Merge zizzer:/bk/newmem
[gem5.git] / src / cpu / simple / timing.cc
1 /*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31 #include "arch/utility.hh"
32 #include "cpu/exetrace.hh"
33 #include "cpu/simple/timing.hh"
34 #include "mem/packet_impl.hh"
35 #include "sim/builder.hh"
36
37 using namespace std;
38 using namespace TheISA;
39
40
41 void
42 TimingSimpleCPU::init()
43 {
44 //Create Memory Ports (conect them up)
45 Port *mem_dport = mem->getPort("");
46 dcachePort.setPeer(mem_dport);
47 mem_dport->setPeer(&dcachePort);
48
49 Port *mem_iport = mem->getPort("");
50 icachePort.setPeer(mem_iport);
51 mem_iport->setPeer(&icachePort);
52
53 BaseCPU::init();
54 #if FULL_SYSTEM
55 for (int i = 0; i < threadContexts.size(); ++i) {
56 ThreadContext *tc = threadContexts[i];
57
58 // initialize CPU, including PC
59 TheISA::initCPU(tc, tc->readCpuId());
60 }
61 #endif
62 }
63
64 Tick
65 TimingSimpleCPU::CpuPort::recvAtomic(Packet *pkt)
66 {
67 panic("TimingSimpleCPU doesn't expect recvAtomic callback!");
68 return curTick;
69 }
70
71 void
72 TimingSimpleCPU::CpuPort::recvFunctional(Packet *pkt)
73 {
74 panic("TimingSimpleCPU doesn't expect recvFunctional callback!");
75 }
76
77 void
78 TimingSimpleCPU::CpuPort::recvStatusChange(Status status)
79 {
80 if (status == RangeChange)
81 return;
82
83 panic("TimingSimpleCPU doesn't expect recvStatusChange callback!");
84 }
85
86 TimingSimpleCPU::TimingSimpleCPU(Params *p)
87 : BaseSimpleCPU(p), icachePort(this), dcachePort(this)
88 {
89 _status = Idle;
90 ifetch_pkt = dcache_pkt = NULL;
91 quiesceEvent = NULL;
92 state = SimObject::Timing;
93 }
94
95
96 TimingSimpleCPU::~TimingSimpleCPU()
97 {
98 }
99
100 void
101 TimingSimpleCPU::serialize(ostream &os)
102 {
103 SERIALIZE_ENUM(_status);
104 BaseSimpleCPU::serialize(os);
105 }
106
107 void
108 TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
109 {
110 UNSERIALIZE_ENUM(_status);
111 BaseSimpleCPU::unserialize(cp, section);
112 }
113
114 bool
115 TimingSimpleCPU::quiesce(Event *quiesce_event)
116 {
117 // TimingSimpleCPU is ready to quiesce if it's not waiting for
118 // an access to complete.
119 if (status() == Idle || status() == Running || status() == SwitchedOut) {
120 DPRINTF(Config, "Ready to quiesce\n");
121 return false;
122 } else {
123 DPRINTF(Config, "Waiting to quiesce\n");
124 changeState(SimObject::Quiescing);
125 quiesceEvent = quiesce_event;
126 return true;
127 }
128 }
129
130 void
131 TimingSimpleCPU::resume()
132 {
133 if (_status != SwitchedOut && _status != Idle) {
134 Event *e =
135 new EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch>(this, true);
136 e->schedule(curTick);
137 }
138 }
139
140 void
141 TimingSimpleCPU::setMemoryMode(State new_mode)
142 {
143 assert(new_mode == SimObject::Timing);
144 }
145
146 void
147 TimingSimpleCPU::switchOut()
148 {
149 assert(status() == Running || status() == Idle);
150 _status = SwitchedOut;
151 }
152
153
154 void
155 TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
156 {
157 BaseCPU::takeOverFrom(oldCPU);
158
159 // if any of this CPU's ThreadContexts are active, mark the CPU as
160 // running and schedule its tick event.
161 for (int i = 0; i < threadContexts.size(); ++i) {
162 ThreadContext *tc = threadContexts[i];
163 if (tc->status() == ThreadContext::Active && _status != Running) {
164 _status = Running;
165 break;
166 }
167 }
168 }
169
170
171 void
172 TimingSimpleCPU::activateContext(int thread_num, int delay)
173 {
174 assert(thread_num == 0);
175 assert(thread);
176
177 assert(_status == Idle);
178
179 notIdleFraction++;
180 _status = Running;
181 // kick things off by initiating the fetch of the next instruction
182 Event *e =
183 new EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch>(this, true);
184 e->schedule(curTick + cycles(delay));
185 }
186
187
188 void
189 TimingSimpleCPU::suspendContext(int thread_num)
190 {
191 assert(thread_num == 0);
192 assert(thread);
193
194 assert(_status == Running);
195
196 // just change status to Idle... if status != Running,
197 // completeInst() will not initiate fetch of next instruction.
