Automated merge with file:/home/stever/hg/m5-orig
[gem5.git] / src / cpu / simple / timing.cc
1 /*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31 #include "arch/locked_mem.hh"
32 #include "arch/mmaped_ipr.hh"
33 #include "arch/utility.hh"
34 #include "base/bigint.hh"
35 #include "cpu/exetrace.hh"
36 #include "cpu/simple/timing.hh"
37 #include "mem/packet.hh"
38 #include "mem/packet_access.hh"
39 #include "params/TimingSimpleCPU.hh"
40 #include "sim/system.hh"
41
42 using namespace std;
43 using namespace TheISA;
44
45 Port *
46 TimingSimpleCPU::getPort(const std::string &if_name, int idx)
47 {
48 if (if_name == "dcache_port")
49 return &dcachePort;
50 else if (if_name == "icache_port")
51 return &icachePort;
52 else
53 panic("No Such Port\n");
54 }
55
56 void
57 TimingSimpleCPU::init()
58 {
59 BaseCPU::init();
60 cpuId = tc->readCpuId();
61 #if FULL_SYSTEM
62 for (int i = 0; i < threadContexts.size(); ++i) {
63 ThreadContext *tc = threadContexts[i];
64
65 // initialize CPU, including PC
66 TheISA::initCPU(tc, cpuId);
67 }
68 #endif
69 }
70
71 Tick
72 TimingSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt)
73 {
74 panic("TimingSimpleCPU doesn't expect recvAtomic callback!");
75 return curTick;
76 }
77
78 void
79 TimingSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt)
80 {
81 //No internal storage to update, jusst return
82 return;
83 }
84
85 void
86 TimingSimpleCPU::CpuPort::recvStatusChange(Status status)
87 {
88 if (status == RangeChange) {
89 if (!snoopRangeSent) {
90 snoopRangeSent = true;
91 sendStatusChange(Port::RangeChange);
92 }
93 return;
94 }
95
96 panic("TimingSimpleCPU doesn't expect recvStatusChange callback!");
97 }
98
99
100 void
101 TimingSimpleCPU::CpuPort::TickEvent::schedule(PacketPtr _pkt, Tick t)
102 {
103 pkt = _pkt;
104 Event::schedule(t);
105 }
106
107 TimingSimpleCPU::TimingSimpleCPU(Params *p)
108 : BaseSimpleCPU(p), icachePort(this, p->clock), dcachePort(this, p->clock)
109 {
110 _status = Idle;
111
112 icachePort.snoopRangeSent = false;
113 dcachePort.snoopRangeSent = false;
114
115 ifetch_pkt = dcache_pkt = NULL;
116 drainEvent = NULL;
117 fetchEvent = NULL;
118 previousTick = 0;
119 changeState(SimObject::Running);
120 }
121
122
123 TimingSimpleCPU::~TimingSimpleCPU()
124 {
125 }
126
127 void
128 TimingSimpleCPU::serialize(ostream &os)
129 {
130 SimObject::State so_state = SimObject::getState();
131 SERIALIZE_ENUM(so_state);
132 BaseSimpleCPU::serialize(os);
133 }
134
135 void
136 TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
137 {
138 SimObject::State so_state;
139 UNSERIALIZE_ENUM(so_state);
140 BaseSimpleCPU::unserialize(cp, section);
141 }
142
143 unsigned int
144 TimingSimpleCPU::drain(Event *drain_event)
145 {
146 // TimingSimpleCPU is ready to drain if it's not waiting for
147 // an access to complete.
148 if (status() == Idle || status() == Running || status() == SwitchedOut) {
149 changeState(SimObject::Drained);
150 return 0;
151 } else {
152 changeState(SimObject::Draining);
153 drainEvent = drain_event;
154 return 1;
155 }
156 }
157
158 void
159 TimingSimpleCPU::resume()
160 {
161 DPRINTF(SimpleCPU, "Resume\n");
162 if (_status != SwitchedOut && _status != Idle) {
163 assert(system->getMemoryMode() == Enums::timing);
164
165 // Delete the old event if it existed.
