Merge zizzer:/z/m5/Bitkeeper/newmem
[gem5.git] / src / cpu / simple / timing.cc
1 /*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31 #include "arch/utility.hh"
32 #include "cpu/exetrace.hh"
33 #include "cpu/simple/timing.hh"
34 #include "mem/packet_impl.hh"
35 #include "sim/builder.hh"
36
37 using namespace std;
38 using namespace TheISA;
39
40
41 void
42 TimingSimpleCPU::init()
43 {
44 //Create Memory Ports (conect them up)
45 Port *mem_dport = mem->getPort("");
46 dcachePort.setPeer(mem_dport);
47 mem_dport->setPeer(&dcachePort);
48
49 Port *mem_iport = mem->getPort("");
50 icachePort.setPeer(mem_iport);
51 mem_iport->setPeer(&icachePort);
52
53 BaseCPU::init();
54 #if FULL_SYSTEM
55 for (int i = 0; i < threadContexts.size(); ++i) {
56 ThreadContext *tc = threadContexts[i];
57
58 // initialize CPU, including PC
59 TheISA::initCPU(tc, tc->readCpuId());
60 }
61 #endif
62 }
63
64 Tick
65 TimingSimpleCPU::CpuPort::recvAtomic(Packet *pkt)
66 {
67 panic("TimingSimpleCPU doesn't expect recvAtomic callback!");
68 return curTick;
69 }
70
71 void
72 TimingSimpleCPU::CpuPort::recvFunctional(Packet *pkt)
73 {
74 panic("TimingSimpleCPU doesn't expect recvFunctional callback!");
75 }
76
77 void
78 TimingSimpleCPU::CpuPort::recvStatusChange(Status status)
79 {
80 if (status == RangeChange)
81 return;
82
83 panic("TimingSimpleCPU doesn't expect recvStatusChange callback!");
84 }
85
86 TimingSimpleCPU::TimingSimpleCPU(Params *p)
87 : BaseSimpleCPU(p), icachePort(this), dcachePort(this)
88 {
89 _status = Idle;
90 ifetch_pkt = dcache_pkt = NULL;
91 drainEvent = NULL;
92 state = SimObject::Timing;
93 }
94
95
96 TimingSimpleCPU::~TimingSimpleCPU()
97 {
98 }
99
100 void
101 TimingSimpleCPU::serialize(ostream &os)
102 {
103 SERIALIZE_ENUM(_status);
104 BaseSimpleCPU::serialize(os);
105 }
106
107 void
108 TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
109 {
110 UNSERIALIZE_ENUM(_status);
111 BaseSimpleCPU::unserialize(cp, section);
112 }
113
114 bool
115 TimingSimpleCPU::drain(Event *drain_event)
116 {
117 // TimingSimpleCPU is ready to drain if it's not waiting for
118 // an access to complete.
119 if (status() == Idle || status() == Running || status() == SwitchedOut) {
120 changeState(SimObject::DrainedTiming);
121 return false;
122 } else {
123 changeState(SimObject::Draining);
124 drainEvent = drain_event;
125 return true;
126 }
127 }
128
129 void
130 TimingSimpleCPU::resume()
131 {
132 if (_status != SwitchedOut && _status != Idle) {
133 Event *e =
134 new EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch>(this, true);
135 e->schedule(curTick);
136 }
137 }
138
139 void
140 TimingSimpleCPU::setMemoryMode(State new_mode)
141 {
142 assert(new_mode == SimObject::Timing);
143 }
144
145 void
146 TimingSimpleCPU::switchOut()
147 {
148 assert(status() == Running || status() == Idle);
149 _status = SwitchedOut;
150 }
151
152
153 void
154 TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
155 {
156 BaseCPU::takeOverFrom(oldCPU);
157
158 // if any of this CPU's ThreadContexts are active, mark the CPU as
159 // running and schedule its tick event.
160 for (int i = 0; i < threadContexts.size(); ++i) {
161 ThreadContext *tc = threadContexts[i];
162 if (tc->status() == ThreadContext::Active && _status != Running) {
163 _status = Running;
164 break;
165 }
166 }
167 }
168
169
170 void
171 TimingSimpleCPU::activateContext(int thread_num, int delay)
172 {
173 assert(thread_num == 0);
174 assert(thread);
175
176 assert(_status == Idle);
177
178 notIdleFraction++;
179 _status = Running;
180 // kick things off by initiating the fetch of the next instruction
181 Event *e =
182 new EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch>(this, true);
183 e->schedule(curTick + cycles(delay));
184 }
185
186
187 void
188 TimingSimpleCPU::suspendContext(int thread_num)
189 {
190 assert(thread_num == 0);
191 assert(thread);
192
193 assert(_status == Running);
194
195 // just change status to Idle... if status != Running,
196 // completeInst() will not initiate fetch of next instruction.