198
199 notIdleFraction--;
200 _status = Idle;
201 }
202
203
204 template <class T>
205 Fault
206 TimingSimpleCPU::read(Addr addr, T &data, unsigned flags)
207 {
208 // need to fill in CPU & thread IDs here
209 Request *data_read_req = new Request();
210 data_read_req->setThreadContext(0,0); //Need CPU/Thread IDS HERE
211 data_read_req->setVirt(0, addr, sizeof(T), flags, thread->readPC());
212
213 if (traceData) {
214 traceData->setAddr(data_read_req->getVaddr());
215 }
216
217 // translate to physical address
218 Fault fault = thread->translateDataReadReq(data_read_req);
219
220 // Now do the access.
221 if (fault == NoFault) {
222 Packet *data_read_pkt =
223 new Packet(data_read_req, Packet::ReadReq, Packet::Broadcast);
224 data_read_pkt->dataDynamic<T>(new T);
225
226 if (!dcachePort.sendTiming(data_read_pkt)) {
227 _status = DcacheRetry;
228 dcache_pkt = data_read_pkt;
229 } else {
230 _status = DcacheWaitResponse;
231 dcache_pkt = NULL;
232 }
233 }
234
235 // This will need a new way to tell if it has a dcache attached.
236 if (data_read_req->getFlags() & UNCACHEABLE)
237 recordEvent("Uncached Read");
238
239 return fault;
240 }
241
242 #ifndef DOXYGEN_SHOULD_SKIP_THIS
243
244 template
245 Fault
246 TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
247
248 template
249 Fault
250 TimingSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
251
252 template
253 Fault
254 TimingSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
255
256 template
257 Fault
258 TimingSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
259
260 #endif //DOXYGEN_SHOULD_SKIP_THIS
261
262 template<>
263 Fault
264 TimingSimpleCPU::read(Addr addr, double &data, unsigned flags)
265 {
266 return read(addr, *(uint64_t*)&data, flags);
267 }
268
269 template<>
270 Fault
271 TimingSimpleCPU::read(Addr addr, float &data, unsigned flags)
272 {
273 return read(addr, *(uint32_t*)&data, flags);
274 }
275
276
277 template<>
278 Fault
279 TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
280 {
281 return read(addr, (uint32_t&)data, flags);
282 }
283
284
285 template <class T>
286 Fault
287 TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
288 {
289 // need to fill in CPU & thread IDs here
290 Request *data_write_req = new Request();
291 data_write_req->setThreadContext(0,0); //Need CPU/Thread IDS HERE
292 data_write_req->setVirt(0, addr, sizeof(T), flags, thread->readPC());
293
294 // translate to physical address
295 Fault fault = thread->translateDataWriteReq(data_write_req);
296 // Now do the access.
297 if (fault == NoFault) {
298 Packet *data_write_pkt =
299 new Packet(data_write_req, Packet::WriteReq, Packet::Broadcast);
300 data_write_pkt->allocate();
301 data_write_pkt->set(data);
302
303 if (!dcachePort.sendTiming(data_write_pkt)) {
304 _status = DcacheRetry;
305 dcache_pkt = data_write_pkt;
306 } else {
307 _status = DcacheWaitResponse;
308 dcache_pkt = NULL;
309 }
310 }
311
312 // This will need a new way to tell if it's hooked up to a cache or not.
313 if (data_write_req->getFlags() & UNCACHEABLE)
314 recordEvent("Uncached Write");
315
316 // If the write needs to have a fault on the access, consider calling
317 // changeStatus() and changing it to "bad addr write" or something.