166 if (fetchEvent) {
167 if (fetchEvent->scheduled())
168 fetchEvent->deschedule();
169
170 delete fetchEvent;
171 }
172
173 fetchEvent = new FetchEvent(this, nextCycle());
174 }
175
176 changeState(SimObject::Running);
177 }
178
179 void
180 TimingSimpleCPU::switchOut()
181 {
182 assert(status() == Running || status() == Idle);
183 _status = SwitchedOut;
184 numCycles += tickToCycles(curTick - previousTick);
185
186 // If we've been scheduled to resume but are then told to switch out,
187 // we'll need to cancel it.
188 if (fetchEvent && fetchEvent->scheduled())
189 fetchEvent->deschedule();
190 }
191
192
193 void
194 TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
195 {
196 BaseCPU::takeOverFrom(oldCPU, &icachePort, &dcachePort);
197
198 // if any of this CPU's ThreadContexts are active, mark the CPU as
199 // running and schedule its tick event.
200 for (int i = 0; i < threadContexts.size(); ++i) {
201 ThreadContext *tc = threadContexts[i];
202 if (tc->status() == ThreadContext::Active && _status != Running) {
203 _status = Running;
204 break;
205 }
206 }
207
208 if (_status != Running) {
209 _status = Idle;
210 }
211 assert(threadContexts.size() == 1);
212 cpuId = tc->readCpuId();
213 previousTick = curTick;
214 }
215
216
217 void
218 TimingSimpleCPU::activateContext(int thread_num, int delay)
219 {
220 DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
221
222 assert(thread_num == 0);
223 assert(thread);
224
225 assert(_status == Idle);
226
227 notIdleFraction++;
228 _status = Running;
229
230 // kick things off by initiating the fetch of the next instruction
231 fetchEvent = new FetchEvent(this, nextCycle(curTick + ticks(delay)));
232 }
233
234
235 void
236 TimingSimpleCPU::suspendContext(int thread_num)
237 {
238 DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
239
240 assert(thread_num == 0);
241 assert(thread);
242
243 assert(_status == Running);
244
245 // just change status to Idle... if status != Running,
246 // completeInst() will not initiate fetch of next instruction.
247
248 notIdleFraction--;
249 _status = Idle;
250 }
251
252
253 template <class T>
254 Fault
255 TimingSimpleCPU::read(Addr addr, T &data, unsigned flags)
256 {
257 Request *req =
258 new Request(/* asid */ 0, addr, sizeof(T), flags, thread->readPC(),
259 cpuId, /* thread ID */ 0);
260
261 if (traceData) {
262 traceData->setAddr(req->getVaddr());
263 }
264
265 // translate to physical address
266 Fault fault = thread->translateDataReadReq(req);
267
268 // Now do the access.
269 if (fault == NoFault) {
270 PacketPtr pkt =
271 new Packet(req,
272 (req->isLocked() ?
273 MemCmd::LoadLockedReq : MemCmd::ReadReq),
274 Packet::Broadcast);
275 pkt->dataDynamic<T>(new T);
276
277 if (req->isMmapedIpr()) {
278 Tick delay;
279 delay = TheISA::handleIprRead(thread->getTC(), pkt);
280 new IprEvent(pkt, this, nextCycle(curTick + delay));
281 _status = DcacheWaitResponse;
282 dcache_pkt = NULL;
283 } else if (!dcachePort.sendTiming(pkt)) {
284 _status = DcacheRetry;
285 dcache_pkt = pkt;
286 } else {
287 _status = DcacheWaitResponse;
288 // memory system takes ownership of packet
289 dcache_pkt = NULL;
290 }
291
292 // This will need a new way to tell if it has a dcache attached.
