mem: Remove threadId from memory request class
[gem5.git] / src / cpu / simple / timing.cc
1 /*
2 * Copyright 2014 Google, Inc.
3 * Copyright (c) 2010-2013,2015 ARM Limited
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder. You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2002-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Steve Reinhardt
42 */
43
44 #include "arch/locked_mem.hh"
45 #include "arch/mmapped_ipr.hh"
46 #include "arch/utility.hh"
47 #include "base/bigint.hh"
48 #include "config/the_isa.hh"
49 #include "cpu/simple/timing.hh"
50 #include "cpu/exetrace.hh"
51 #include "debug/Config.hh"
52 #include "debug/Drain.hh"
53 #include "debug/ExecFaulting.hh"
54 #include "debug/SimpleCPU.hh"
55 #include "mem/packet.hh"
56 #include "mem/packet_access.hh"
57 #include "params/TimingSimpleCPU.hh"
58 #include "sim/faults.hh"
59 #include "sim/full_system.hh"
60 #include "sim/system.hh"
61
62 #include "debug/Mwait.hh"
63
64 using namespace std;
65 using namespace TheISA;
66
67 void
68 TimingSimpleCPU::init()
69 {
70 BaseSimpleCPU::init();
71 }
72
73 void
74 TimingSimpleCPU::TimingCPUPort::TickEvent::schedule(PacketPtr _pkt, Tick t)
75 {
76 pkt = _pkt;
77 cpu->schedule(this, t);
78 }
79
80 TimingSimpleCPU::TimingSimpleCPU(TimingSimpleCPUParams *p)
81 : BaseSimpleCPU(p), fetchTranslation(this), icachePort(this),
82 dcachePort(this), ifetch_pkt(NULL), dcache_pkt(NULL), previousCycle(0),
83 fetchEvent(this)
84 {
85 _status = Idle;
86 }
87
88
89
90 TimingSimpleCPU::~TimingSimpleCPU()
91 {
92 }
93
94 DrainState
95 TimingSimpleCPU::drain()
96 {
97 if (switchedOut())
98 return DrainState::Drained;
99
100 if (_status == Idle ||
101 (_status == BaseSimpleCPU::Running && isDrained())) {
102 DPRINTF(Drain, "No need to drain.\n");
103 activeThreads.clear();
104 return DrainState::Drained;
105 } else {
106 DPRINTF(Drain, "Requesting drain.\n");
107
108 // The fetch event can become descheduled if a drain didn't
109 // succeed on the first attempt. We need to reschedule it if
110 // the CPU is waiting for a microcode routine to complete.
111 if (_status == BaseSimpleCPU::Running && !fetchEvent.scheduled())
112 schedule(fetchEvent, clockEdge());
113
114 return DrainState::Draining;
115 }
116 }
117
118 void
119 TimingSimpleCPU::drainResume()
120 {
121 assert(!fetchEvent.scheduled());
122 if (switchedOut())
123 return;
124
125 DPRINTF(SimpleCPU, "Resume\n");
126 verifyMemoryMode();
127
128 assert(!threadContexts.empty());
129
130 _status = BaseSimpleCPU::Idle;
131
132 for (ThreadID tid = 0; tid < numThreads; tid++) {
133 if (threadInfo[tid]->thread->status() == ThreadContext::Active) {
134 threadInfo[tid]->notIdleFraction = 1;
135
136 activeThreads.push_back(tid);
137
138 _status = BaseSimpleCPU::Running;
139
140 // Fetch if any threads active
141 if (!fetchEvent.scheduled()) {
142 schedule(fetchEvent, nextCycle());
143 }
144 } else {
145 threadInfo[tid]->notIdleFraction = 0;
146 }
147 }
148
149 system->totalNumInsts = 0;
150 }
151
152 bool
153 TimingSimpleCPU::tryCompleteDrain()
154 {
155 if (drainState() != DrainState::Draining)
156 return false;
157
158 DPRINTF(Drain, "tryCompleteDrain.\n");
159 if (!isDrained())
160 return false;
161
