 previousTick = curTick;
820
821 if (pkt->senderState) {
822 SplitFragmentSenderState * send_state =
823 dynamic_cast<SplitFragmentSenderState *>(pkt->senderState);
824 assert(send_state);
825 delete pkt->req;
826 delete pkt;
827 PacketPtr big_pkt = send_state->bigPkt;
828 delete send_state;
829
830 SplitMainSenderState * main_send_state =
831 dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
832 assert(main_send_state);
833 // Record the fact that this packet is no longer outstanding.
834 assert(main_send_state->outstanding != 0);
835 main_send_state->outstanding--;
836
837 if (main_send_state->outstanding) {
838 return;
839 } else {
840 delete main_send_state;
841 big_pkt->senderState = NULL;
842 pkt = big_pkt;
843 }
844 }
845
846 assert(_status == DcacheWaitResponse);
847 _status = Running;
848
849 Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
850
851 // keep an instruction count
852 if (fault == NoFault)
853 countInst();
854 else if (traceData) {
855 // If there was a fault, we shouldn't trace this instruction.
856 delete traceData;
857 traceData = NULL;
858 }
859
860 // the locked flag may be cleared on the response packet, so check
861 // pkt->req and not pkt to see if it was a load-locked
862 if (pkt->isRead() && pkt->req->isLocked()) {
863 TheISA::handleLockedRead(thread, pkt->req);
864 }
865
866 delete pkt->req;
867 delete pkt;
868
869 postExecute();
870
871 if (getState() == SimObject::Draining) {
872 advancePC(fault);
873 completeDrain();
874
875 return;
876 }
877
878 advanceInst(fault);
879 }
880
881
882 void
883 TimingSimpleCPU::completeDrain()
884 {
885 DPRINTF(Config, "Done draining\n");
886 changeState(SimObject::Drained);
887 drainEvent->process();
888 }
889
890 void
891 TimingSimpleCPU::DcachePort::setPeer(Port *port)
892 {
893 Port::setPeer(port);
894
895 #if FULL_SYSTEM
896 // Update the ThreadContext's memory ports (Functional/Virtual
897 // Ports)
898 cpu->tcBase()->connectMemPorts(cpu->tcBase());
899 #endif
900 }
901
902 bool
903 TimingSimpleCPU::DcachePort::recvTiming(PacketPtr pkt)
904 {
905 if (pkt->isResponse() && !pkt->wasNacked()) {
906 // delay processing of returned data until next CPU clock edge
907 Tick next_tick = cpu->nextCycle(curTick);
908
909 if (next_tick == curTick) {
910 cpu->completeDataAccess(pkt);
911 } else {
912 tickEvent.schedule(pkt, next_tick);
913 }
914
915 return true;
916 }
917 else if (pkt->wasNacked()) {
918 assert(cpu->_status == DcacheWaitResponse);
919 pkt->reinitNacked();
920 if (!sendTiming(pkt)) {
921 cpu->_status = DcacheRetry;
922 cpu->dcache_pkt = pkt;
923 }
924 }
925 //Snooping a Coherence Request, do nothing
926 return true;
927 }
928
929 void
930 TimingSimpleCPU::DcachePort::DTickEvent::process()
931 {
932 cpu->completeDataAccess(pkt);
933 }
934
935 void
936 TimingSimpleCPU::DcachePort::recvRetry()
937 {
938 // we shouldn't get a retry unless we have a packet that we're
939 // waiting to transmit
940 assert(cpu->dcache_pkt != NULL);
941 assert(cpu->_status == DcacheRetry);
942 PacketPtr tmp = cpu->dcache_pkt;
943 if (tmp->senderState) {
944 // This is a packet from a split access.
945 SplitFragmentSenderState * send_state =
946 dynamic_cast<SplitFragmentSenderState *>(tmp->senderState);
947 assert(send_state);
948 PacketPtr big_pkt = send_state->bigPkt;
949
950 SplitMainSenderState * main_send_state =
951 dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
952 assert(main_send_state);
953
954 if (sendTiming(tmp)) {
955 // If we were able to send without retrying, record that fact
956 // and try sending the other fragment.
957 send_state->clearFromParent();
958 int other_index = main_send_state->getPendingFragment();
959 if (other_index > 0) {
960 tmp = main_send_state->fragments[other_index];
961 cpu->dcache_pkt = tmp;
962 if ((big_pkt->isRead() && cpu->handleReadPacket(tmp)) ||
963 (big_pkt->isWrite() && cpu->handleWritePacket())) {
964 main_send_state->fragments[other_index] = NULL;
965 }
966 } else {
967 cpu->_status = DcacheWaitResponse;
968 // memory system takes ownership of packet
969 cpu->dcache_pkt = NULL;
970 }
971 }
972 } else if (sendTiming(tmp)) {
973 cpu->_status = DcacheWaitResponse;
974 // memory system takes ownership of packet
975 cpu->dcache_pkt = NULL;
976 }
977 }
978
979 TimingSimpleCPU::IprEvent::IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu,
980 Tick t)
981 : pkt(_pkt), cpu(_cpu)
982 {
983 cpu->schedule(this, t);
984 }
985
986 void
987 TimingSimpleCPU::IprEvent::process()
988 {
989 cpu->completeDataAccess(pkt);
990 }
991
992 const char *
993 TimingSimpleCPU::IprEvent::description() const
994 {
995 return "Timing Simple CPU Delay IPR event";
996 }
997
998
999 void
1000 TimingSimpleCPU::printAddr(Addr a)
1001 {
1002 dcachePort.printAddr(a);
1003 }
1004
1005
1006 ////////////////////////////////////////////////////////////////////////
1007 //
1008 // TimingSimpleCPU Simulation Object
1009 //
1010 TimingSimpleCPU *
1011 TimingSimpleCPUParams::create()
1012 {
1013 numThreads = 1;
1014 #if !FULL_SYSTEM
1015 if (workload.size() != 1)
1016 panic("only one workload allowed");
1017 #endif
1018 return new TimingSimpleCPU(this);
1019 }