293 if (req->isUncacheable())
294 recordEvent("Uncached Read");
295 } else {
296 delete req;
297 }
298
299 return fault;
300 }
301
302 Fault
303 TimingSimpleCPU::translateDataReadAddr(Addr vaddr, Addr &paddr,
304 int size, unsigned flags)
305 {
306 Request *req =
307 new Request(0, vaddr, size, flags, thread->readPC(), cpuId, 0);
308
309 if (traceData) {
310 traceData->setAddr(vaddr);
311 }
312
313 Fault fault = thread->translateDataWriteReq(req);
314
315 if (fault == NoFault)
316 paddr = req->getPaddr();
317
318 delete req;
319 return fault;
320 }
321
322 #ifndef DOXYGEN_SHOULD_SKIP_THIS
323
324 template
325 Fault
326 TimingSimpleCPU::read(Addr addr, Twin64_t &data, unsigned flags);
327
328 template
329 Fault
330 TimingSimpleCPU::read(Addr addr, Twin32_t &data, unsigned flags);
331
332 template
333 Fault
334 TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
335
336 template
337 Fault
338 TimingSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
339
340 template
341 Fault
342 TimingSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
343
344 template
345 Fault
346 TimingSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
347
348 #endif //DOXYGEN_SHOULD_SKIP_THIS
349
350 template<>
351 Fault
352 TimingSimpleCPU::read(Addr addr, double &data, unsigned flags)
353 {
354 return read(addr, *(uint64_t*)&data, flags);
355 }
356
357 template<>
358 Fault
359 TimingSimpleCPU::read(Addr addr, float &data, unsigned flags)
360 {
361 return read(addr, *(uint32_t*)&data, flags);
362 }
363
364
365 template<>
366 Fault
367 TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
368 {
369 return read(addr, (uint32_t&)data, flags);
370 }
371
372
373 template <class T>
374 Fault
375 TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
376 {
377 Request *req =
378 new Request(/* asid */ 0, addr, sizeof(T), flags, thread->readPC(),
379 cpuId, /* thread ID */ 0);
380
381 if (traceData) {
382 traceData->setAddr(req->getVaddr());
383 }
384
385 // translate to physical address
386 Fault fault = thread->translateDataWriteReq(req);
387
388 // Now do the access.
389 if (fault == NoFault) {
390 MemCmd cmd = MemCmd::WriteReq; // default
391 bool do_access = true; // flag to suppress cache access
392
393 if (req->isLocked()) {
394 cmd = MemCmd::StoreCondReq;
395 do_access = TheISA::handleLockedWrite(thread, req);
396 } else if (req->isSwap()) {
397 cmd = MemCmd::SwapReq;
398 if (req->isCondSwap()) {
399 assert(res);
400 req->setExtraData(*res);
401 }
402 }
403
404 // Note: need to allocate dcache_pkt even if do_access is
405 // false, as it's used unconditionally to call completeAcc().
406 assert(dcache_pkt == NULL);
407 dcache_pkt = new Packet(req, cmd, Packet::Broadcast);
408 dcache_pkt->allocate();
409 dcache_pkt->set(data);
410
411 if (do_access) {
412 if (req->isMmapedIpr()) {
413 Tick delay;
414 dcache_pkt->set(htog(data));
415 delay = TheISA::handleIprWrite(thread->getTC(), dcache_pkt);
416 new IprEvent(dcache_pkt, this, nextCycle(curTick + delay));
417 _status = DcacheWaitResponse;
418 dcache_pkt = NULL;
419 } else if (!dcachePort.sendTiming(dcache_pkt)) {
420 _status = DcacheRetry;
421 } else {
422 _status = DcacheWaitResponse;
423 // memory system takes ownership of packet
424 dcache_pkt = NULL;
425 }
426 }
427 // This will need a new way to tell if it's hooked up to a cache or not.
428 if (req->isUncacheable())
429 recordEvent("Uncached Write");
430 } else {
431 delete req;
432 }
433
434
435 // If the write needs to have a fault on the access, consider calling
436 // changeStatus() and changing it to "bad addr write" or something.