318 return fault;
319 }
320
321
322 #ifndef DOXYGEN_SHOULD_SKIP_THIS
323 template
324 Fault
325 TimingSimpleCPU::write(uint64_t data, Addr addr,
326 unsigned flags, uint64_t *res);
327
328 template
329 Fault
330 TimingSimpleCPU::write(uint32_t data, Addr addr,
331 unsigned flags, uint64_t *res);
332
333 template
334 Fault
335 TimingSimpleCPU::write(uint16_t data, Addr addr,
336 unsigned flags, uint64_t *res);
337
338 template
339 Fault
340 TimingSimpleCPU::write(uint8_t data, Addr addr,
341 unsigned flags, uint64_t *res);
342
343 #endif //DOXYGEN_SHOULD_SKIP_THIS
344
345 template<>
346 Fault
347 TimingSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
348 {
349 return write(*(uint64_t*)&data, addr, flags, res);
350 }
351
352 template<>
353 Fault
354 TimingSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
355 {
356 return write(*(uint32_t*)&data, addr, flags, res);
357 }
358
359
360 template<>
361 Fault
362 TimingSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
363 {
364 return write((uint32_t)data, addr, flags, res);
365 }
366
367
368 void
369 TimingSimpleCPU::fetch()
370 {
371 checkForInterrupts();
372
373 // need to fill in CPU & thread IDs here
374 Request *ifetch_req = new Request();
375 ifetch_req->setThreadContext(0,0); //Need CPU/Thread IDS HERE
376 Fault fault = setupFetchRequest(ifetch_req);
377
378 ifetch_pkt = new Packet(ifetch_req, Packet::ReadReq, Packet::Broadcast);
379 ifetch_pkt->dataStatic(&inst);
380
381 if (fault == NoFault) {
382 if (!icachePort.sendTiming(ifetch_pkt)) {
383 // Need to wait for retry
384 _status = IcacheRetry;
385 } else {
386 // Need to wait for cache to respond
387 _status = IcacheWaitResponse;
388 // ownership of packet transferred to memory system
389 ifetch_pkt = NULL;
390 }
391 } else {
392 // fetch fault: advance directly to next instruction (fault handler)
393 advanceInst(fault);
394 }
395 }
396
397
398 void
399 TimingSimpleCPU::advanceInst(Fault fault)
400 {
401 advancePC(fault);
402
403 if (_status == Running) {
404 // kick off fetch of next instruction... callback from icache
405 // response will cause that instruction to be executed,
406 // keeping the CPU running.
407 fetch();
408 }
409 }
410
411
412 void
413 TimingSimpleCPU::completeIfetch(Packet *pkt)
414 {
415 // received a response from the icache: execute the received
416 // instruction
417 assert(pkt->result == Packet::Success);
418 assert(_status == IcacheWaitResponse);
419
420 _status = Running;
421
422 delete pkt->req;
423 delete pkt;
424
425 if (getState() == SimObject::Quiescing) {
426 completeQuiesce();
427 return;
428 }
429
430 preExecute();
431 if (curStaticInst->isMemRef() && !curStaticInst->isDataPrefetch()) {
432 // load or store: just send to dcache
433 Fault fault = curStaticInst->initiateAcc(this, traceData);
434 if (fault == NoFault) {
435 // successfully initiated access: instruction will
436 // complete in dcache response callback
437 assert(_status == DcacheWaitResponse);
438 } else {
439 // fault: complete now to invoke fault handler
440 postExecute();
441 advanceInst(fault);
442 }
443 } else {
444 // non-memory instruction: execute completely now
445 Fault fault = curStaticInst->execute(this, traceData);
446 postExecute();
447 advanceInst(fault);
448 }
449 }
450
451
452 bool
453 TimingSimpleCPU::IcachePort::recvTiming(Packet *pkt)
454 {
455 cpu->completeIfetch(pkt);
456 return true;
457 }
458
459 void
460 TimingSimpleCPU::IcachePort::recvRetry()
461 {
462 // we shouldn't get a retry unless we have a packet that we're
463 // waiting to transmit
464 assert(cpu->ifetch_pkt != NULL);
465 assert(cpu->_status == IcacheRetry);
466 Packet *tmp = cpu->ifetch_pkt;
467 if (sendTiming(tmp)) {
468 cpu->_status = IcacheWaitResponse;
469 cpu->ifetch_pkt = NULL;
470 }
471 }
472
473 void
474 TimingSimpleCPU::completeDataAccess(Packet *pkt)
475 {
476 // received a response from the dcache: complete the load or store
477 // instruction
478 assert(pkt->result == Packet::Success);
479 assert(_status == DcacheWaitResponse);
480 _status = Running;
481
482 if (getState() == SimObject::Quiescing) {