162 DPRINTF(Drain, "CPU done draining, processing drain event\n");
163 signalDrainDone();
164
165 return true;
166 }
167
168 void
169 TimingSimpleCPU::switchOut()
170 {
171 SimpleExecContext& t_info = *threadInfo[curThread];
172 M5_VAR_USED SimpleThread* thread = t_info.thread;
173
174 BaseSimpleCPU::switchOut();
175
176 assert(!fetchEvent.scheduled());
177 assert(_status == BaseSimpleCPU::Running || _status == Idle);
178 assert(!t_info.stayAtPC);
179 assert(thread->microPC() == 0);
180
181 updateCycleCounts();
182 }
183
184
185 void
186 TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
187 {
188 BaseSimpleCPU::takeOverFrom(oldCPU);
189
190 previousCycle = curCycle();
191 }
192
193 void
194 TimingSimpleCPU::verifyMemoryMode() const
195 {
196 if (!system->isTimingMode()) {
197 fatal("The timing CPU requires the memory system to be in "
198 "'timing' mode.\n");
199 }
200 }
201
202 void
203 TimingSimpleCPU::activateContext(ThreadID thread_num)
204 {
205 DPRINTF(SimpleCPU, "ActivateContext %d\n", thread_num);
206
207 assert(thread_num < numThreads);
208
209 threadInfo[thread_num]->notIdleFraction = 1;
210 if (_status == BaseSimpleCPU::Idle)
211 _status = BaseSimpleCPU::Running;
212
213 // kick things off by initiating the fetch of the next instruction
214 if (!fetchEvent.scheduled())
215 schedule(fetchEvent, clockEdge(Cycles(0)));
216
217 if (std::find(activeThreads.begin(), activeThreads.end(), thread_num)
218 == activeThreads.end()) {
219 activeThreads.push_back(thread_num);
220 }
221
222 BaseCPU::activateContext(thread_num);
223 }
224
225
226 void
227 TimingSimpleCPU::suspendContext(ThreadID thread_num)
228 {
229 DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
230
231 assert(thread_num < numThreads);
232 activeThreads.remove(thread_num);
233
234 if (_status == Idle)
235 return;
236
237 assert(_status == BaseSimpleCPU::Running);
238
239 threadInfo[thread_num]->notIdleFraction = 0;
240
241 if (activeThreads.empty()) {
242 _status = Idle;
243
244 if (fetchEvent.scheduled()) {
245 deschedule(fetchEvent);
246 }
247 }
248
249 BaseCPU::suspendContext(thread_num);
250 }
251
252 bool
253 TimingSimpleCPU::handleReadPacket(PacketPtr pkt)
254 {
255 SimpleExecContext &t_info = *threadInfo[curThread];
256 SimpleThread* thread = t_info.thread;
257
258 RequestPtr req = pkt->req;
259
260 // We're about the issues a locked load, so tell the monitor
261 // to start caring about this address
262 if (pkt->isRead() && pkt->req->isLLSC()) {
263 TheISA::handleLockedRead(thread, pkt->req);
264 }
265 if (req->isMmappedIpr()) {
266 Cycles delay = TheISA::handleIprRead(thread->getTC(), pkt);
267 new IprEvent(pkt, this, clockEdge(delay));
268 _status = DcacheWaitResponse;
269 dcache_pkt = NULL;
270 } else if (!dcachePort.sendTimingReq(pkt)) {
271 _status = DcacheRetry;
272 dcache_pkt = pkt;
273 } else {
274 _status = DcacheWaitResponse;
275 // memory system takes ownership of packet
276 dcache_pkt = NULL;
277 }
278 return dcache_pkt == NULL;
279 }
280
281 void
282 TimingSimpleCPU::sendData(RequestPtr req, uint8_t *data, uint64_t *res,
283 bool read)
284 {
285 SimpleExecContext &t_info = *threadInfo[curThread];
286 SimpleThread* thread = t_info.thread;
287