197
198 notIdleFraction--;
199 _status = Idle;
200 }
201
202
203 template <class T>
204 Fault
205 TimingSimpleCPU::read(Addr addr, T &data, unsigned flags)
206 {
207 // need to fill in CPU & thread IDs here
208 Request *data_read_req = new Request();
209 data_read_req->setThreadContext(0,0); //Need CPU/Thread IDS HERE
210 data_read_req->setVirt(0, addr, sizeof(T), flags, thread->readPC());
211
212 if (traceData) {
213 traceData->setAddr(data_read_req->getVaddr());
214 }
215
216 // translate to physical address
217 Fault fault = thread->translateDataReadReq(data_read_req);
218
219 // Now do the access.
220 if (fault == NoFault) {
221 Packet *data_read_pkt =
222 new Packet(data_read_req, Packet::ReadReq, Packet::Broadcast);
223 data_read_pkt->dataDynamic<T>(new T);
224
225 if (!dcachePort.sendTiming(data_read_pkt)) {
226 _status = DcacheRetry;
227 dcache_pkt = data_read_pkt;
228 } else {
229 _status = DcacheWaitResponse;
230 dcache_pkt = NULL;
231 }
232 }
233
234 // This will need a new way to tell if it has a dcache attached.
235 if (data_read_req->getFlags() & UNCACHEABLE)
236 recordEvent("Uncached Read");
237
238 return fault;
239 }
240
241 #ifndef DOXYGEN_SHOULD_SKIP_THIS
242
243 template
244 Fault
245 TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
246
247 template
248 Fault
249 TimingSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
250
251 template
252 Fault
253 TimingSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
254
255 template
256 Fault
257 TimingSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
258
259 #endif //DOXYGEN_SHOULD_SKIP_THIS
260
261 template<>
262 Fault
263 TimingSimpleCPU::read(Addr addr, double &data, unsigned flags)
264 {
265 return read(addr, *(uint64_t*)&data, flags);
266 }
267
268 template<>
269 Fault
270 TimingSimpleCPU::read(Addr addr, float &data, unsigned flags)
271 {
272 return read(addr, *(uint32_t*)&data, flags);
273 }
274
275
276 template<>
277 Fault
278 TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
279 {
280 return read(addr, (uint32_t&)data, flags);
281 }
282
283
284 template <class T>
285 Fault
286 TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
287 {
288 // need to fill in CPU & thread IDs here
289 Request *data_write_req = new Request();
290 data_write_req->setThreadContext(0,0); //Need CPU/Thread IDS HERE
291 data_write_req->setVirt(0, addr, sizeof(T), flags, thread->readPC());
292
293 // translate to physical address
294 Fault fault = thread->translateDataWriteReq(data_write_req);
295 // Now do the access.
296 if (fault == NoFault) {
297 Packet *data_write_pkt =
298 new Packet(data_write_req, Packet::WriteReq, Packet::Broadcast);
299 data_write_pkt->allocate();
300 data_write_pkt->set(data);
301
302 if (!dcachePort.sendTiming(data_write_pkt)) {
303 _status = DcacheRetry;
304 dcache_pkt = data_write_pkt;
305 } else {
306 _status = DcacheWaitResponse;
307 dcache_pkt = NULL;
308 }
309 }
310
311 // This will need a new way to tell if it's hooked up to a cache or not.
312 if (data_write_req->getFlags() & UNCACHEABLE)
313 recordEvent("Uncached Write");
314
315 // If the write needs to have a fault on the access, consider calling
316 // changeStatus() and changing it to "bad addr write" or something.