483 completeQuiesce();
484
485 delete pkt->req;
486 delete pkt;
487
488 return;
489 }
490
491 Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
492
493 delete pkt->req;
494 delete pkt;
495
496 postExecute();
497 advanceInst(fault);
498 }
499
500
501 void
502 TimingSimpleCPU::completeQuiesce()
503 {
504 DPRINTF(Config, "Done quiescing\n");
505 changeState(SimObject::QuiescedTiming);
506 quiesceEvent->process();
507 }
508
509 bool
510 TimingSimpleCPU::DcachePort::recvTiming(Packet *pkt)
511 {
512 cpu->completeDataAccess(pkt);
513 return true;
514 }
515
516 void
517 TimingSimpleCPU::DcachePort::recvRetry()
518 {
519 // we shouldn't get a retry unless we have a packet that we're
520 // waiting to transmit
521 assert(cpu->dcache_pkt != NULL);
522 assert(cpu->_status == DcacheRetry);
523 Packet *tmp = cpu->dcache_pkt;
524 if (sendTiming(tmp)) {
525 cpu->_status = DcacheWaitResponse;
526 cpu->dcache_pkt = NULL;
527 }
528 }
529
530
531 ////////////////////////////////////////////////////////////////////////
532 //
533 // TimingSimpleCPU Simulation Object
534 //
535 BEGIN_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
536
537 Param<Counter> max_insts_any_thread;
538 Param<Counter> max_insts_all_threads;
539 Param<Counter> max_loads_any_thread;
540 Param<Counter> max_loads_all_threads;
541 SimObjectParam<MemObject *> mem;
542
543 #if FULL_SYSTEM
544 SimObjectParam<AlphaITB *> itb;
545 SimObjectParam<AlphaDTB *> dtb;
546 SimObjectParam<System *> system;
547 Param<int> cpu_id;
548 Param<Tick> profile;
549 #else
550 SimObjectParam<Process *> workload;
551 #endif // FULL_SYSTEM
552
553 Param<int> clock;
554
555 Param<bool> defer_registration;
556 Param<int> width;
557 Param<bool> function_trace;
558 Param<Tick> function_trace_start;
559 Param<bool> simulate_stalls;
560
561 END_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
562
563 BEGIN_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
564
565 INIT_PARAM(max_insts_any_thread,
566 "terminate when any thread reaches this inst count"),
567 INIT_PARAM(max_insts_all_threads,
568 "terminate when all threads have reached this inst count"),
569 INIT_PARAM(max_loads_any_thread,
570 "terminate when any thread reaches this load count"),
571 INIT_PARAM(max_loads_all_threads,
572 "terminate when all threads have reached this load count"),
573 INIT_PARAM(mem, "memory"),
574
575 #if FULL_SYSTEM
576 INIT_PARAM(itb, "Instruction TLB"),
577 INIT_PARAM(dtb, "Data TLB"),
578 INIT_PARAM(system, "system object"),
579 INIT_PARAM(cpu_id, "processor ID"),
580 INIT_PARAM(profile, ""),
581 #else
582 INIT_PARAM(workload, "processes to run"),
583 #endif // FULL_SYSTEM
584
585 INIT_PARAM(clock, "clock speed"),
586 INIT_PARAM(defer_registration, "defer system registration (for sampling)"),
587 INIT_PARAM(width, "cpu width"),
588 INIT_PARAM(function_trace, "Enable function trace"),
589 INIT_PARAM(function_trace_start, "Cycle to start function trace"),
590 INIT_PARAM(simulate_stalls, "Simulate cache stall cycles")
591
592 END_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
593
594
595 CREATE_SIM_OBJECT(TimingSimpleCPU)
596 {
597 TimingSimpleCPU::Params *params = new TimingSimpleCPU::Params();
598 params->name = getInstanceName();
599 params->numberOfThreads = 1;
600 params->max_insts_any_thread = max_insts_any_thread;
601 params->max_insts_all_threads = max_insts_all_threads;
602 params->max_loads_any_thread = max_loads_any_thread;
603 params->max_loads_all_threads = max_loads_all_threads;
604 params->deferRegistration = defer_registration;
605 params->clock = clock;
606 params->functionTrace = function_trace;
607 params->functionTraceStart = function_trace_start;
608 params->mem = mem;
609
610 #if FULL_SYSTEM
611 params->itb = itb;
612 params->dtb = dtb;
613 params->system = system;
614 params->cpu_id = cpu_id;
615 params->profile = profile;
616 #else
617 params->process = workload;
618 #endif
619
620 TimingSimpleCPU *cpu = new TimingSimpleCPU(params);
621 return cpu;
622 }
623
624 REGISTER_SIM_OBJECT("TimingSimpleCPU", TimingSimpleCPU)
625