288 PacketPtr pkt = buildPacket(req, read);
289 pkt->dataDynamic<uint8_t>(data);
290 if (req->getFlags().isSet(Request::NO_ACCESS)) {
291 assert(!dcache_pkt);
292 pkt->makeResponse();
293 completeDataAccess(pkt);
294 } else if (read) {
295 handleReadPacket(pkt);
296 } else {
297 bool do_access = true; // flag to suppress cache access
298
299 if (req->isLLSC()) {
300 do_access = TheISA::handleLockedWrite(thread, req, dcachePort.cacheBlockMask);
301 } else if (req->isCondSwap()) {
302 assert(res);
303 req->setExtraData(*res);
304 }
305
306 if (do_access) {
307 dcache_pkt = pkt;
308 handleWritePacket();
309 threadSnoop(pkt, curThread);
310 } else {
311 _status = DcacheWaitResponse;
312 completeDataAccess(pkt);
313 }
314 }
315 }
316
317 void
318 TimingSimpleCPU::sendSplitData(RequestPtr req1, RequestPtr req2,
319 RequestPtr req, uint8_t *data, bool read)
320 {
321 PacketPtr pkt1, pkt2;
322 buildSplitPacket(pkt1, pkt2, req1, req2, req, data, read);
323 if (req->getFlags().isSet(Request::NO_ACCESS)) {
324 assert(!dcache_pkt);
325 pkt1->makeResponse();
326 completeDataAccess(pkt1);
327 } else if (read) {
328 SplitFragmentSenderState * send_state =
329 dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
330 if (handleReadPacket(pkt1)) {
331 send_state->clearFromParent();
332 send_state = dynamic_cast<SplitFragmentSenderState *>(
333 pkt2->senderState);
334 if (handleReadPacket(pkt2)) {
335 send_state->clearFromParent();
336 }
337 }
338 } else {
339 dcache_pkt = pkt1;
340 SplitFragmentSenderState * send_state =
341 dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
342 if (handleWritePacket()) {
343 send_state->clearFromParent();
344 dcache_pkt = pkt2;
345 send_state = dynamic_cast<SplitFragmentSenderState *>(
346 pkt2->senderState);
347 if (handleWritePacket()) {
348 send_state->clearFromParent();
349 }
350 }
351 }
352 }
353
354 void
355 TimingSimpleCPU::translationFault(const Fault &fault)
356 {
357 // fault may be NoFault in cases where a fault is suppressed,
358 // for instance prefetches.
359 updateCycleCounts();
360
361 if (traceData) {
362 // Since there was a fault, we shouldn't trace this instruction.
363 delete traceData;
364 traceData = NULL;
365 }
366
367 postExecute();
368
369 advanceInst(fault);
370 }
371
372 PacketPtr
373 TimingSimpleCPU::buildPacket(RequestPtr req, bool read)
374 {
375 return read ? Packet::createRead(req) : Packet::createWrite(req);
376 }
377
378 void
379 TimingSimpleCPU::buildSplitPacket(PacketPtr &pkt1, PacketPtr &pkt2,
380 RequestPtr req1, RequestPtr req2, RequestPtr req,
381 uint8_t *data, bool read)
382 {
383 pkt1 = pkt2 = NULL;
384
385 assert(!req1->isMmappedIpr() && !req2->isMmappedIpr());
386
387 if (req->getFlags().isSet(Request::NO_ACCESS)) {
388 pkt1 = buildPacket(req, read);
389 return;
390 }
391
392 pkt1 = buildPacket(req1, read);
393 pkt2 = buildPacket(req2, read);
394
395 PacketPtr pkt = new Packet(req, pkt1->cmd.responseCommand());
396
397 pkt->dataDynamic<uint8_t>(data);
398 pkt1->dataStatic<uint8_t>(data);
399 pkt2->dataStatic<uint8_t>(data + req1->getSize());
400
401 SplitMainSenderState * main_send_state = new SplitMainSenderState;
402 pkt->senderState = main_send_state;
403 main_send_state->fragments[0] = pkt1;