317 return fault;
318 }
319
320
321 #ifndef DOXYGEN_SHOULD_SKIP_THIS
322 template
323 Fault
324 TimingSimpleCPU::write(uint64_t data, Addr addr,
325 unsigned flags, uint64_t *res);
326
327 template
328 Fault
329 TimingSimpleCPU::write(uint32_t data, Addr addr,
330 unsigned flags, uint64_t *res);
331
332 template
333 Fault
334 TimingSimpleCPU::write(uint16_t data, Addr addr,
335 unsigned flags, uint64_t *res);
336
337 template
338 Fault
339 TimingSimpleCPU::write(uint8_t data, Addr addr,
340 unsigned flags, uint64_t *res);
341
342 #endif //DOXYGEN_SHOULD_SKIP_THIS
343
344 template<>
345 Fault
346 TimingSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
347 {
348 return write(*(uint64_t*)&data, addr, flags, res);
349 }
350
351 template<>
352 Fault
353 TimingSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
354 {
355 return write(*(uint32_t*)&data, addr, flags, res);
356 }
357
358
359 template<>
360 Fault
361 TimingSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
362 {
363 return write((uint32_t)data, addr, flags, res);
364 }
365
366
367 void
368 TimingSimpleCPU::fetch()
369 {
370 checkForInterrupts();
371
372 // need to fill in CPU & thread IDs here
373 Request *ifetch_req = new Request();
374 ifetch_req->setThreadContext(0,0); //Need CPU/Thread IDS HERE
375 Fault fault = setupFetchRequest(ifetch_req);
376
377 ifetch_pkt = new Packet(ifetch_req, Packet::ReadReq, Packet::Broadcast);
378 ifetch_pkt->dataStatic(&inst);
379
380 if (fault == NoFault) {
381 if (!icachePort.sendTiming(ifetch_pkt)) {
382 // Need to wait for retry
383 _status = IcacheRetry;
384 } else {
385 // Need to wait for cache to respond
386 _status = IcacheWaitResponse;
387 // ownership of packet transferred to memory system
388 ifetch_pkt = NULL;
389 }
390 } else {
391 // fetch fault: advance directly to next instruction (fault handler)
392 advanceInst(fault);
393 }
394 }
395
396
397 void
398 TimingSimpleCPU::advanceInst(Fault fault)
399 {
400 advancePC(fault);
401
402 if (_status == Running) {
403 // kick off fetch of next instruction... callback from icache
404 // response will cause that instruction to be executed,
405 // keeping the CPU running.
406 fetch();
407 }
408 }
409
410
411 void
412 TimingSimpleCPU::completeIfetch(Packet *pkt)
413 {
414 // received a response from the icache: execute the received
415 // instruction
416 assert(pkt->result == Packet::Success);
417 assert(_status == IcacheWaitResponse);
418
419 _status = Running;
420
421 delete pkt->req;
422 delete pkt;
423
424 if (getState() == SimObject::Draining) {
425 completeDrain();
426 return;
427 }
428
429 preExecute();
430 if (curStaticInst->isMemRef() && !curStaticInst->isDataPrefetch()) {
431 // load or store: just send to dcache
432 Fault fault = curStaticInst->initiateAcc(this, traceData);
433 if (fault == NoFault) {
434 // successfully initiated access: instruction will
435 // complete in dcache response callback
436 assert(_status == DcacheWaitResponse);
437 } else {
438 // fault: complete now to invoke fault handler
439 postExecute();
440 advanceInst(fault);
441 }
442 } else {
443 // non-memory instruction: execute completely now
444 Fault fault = curStaticInst->execute(this, traceData);
445 postExecute();
446 advanceInst(fault);
447 }
448 }
449
450
451 bool
452 TimingSimpleCPU::IcachePort::recvTiming(Packet *pkt)
453 {
454 cpu->completeIfetch(pkt);
455 return true;
456 }
457
458 void
459 TimingSimpleCPU::IcachePort::recvRetry()
460 {
461 // we shouldn't get a retry unless we have a packet that we're
462 // waiting to transmit
463 assert(cpu->ifetch_pkt != NULL);
464 assert(cpu->_status == IcacheRetry);
465 Packet *tmp = cpu->ifetch_pkt;
466 if (sendTiming(tmp)) {
467 cpu->_status = IcacheWaitResponse;
468 cpu->ifetch_pkt = NULL;
469 }
470 }
471
472 void
473 TimingSimpleCPU::completeDataAccess(Packet *pkt)
474 {
475 // received a response from the dcache: complete the load or store
476 // instruction
477 assert(pkt->result == Packet::Success);
478 assert(_status == DcacheWaitResponse);
479 _status = Running;
480