437 return fault;
438 }
439
440 Fault
441 TimingSimpleCPU::translateDataWriteAddr(Addr vaddr, Addr &paddr,
442 int size, unsigned flags)
443 {
444 Request *req =
445 new Request(0, vaddr, size, flags, thread->readPC(), cpuId, 0);
446
447 if (traceData) {
448 traceData->setAddr(vaddr);
449 }
450
451 Fault fault = thread->translateDataWriteReq(req);
452
453 if (fault == NoFault)
454 paddr = req->getPaddr();
455
456 delete req;
457 return fault;
458 }
459
460
461 #ifndef DOXYGEN_SHOULD_SKIP_THIS
462 template
463 Fault
464 TimingSimpleCPU::write(Twin32_t data, Addr addr,
465 unsigned flags, uint64_t *res);
466
467 template
468 Fault
469 TimingSimpleCPU::write(Twin64_t data, Addr addr,
470 unsigned flags, uint64_t *res);
471
472 template
473 Fault
474 TimingSimpleCPU::write(uint64_t data, Addr addr,
475 unsigned flags, uint64_t *res);
476
477 template
478 Fault
479 TimingSimpleCPU::write(uint32_t data, Addr addr,
480 unsigned flags, uint64_t *res);
481
482 template
483 Fault
484 TimingSimpleCPU::write(uint16_t data, Addr addr,
485 unsigned flags, uint64_t *res);
486
487 template
488 Fault
489 TimingSimpleCPU::write(uint8_t data, Addr addr,
490 unsigned flags, uint64_t *res);
491
492 #endif //DOXYGEN_SHOULD_SKIP_THIS
493
494 template<>
495 Fault
496 TimingSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
497 {
498 return write(*(uint64_t*)&data, addr, flags, res);
499 }
500
501 template<>
502 Fault
503 TimingSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
504 {
505 return write(*(uint32_t*)&data, addr, flags, res);
506 }
507
508
509 template<>
510 Fault
511 TimingSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
512 {
513 return write((uint32_t)data, addr, flags, res);
514 }
515
516
517 void
518 TimingSimpleCPU::fetch()
519 {
520 DPRINTF(SimpleCPU, "Fetch\n");
521
522 if (!curStaticInst || !curStaticInst->isDelayedCommit())
523 checkForInterrupts();
524
525 Request *ifetch_req = new Request();
526 ifetch_req->setThreadContext(cpuId, /* thread ID */ 0);
527 Fault fault = setupFetchRequest(ifetch_req);
528
529 ifetch_pkt = new Packet(ifetch_req, MemCmd::ReadReq, Packet::Broadcast);
530 ifetch_pkt->dataStatic(&inst);
531
532 if (fault == NoFault) {
533 if (!icachePort.sendTiming(ifetch_pkt)) {
534 // Need to wait for retry
535 _status = IcacheRetry;
536 } else {
537 // Need to wait for cache to respond
538 _status = IcacheWaitResponse;
539 // ownership of packet transferred to memory system
540 ifetch_pkt = NULL;
541 }
542 } else {
543 delete ifetch_req;
544 delete ifetch_pkt;
545 // fetch fault: advance directly to next instruction (fault handler)
546 advanceInst(fault);
547 }
548
549 numCycles += tickToCycles(curTick - previousTick);
550 previousTick = curTick;
551 }
552
553
554 void
555 TimingSimpleCPU::advanceInst(Fault fault)
556 {
557 advancePC(fault);
558
559 if (_status == Running) {
560 // kick off fetch of next instruction... callback from icache
561 // response will cause that instruction to be executed,
562 // keeping the CPU running.
563 fetch();
564 }
565 }
566
567
568 void
569 TimingSimpleCPU::completeIfetch(PacketPtr pkt)
570 {
571 DPRINTF(SimpleCPU, "Complete ICache Fetch\n");
572
573 // received a response from the icache: execute the received
574 // instruction
575 assert(!pkt->isError());
576 assert(_status == IcacheWaitResponse);
577
578 _status = Running;
579
580 numCycles += tickToCycles(curTick - previousTick);
581 previousTick = curTick;
582
583 if (getState() == SimObject::Draining) {
584 delete pkt->req;
585 delete pkt;
586
587 completeDrain();
588 return;
589 }
590
591 preExecute();
592 if (curStaticInst->isMemRef() && !curStaticInst->isDataPrefetch()) {
593 // load or store: just send to dcache
594 Fault fault = curStaticInst->initiateAcc(this, traceData);
595 if (_status != Running) {
596 // instruction will complete in dcache response callback
597 assert(_status == DcacheWaitResponse || _status == DcacheRetry);
598 assert(fault == NoFault);
599 } else {
600 if (fault == NoFault) {
601 // Note that ARM can have NULL packets if the instruction gets
602 // squashed due to predication
603 // early fail on store conditional: complete now
604 assert(dcache_pkt != NULL || THE_ISA == ARM_ISA);
605
606 fault = curStaticInst->completeAcc(dcache_pkt, this,
607 traceData);
608 if (dcache_pkt != NULL)
609 {
610 delete dcache_pkt->req;
611 delete dcache_pkt;
612 dcache_pkt = NULL;
613 }
614
615 // keep an instruction count
616 if (fault == NoFault)
617 countInst();
618 } else if (traceData) {
619 // If there was a fault, we shouldn't trace this instruction.