404 main_send_state->fragments[1] = pkt2;
405 main_send_state->outstanding = 2;
406 pkt1->senderState = new SplitFragmentSenderState(pkt, 0);
407 pkt2->senderState = new SplitFragmentSenderState(pkt, 1);
408 }
409
410 Fault
411 TimingSimpleCPU::readMem(Addr addr, uint8_t *data,
412 unsigned size, unsigned flags)
413 {
414 panic("readMem() is for atomic accesses, and should "
415 "never be called on TimingSimpleCPU.\n");
416 }
417
418 Fault
419 TimingSimpleCPU::initiateMemRead(Addr addr, unsigned size, unsigned flags)
420 {
421 SimpleExecContext &t_info = *threadInfo[curThread];
422 SimpleThread* thread = t_info.thread;
423
424 Fault fault;
425 const int asid = 0;
426 const Addr pc = thread->instAddr();
427 unsigned block_size = cacheLineSize();
428 BaseTLB::Mode mode = BaseTLB::Read;
429
430 if (traceData)
431 traceData->setMem(addr, size, flags);
432
433 RequestPtr req = new Request(asid, addr, size, flags, dataMasterId(), pc,
434 thread->contextId());
435
436 req->taskId(taskId());
437
438 Addr split_addr = roundDown(addr + size - 1, block_size);
439 assert(split_addr <= addr || split_addr - addr < block_size);
440
441 _status = DTBWaitResponse;
442 if (split_addr > addr) {
443 RequestPtr req1, req2;
444 assert(!req->isLLSC() && !req->isSwap());
445 req->splitOnVaddr(split_addr, req1, req2);
446
447 WholeTranslationState *state =
448 new WholeTranslationState(req, req1, req2, new uint8_t[size],
449 NULL, mode);
450 DataTranslation<TimingSimpleCPU *> *trans1 =
451 new DataTranslation<TimingSimpleCPU *>(this, state, 0);
452 DataTranslation<TimingSimpleCPU *> *trans2 =
453 new DataTranslation<TimingSimpleCPU *>(this, state, 1);
454
455 thread->dtb->translateTiming(req1, thread->getTC(), trans1, mode);
456 thread->dtb->translateTiming(req2, thread->getTC(), trans2, mode);
457 } else {
458 WholeTranslationState *state =
459 new WholeTranslationState(req, new uint8_t[size], NULL, mode);
460 DataTranslation<TimingSimpleCPU *> *translation
461 = new DataTranslation<TimingSimpleCPU *>(this, state);
462 thread->dtb->translateTiming(req, thread->getTC(), translation, mode);
463 }
464
465 return NoFault;
466 }
467
468 bool
469 TimingSimpleCPU::handleWritePacket()
470 {
471 SimpleExecContext &t_info = *threadInfo[curThread];
472 SimpleThread* thread = t_info.thread;
473
474 RequestPtr req = dcache_pkt->req;
475 if (req->isMmappedIpr()) {
476 Cycles delay = TheISA::handleIprWrite(thread->getTC(), dcache_pkt);
477 new IprEvent(dcache_pkt, this, clockEdge(delay));
478 _status = DcacheWaitResponse;
479 dcache_pkt = NULL;
480 } else if (!dcachePort.sendTimingReq(dcache_pkt)) {
481 _status = DcacheRetry;
482 } else {
483 _status = DcacheWaitResponse;
484 // memory system takes ownership of packet
485 dcache_pkt = NULL;
486 }
487 return dcache_pkt == NULL;
488 }
489
490 Fault
491 TimingSimpleCPU::writeMem(uint8_t *data, unsigned size,
492 Addr addr, unsigned flags, uint64_t *res)
493 {
494 SimpleExecContext &t_info = *threadInfo[curThread];
495 SimpleThread* thread = t_info.thread;
496
497 uint8_t *newData = new uint8_t[size];
498 const int asid = 0;
499 const Addr pc = thread->instAddr();
500 unsigned block_size = cacheLineSize();
501 BaseTLB::Mode mode = BaseTLB::Write;