481 if (getState() == SimObject::Draining) {
482 completeDrain();
483
484 delete pkt->req;
485 delete pkt;
486
487 return;
488 }
489
490 Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
491
492 delete pkt->req;
493 delete pkt;
494
495 postExecute();
496 advanceInst(fault);
497 }
498
499
500 void
501 TimingSimpleCPU::completeDrain()
502 {
503 DPRINTF(Config, "Done draining\n");
504 changeState(SimObject::DrainedTiming);
505 drainEvent->process();
506 }
507
508 bool
509 TimingSimpleCPU::DcachePort::recvTiming(Packet *pkt)
510 {
511 cpu->completeDataAccess(pkt);
512 return true;
513 }
514
515 void
516 TimingSimpleCPU::DcachePort::recvRetry()
517 {
518 // we shouldn't get a retry unless we have a packet that we're
519 // waiting to transmit
520 assert(cpu->dcache_pkt != NULL);
521 assert(cpu->_status == DcacheRetry);
522 Packet *tmp = cpu->dcache_pkt;
523 if (sendTiming(tmp)) {
524 cpu->_status = DcacheWaitResponse;
525 cpu->dcache_pkt = NULL;
526 }
527 }
528
529
530 ////////////////////////////////////////////////////////////////////////
531 //
532 // TimingSimpleCPU Simulation Object
533 //
534 BEGIN_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
535
536 Param<Counter> max_insts_any_thread;
537 Param<Counter> max_insts_all_threads;
538 Param<Counter> max_loads_any_thread;
539 Param<Counter> max_loads_all_threads;
540 SimObjectParam<MemObject *> mem;
541
542 #if FULL_SYSTEM
543 SimObjectParam<AlphaITB *> itb;
544 SimObjectParam<AlphaDTB *> dtb;
545 SimObjectParam<System *> system;
546 Param<int> cpu_id;
547 Param<Tick> profile;
548 #else
549 SimObjectParam<Process *> workload;
550 #endif // FULL_SYSTEM
551
552 Param<int> clock;
553
554 Param<bool> defer_registration;
555 Param<int> width;
556 Param<bool> function_trace;
557 Param<Tick> function_trace_start;
558 Param<bool> simulate_stalls;
559
560 END_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
561
562 BEGIN_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
563
564 INIT_PARAM(max_insts_any_thread,
565 "terminate when any thread reaches this inst count"),
566 INIT_PARAM(max_insts_all_threads,
567 "terminate when all threads have reached this inst count"),
568 INIT_PARAM(max_loads_any_thread,
569 "terminate when any thread reaches this load count"),
570 INIT_PARAM(max_loads_all_threads,
571 "terminate when all threads have reached this load count"),
572 INIT_PARAM(mem, "memory"),
573
574 #if FULL_SYSTEM
575 INIT_PARAM(itb, "Instruction TLB"),
576 INIT_PARAM(dtb, "Data TLB"),
577 INIT_PARAM(system, "system object"),
578 INIT_PARAM(cpu_id, "processor ID"),
579 INIT_PARAM(profile, ""),
580 #else
581 INIT_PARAM(workload, "processes to run"),
582 #endif // FULL_SYSTEM
583
584 INIT_PARAM(clock, "clock speed"),
585 INIT_PARAM(defer_registration, "defer system registration (for sampling)"),
586 INIT_PARAM(width, "cpu width"),
587 INIT_PARAM(function_trace, "Enable function trace"),
588 INIT_PARAM(function_trace_start, "Cycle to start function trace"),
589 INIT_PARAM(simulate_stalls, "Simulate cache stall cycles")
590
591 END_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
592
593
594 CREATE_SIM_OBJECT(TimingSimpleCPU)
595 {
596 TimingSimpleCPU::Params *params = new TimingSimpleCPU::Params();
597 params->name = getInstanceName();
598 params->numberOfThreads = 1;
599 params->max_insts_any_thread = max_insts_any_thread;
600 params->max_insts_all_threads = max_insts_all_threads;
601 params->max_loads_any_thread = max_loads_any_thread;
602 params->max_loads_all_threads = max_loads_all_threads;
603 params->deferRegistration = defer_registration;
604 params->clock = clock;
605 params->functionTrace = function_trace;
606 params->functionTraceStart = function_trace_start;
607 params->mem = mem;
608
609 #if FULL_SYSTEM
610 params->itb = itb;
611 params->dtb = dtb;
612 params->system = system;
613 params->cpu_id = cpu_id;
614 params->profile = profile;
615 #else
616 params->process = workload;
617 #endif
618
619 TimingSimpleCPU *cpu = new TimingSimpleCPU(params);
620 return cpu;
621 }
622
623 REGISTER_SIM_OBJECT("TimingSimpleCPU", TimingSimpleCPU)
624