620 delete traceData;
621 traceData = NULL;
622 }
623
624 postExecute();
625 // @todo remove me after debugging with legion done
626 if (curStaticInst && (!curStaticInst->isMicroop() ||
627 curStaticInst->isFirstMicroop()))
628 instCnt++;
629 advanceInst(fault);
630 }
631 } else {
632 // non-memory instruction: execute completely now
633 Fault fault = curStaticInst->execute(this, traceData);
634
635 // keep an instruction count
636 if (fault == NoFault)
637 countInst();
638 else if (traceData) {
639 // If there was a fault, we shouldn't trace this instruction.
640 delete traceData;
641 traceData = NULL;
642 }
643
644 postExecute();
645 // @todo remove me after debugging with legion done
646 if (curStaticInst && (!curStaticInst->isMicroop() ||
647 curStaticInst->isFirstMicroop()))
648 instCnt++;
649 advanceInst(fault);
650 }
651
652 delete pkt->req;
653 delete pkt;
654 }
655
656 void
657 TimingSimpleCPU::IcachePort::ITickEvent::process()
658 {
659 cpu->completeIfetch(pkt);
660 }
661
662 bool
663 TimingSimpleCPU::IcachePort::recvTiming(PacketPtr pkt)
664 {
665 if (pkt->isResponse() && !pkt->wasNacked()) {
666 // delay processing of returned data until next CPU clock edge
667 Tick next_tick = cpu->nextCycle(curTick);
668
669 if (next_tick == curTick)
670 cpu->completeIfetch(pkt);
671 else
672 tickEvent.schedule(pkt, next_tick);
673
674 return true;
675 }
676 else if (pkt->wasNacked()) {
677 assert(cpu->_status == IcacheWaitResponse);
678 pkt->reinitNacked();
679 if (!sendTiming(pkt)) {
680 cpu->_status = IcacheRetry;
681 cpu->ifetch_pkt = pkt;
682 }
683 }
684 //Snooping a Coherence Request, do nothing
685 return true;
686 }
687
688 void
689 TimingSimpleCPU::IcachePort::recvRetry()
690 {
691 // we shouldn't get a retry unless we have a packet that we're
692 // waiting to transmit
693 assert(cpu->ifetch_pkt != NULL);
694 assert(cpu->_status == IcacheRetry);
695 PacketPtr tmp = cpu->ifetch_pkt;
696 if (sendTiming(tmp)) {
697 cpu->_status = IcacheWaitResponse;
698 cpu->ifetch_pkt = NULL;
699 }
700 }
701
702 void
703 TimingSimpleCPU::completeDataAccess(PacketPtr pkt)
704 {
705 // received a response from the dcache: complete the load or store
706 // instruction
707 assert(!pkt->isError());
708 assert(_status == DcacheWaitResponse);
709 _status = Running;
710
711 numCycles += tickToCycles(curTick - previousTick);
712 previousTick = curTick;
713
714 Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
715
716 // keep an instruction count
717 if (fault == NoFault)
718 countInst();
719 else if (traceData) {
720 // If there was a fault, we shouldn't trace this instruction.