502
503 if (data == NULL) {
504 assert(flags & Request::CACHE_BLOCK_ZERO);
505 // This must be a cache block cleaning request
506 memset(newData, 0, size);
507 } else {
508 memcpy(newData, data, size);
509 }
510
511 if (traceData)
512 traceData->setMem(addr, size, flags);
513
514 RequestPtr req = new Request(asid, addr, size, flags, dataMasterId(), pc,
515 thread->contextId());
516
517 req->taskId(taskId());
518
519 Addr split_addr = roundDown(addr + size - 1, block_size);
520 assert(split_addr <= addr || split_addr - addr < block_size);
521
522 _status = DTBWaitResponse;
523 if (split_addr > addr) {
524 RequestPtr req1, req2;
525 assert(!req->isLLSC() && !req->isSwap());
526 req->splitOnVaddr(split_addr, req1, req2);
527
528 WholeTranslationState *state =
529 new WholeTranslationState(req, req1, req2, newData, res, mode);
530 DataTranslation<TimingSimpleCPU *> *trans1 =
531 new DataTranslation<TimingSimpleCPU *>(this, state, 0);
532 DataTranslation<TimingSimpleCPU *> *trans2 =
533 new DataTranslation<TimingSimpleCPU *>(this, state, 1);
534
535 thread->dtb->translateTiming(req1, thread->getTC(), trans1, mode);
536 thread->dtb->translateTiming(req2, thread->getTC(), trans2, mode);
537 } else {
538 WholeTranslationState *state =
539 new WholeTranslationState(req, newData, res, mode);
540 DataTranslation<TimingSimpleCPU *> *translation =
541 new DataTranslation<TimingSimpleCPU *>(this, state);
542 thread->dtb->translateTiming(req, thread->getTC(), translation, mode);
543 }
544
545 // Translation faults will be returned via finishTranslation()
546 return NoFault;
547 }
548
549 void
550 TimingSimpleCPU::threadSnoop(PacketPtr pkt, ThreadID sender)
551 {
552 for (ThreadID tid = 0; tid < numThreads; tid++) {
553 if (tid != sender) {
554 if (getCpuAddrMonitor(tid)->doMonitor(pkt)) {
555 wakeup(tid);
556 }
557 TheISA::handleLockedSnoop(threadInfo[tid]->thread, pkt,
558 dcachePort.cacheBlockMask);
559 }
560 }
561 }
562
563 void
564 TimingSimpleCPU::finishTranslation(WholeTranslationState *state)
565 {
566 _status = BaseSimpleCPU::Running;
567
568 if (state->getFault() != NoFault) {
569 if (state->isPrefetch()) {
570 state->setNoFault();
571 }
572 delete [] state->data;
573 state->deleteReqs();
574 translationFault(state->getFault());
575 } else {
576 if (!state->isSplit) {
577 sendData(state->mainReq, state->data, state->res,
578 state->mode == BaseTLB::Read);
579 } else {
580 sendSplitData(state->sreqLow, state->sreqHigh, state->mainReq,
581 state->data, state->mode == BaseTLB::Read);
582 }
583 }
584
585 delete state;
586 }
587
588
589 void
590 TimingSimpleCPU::fetch()
591 {
592 // Change thread if multi-threaded
593 swapActiveThread();
594
595 SimpleExecContext &t_info = *threadInfo[curThread];
596 SimpleThread* thread = t_info.thread;
597
598 DPRINTF(SimpleCPU, "Fetch\n");
599
600 if (!curStaticInst || !curStaticInst->isDelayedCommit()) {
601 checkForInterrupts();
602 checkPcEventQueue();
603 }
604
605 // We must have just got suspended by a PC event
606 if (_status == Idle)
607 return;
608
609 TheISA::PCState pcState = thread->pcState();
610 bool needToFetch = !isRomMicroPC(pcState.microPC()) &&
611 !curMacroStaticInst;
612
613 if (needToFetch) {
614 _status = BaseSimpleCPU::Running;
615 Request *ifetch_req = new Request();
616 ifetch_req->taskId(taskId());
617 ifetch_req->setContext(thread->contextId());
618 setupFetchRequest(ifetch_req);
619 DPRINTF(SimpleCPU, "Translating address %#x\n", ifetch_req->getVaddr());
620 thread->itb->translateTiming(ifetch_req, thread->getTC(),
621 &fetchTranslation, BaseTLB::Execute);
622 } else {
623 _status = IcacheWaitResponse;
624 completeIfetch(NULL);
625
626 updateCycleCounts();
627 }
628 }
629
630
631 void
632 TimingSimpleCPU::sendFetch(const Fault &fault, RequestPtr req,
633 ThreadContext *tc)
634 {
635 if (fault == NoFault) {
636 DPRINTF(SimpleCPU, "Sending fetch for addr %#x(pa: %#x)\n",
637 req->getVaddr(), req->getPaddr());
638 ifetch_pkt = new Packet(req, MemCmd::ReadReq);
639 ifetch_pkt->dataStatic(&inst);
640 DPRINTF(SimpleCPU, " -- pkt addr: %#x\n", ifetch_pkt->getAddr());
641
642 if (!icachePort.sendTimingReq(ifetch_pkt)) {
643 // Need to wait for retry
644 _status = IcacheRetry;
645 } else {
646 // Need to wait for cache to respond
647 _status = IcacheWaitResponse;
648 // ownership of packet transferred to memory system
649 ifetch_pkt = NULL;
650 }
651 } else {
652 DPRINTF(SimpleCPU, "Translation of addr %#x faulted\n", req->getVaddr());
653 delete req;
654 // fetch fault: advance directly to next instruction (fault handler)
655 _status = BaseSimpleCPU::Running;
656 advanceInst(fault);
657 }
658
659 updateCycleCounts();
660 }
661
662
663 void
664 TimingSimpleCPU::advanceInst(const Fault &fault)
665 {
666 SimpleExecContext &t_info = *threadInfo[curThread];
667
668 if (_status == Faulting)
669 return;
670
671 if (fault != NoFault) {
672 advancePC(fault);
673 DPRINTF(SimpleCPU, "Fault occured, scheduling fetch event\n");
674 reschedule(fetchEvent, clockEdge(), true);
675 _status = Faulting;
676 return;
677 }
678
679
680 if (!t_info.stayAtPC)
681 advancePC(fault);
682
683 if (tryCompleteDrain())
684 return;
685
686 if (_status == BaseSimpleCPU::Running) {
687 // kick off fetch of next instruction... callback from icache
688 // response will cause that instruction to be executed,
689 // keeping the CPU running.
690 fetch();
691 }
692 }
693
694
695 void
696 TimingSimpleCPU::completeIfetch(PacketPtr pkt)
697 {
698 SimpleExecContext& t_info = *threadInfo[curThread];
699
700 DPRINTF(SimpleCPU, "Complete ICache Fetch for addr %#x\n", pkt ?
701 pkt->getAddr() : 0);
702
703 // received a response from the icache: execute the received
704 // instruction
705 assert(!pkt || !pkt->isError());
706 assert(_status == IcacheWaitResponse);
707
708 _status = BaseSimpleCPU::Running;
709
710 updateCycleCounts();
711
712 if (pkt)
713 pkt->req->setAccessLatency();
714
715
716 preExecute();
717 if (curStaticInst && curStaticInst->isMemRef()) {
718 // load or store: just send to dcache
719 Fault fault = curStaticInst->initiateAcc(&t_info, traceData);
720
721 // If we're not running now the instruction will complete in a dcache
722 // response callback or the instruction faulted and has started an
723 // ifetch
724 if (_status == BaseSimpleCPU::Running) {
725 if (fault != NoFault && traceData) {
726 // If there was a fault, we shouldn't trace this instruction.