721 delete traceData;
722 traceData = NULL;
723 }
724
725 if (pkt->isRead() && pkt->isLocked()) {
726 TheISA::handleLockedRead(thread, pkt->req);
727 }
728
729 delete pkt->req;
730 delete pkt;
731
732 postExecute();
733
734 if (getState() == SimObject::Draining) {
735 advancePC(fault);
736 completeDrain();
737
738 return;
739 }
740
741 advanceInst(fault);
742 }
743
744
745 void
746 TimingSimpleCPU::completeDrain()
747 {
748 DPRINTF(Config, "Done draining\n");
749 changeState(SimObject::Drained);
750 drainEvent->process();
751 }
752
753 void
754 TimingSimpleCPU::DcachePort::setPeer(Port *port)
755 {
756 Port::setPeer(port);
757
758 #if FULL_SYSTEM
759 // Update the ThreadContext's memory ports (Functional/Virtual
760 // Ports)
761 cpu->tcBase()->connectMemPorts();
762 #endif
763 }
764
765 bool
766 TimingSimpleCPU::DcachePort::recvTiming(PacketPtr pkt)
767 {
768 if (pkt->isResponse() && !pkt->wasNacked()) {
769 // delay processing of returned data until next CPU clock edge
770 Tick next_tick = cpu->nextCycle(curTick);
771
772 if (next_tick == curTick)
773 cpu->completeDataAccess(pkt);
774 else
775 tickEvent.schedule(pkt, next_tick);
776
777 return true;
778 }
779 else if (pkt->wasNacked()) {
780 assert(cpu->_status == DcacheWaitResponse);
781 pkt->reinitNacked();
782 if (!sendTiming(pkt)) {
783 cpu->_status = DcacheRetry;
784 cpu->dcache_pkt = pkt;
785 }
786 }
787 //Snooping a Coherence Request, do nothing
788 return true;
789 }
790
791 void
792 TimingSimpleCPU::DcachePort::DTickEvent::process()
793 {
794 cpu->completeDataAccess(pkt);
795 }
796
797 void
798 TimingSimpleCPU::DcachePort::recvRetry()
799 {
800 // we shouldn't get a retry unless we have a packet that we're
801 // waiting to transmit
802 assert(cpu->dcache_pkt != NULL);
803 assert(cpu->_status == DcacheRetry);
804 PacketPtr tmp = cpu->dcache_pkt;
805 if (sendTiming(tmp)) {
806 cpu->_status = DcacheWaitResponse;
807 // memory system takes ownership of packet
808 cpu->dcache_pkt = NULL;
809 }
810 }
811
812 TimingSimpleCPU::IprEvent::IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu, Tick t)
813 : Event(&mainEventQueue), pkt(_pkt), cpu(_cpu)
814 {
815 schedule(t);
816 }
817
818 void
819 TimingSimpleCPU::IprEvent::process()
820 {
821 cpu->completeDataAccess(pkt);
822 }
823
824 const char *
825 TimingSimpleCPU::IprEvent::description() const
826 {
827 return "Timing Simple CPU Delay IPR event";
828 }
829
830
831 void
832 TimingSimpleCPU::printAddr(Addr a)
833 {
834 dcachePort.printAddr(a);
835 }
836
837
838 ////////////////////////////////////////////////////////////////////////
839 //
840 // TimingSimpleCPU Simulation Object
841 //
842 TimingSimpleCPU *
843 TimingSimpleCPUParams::create()
844 {
845 TimingSimpleCPU::Params *params = new TimingSimpleCPU::Params();
846 params->name = name;
847 params->numberOfThreads = 1;
848 params->max_insts_any_thread = max_insts_any_thread;
849 params->max_insts_all_threads = max_insts_all_threads;
850 params->max_loads_any_thread = max_loads_any_thread;
851 params->max_loads_all_threads = max_loads_all_threads;
852 params->progress_interval = progress_interval;
853 params->deferRegistration = defer_registration;
854 params->clock = clock;
855 params->phase = phase;
856 params->functionTrace = function_trace;
857 params->functionTraceStart = function_trace_start;
858 params->system = system;
859 params->cpu_id = cpu_id;
860 params->tracer = tracer;
861
862 params->itb = itb;
863 params->dtb = dtb;
864 #if FULL_SYSTEM
865 params->profile = profile;
866 params->do_quiesce = do_quiesce;
867 params->do_checkpoint_insts = do_checkpoint_insts;
868 params->do_statistics_insts = do_statistics_insts;
869 #else
870 if (workload.size() != 1)
871 panic("only one workload allowed");
872 params->process = workload[0];
873 #endif
874
875 TimingSimpleCPU *cpu = new TimingSimpleCPU(params);
876 return cpu;
877 }