727 delete traceData;
728 traceData = NULL;
729 }
730
731 postExecute();
732 // @todo remove me after debugging with legion done
733 if (curStaticInst && (!curStaticInst->isMicroop() ||
734 curStaticInst->isFirstMicroop()))
735 instCnt++;
736 advanceInst(fault);
737 }
738 } else if (curStaticInst) {
739 // non-memory instruction: execute completely now
740 Fault fault = curStaticInst->execute(&t_info, traceData);
741
742 // keep an instruction count
743 if (fault == NoFault)
744 countInst();
745 else if (traceData && !DTRACE(ExecFaulting)) {
746 delete traceData;
747 traceData = NULL;
748 }
749
750 postExecute();
751 // @todo remove me after debugging with legion done
752 if (curStaticInst && (!curStaticInst->isMicroop() ||
753 curStaticInst->isFirstMicroop()))
754 instCnt++;
755 advanceInst(fault);
756 } else {
757 advanceInst(NoFault);
758 }
759
760 if (pkt) {
761 delete pkt->req;
762 delete pkt;
763 }
764 }
765
766 void
767 TimingSimpleCPU::IcachePort::ITickEvent::process()
768 {
769 cpu->completeIfetch(pkt);
770 }
771
772 bool
773 TimingSimpleCPU::IcachePort::recvTimingResp(PacketPtr pkt)
774 {
775 DPRINTF(SimpleCPU, "Received fetch response %#x\n", pkt->getAddr());
776 // we should only ever see one response per cycle since we only
777 // issue a new request once this response is sunk
778 assert(!tickEvent.scheduled());
779 // delay processing of returned data until next CPU clock edge
780 tickEvent.schedule(pkt, cpu->clockEdge());
781
782 return true;
783 }
784
785 void
786 TimingSimpleCPU::IcachePort::recvReqRetry()
787 {
788 // we shouldn't get a retry unless we have a packet that we're
789 // waiting to transmit
790 assert(cpu->ifetch_pkt != NULL);
791 assert(cpu->_status == IcacheRetry);
792 PacketPtr tmp = cpu->ifetch_pkt;
793 if (sendTimingReq(tmp)) {
794 cpu->_status = IcacheWaitResponse;
795 cpu->ifetch_pkt = NULL;
796 }
797 }
798
799 void
800 TimingSimpleCPU::completeDataAccess(PacketPtr pkt)
801 {
802 // received a response from the dcache: complete the load or store
803 // instruction
804 assert(!pkt->isError());
805 assert(_status == DcacheWaitResponse || _status == DTBWaitResponse ||
806 pkt->req->getFlags().isSet(Request::NO_ACCESS));
807
808 pkt->req->setAccessLatency();
809
810 updateCycleCounts();
811
812 if (pkt->senderState) {
813 SplitFragmentSenderState * send_state =
814 dynamic_cast<SplitFragmentSenderState *>(pkt->senderState);
815 assert(send_state);
816 delete pkt->req;
817 delete pkt;
818 PacketPtr big_pkt = send_state->bigPkt;
819 delete send_state;
820
821 SplitMainSenderState * main_send_state =
822 dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
823 assert(main_send_state);
824 // Record the fact that this packet is no longer outstanding.
825 assert(main_send_state->outstanding != 0);
826 main_send_state->outstanding--;
827
828 if (main_send_state->outstanding) {
829 return;
830 } else {
831 delete main_send_state;
832 big_pkt->senderState = NULL;
833 pkt = big_pkt;
834 }
835 }
836
837 _status = BaseSimpleCPU::Running;
838
839 Fault fault = curStaticInst->completeAcc(pkt, threadInfo[curThread],
840 traceData);
841
842 // keep an instruction count
843 if (fault == NoFault)
844 countInst();
845 else if (traceData) {
846 // If there was a fault, we shouldn't trace this instruction.
847 delete traceData;
848 traceData = NULL;
849 }
850
851 delete pkt->req;
852 delete pkt;
853
854 postExecute();
855
856 advanceInst(fault);
857 }
858
859 void
860 TimingSimpleCPU::updateCycleCounts()
861 {
862 const Cycles delta(curCycle() - previousCycle);
863
864 numCycles += delta;
865 ppCycles->notify(delta);
866
867 previousCycle = curCycle();
868 }
869
870 void
871 TimingSimpleCPU::DcachePort::recvTimingSnoopReq(PacketPtr pkt)
872 {
873 for (ThreadID tid = 0; tid < cpu->numThreads; tid++) {
874 if (cpu->getCpuAddrMonitor(tid)->doMonitor(pkt)) {
875 cpu->wakeup(tid);
876 }
877 }
878
879 // Making it uniform across all CPUs:
880 // The CPUs need to be woken up only on an invalidation packet (when using caches)
881 // or on an incoming write packet (when not using caches)
882 // It is not necessary to wake up the processor on all incoming packets
883 if (pkt->isInvalidate() || pkt->isWrite()) {
884 for (auto &t_info : cpu->threadInfo) {
885 TheISA::handleLockedSnoop(t_info->thread, pkt, cacheBlockMask);
886 }
887 }
888 }
889
890 void
891 TimingSimpleCPU::DcachePort::recvFunctionalSnoop(PacketPtr pkt)
892 {
893 for (ThreadID tid = 0; tid < cpu->numThreads; tid++) {
894 if (cpu->getCpuAddrMonitor(tid)->doMonitor(pkt)) {
895 cpu->wakeup(tid);
896 }
897 }
898 }
899
900 bool
901 TimingSimpleCPU::DcachePort::recvTimingResp(PacketPtr pkt)
902 {
903 DPRINTF(SimpleCPU, "Received load/store response %#x\n", pkt->getAddr());
904
905 // The timing CPU is not really ticked, instead it relies on the
906 // memory system (fetch and load/store) to set the pace.
907 if (!tickEvent.scheduled()) {
908 // Delay processing of returned data until next CPU clock edge
909 tickEvent.schedule(pkt, cpu->clockEdge());
910 return true;
911 } else {
912 // In the case of a split transaction and a cache that is
913 // faster than a CPU we could get two responses in the
914 // same tick, delay the second one
915 if (!retryRespEvent.scheduled())
916 cpu->schedule(retryRespEvent, cpu->clockEdge(Cycles(1)));
917 return false;
918 }
919 }
920
921 void
922 TimingSimpleCPU::DcachePort::DTickEvent::process()
923 {
924 cpu->completeDataAccess(pkt);
925 }
926
927 void
928 TimingSimpleCPU::DcachePort::recvReqRetry()
929 {
930 // we shouldn't get a retry unless we have a packet that we're
931 // waiting to transmit
932 assert(cpu->dcache_pkt != NULL);
933 assert(cpu->_status == DcacheRetry);
934 PacketPtr tmp = cpu->dcache_pkt;
935 if (tmp->senderState) {
936 // This is a packet from a split access.
937 SplitFragmentSenderState * send_state =
938 dynamic_cast<SplitFragmentSenderState *>(tmp->senderState);
939 assert(send_state);
940 PacketPtr big_pkt = send_state->bigPkt;
941
942 SplitMainSenderState * main_send_state =
943 dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
944 assert(main_send_state);
945
946 if (sendTimingReq(tmp)) {
947 // If we were able to send without retrying, record that fact
948 // and try sending the other fragment.
949 send_state->clearFromParent();
950 int other_index = main_send_state->getPendingFragment();
951 if (other_index > 0) {
952 tmp = main_send_state->fragments[other_index];
953 cpu->dcache_pkt = tmp;
954 if ((big_pkt->isRead() && cpu->handleReadPacket(tmp)) ||
955 (big_pkt->isWrite() && cpu->handleWritePacket())) {
956 main_send_state->fragments[other_index] = NULL;
957 }
958 } else {
959 cpu->_status = DcacheWaitResponse;
960 // memory system takes ownership of packet
961 cpu->dcache_pkt = NULL;
962 }
963 }
964 } else if (sendTimingReq(tmp)) {
965 cpu->_status = DcacheWaitResponse;
966 // memory system takes ownership of packet
967 cpu->dcache_pkt = NULL;
968 }
969 }
970
971 TimingSimpleCPU::IprEvent::IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu,
972 Tick t)
973 : pkt(_pkt), cpu(_cpu)
974 {
975 cpu->schedule(this, t);
976 }
977
978 void
979 TimingSimpleCPU::IprEvent::process()
980 {
981 cpu->completeDataAccess(pkt);
982 }
983
984 const char *
985 TimingSimpleCPU::IprEvent::description() const
986 {
987 return "Timing Simple CPU Delay IPR event";
988 }
989
990
991 void
992 TimingSimpleCPU::printAddr(Addr a)
993 {
994 dcachePort.printAddr(a);
995 }
996
997
998 ////////////////////////////////////////////////////////////////////////
999 //
1000 // TimingSimpleCPU Simulation Object
1001 //
1002 TimingSimpleCPU *
1003 TimingSimpleCPUParams::create()
1004 {
1005 return new TimingSimpleCPU(this);
1006 }