mem: Remove threadId from memory request class
[gem5.git] / src / cpu / simple / timing.cc
1 /*
2 * Copyright 2014 Google, Inc.
3 * Copyright (c) 2010-2013,2015 ARM Limited
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder. You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2002-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Steve Reinhardt
42 */
43
44 #include "arch/locked_mem.hh"
45 #include "arch/mmapped_ipr.hh"
46 #include "arch/utility.hh"
47 #include "base/bigint.hh"
48 #include "config/the_isa.hh"
49 #include "cpu/simple/timing.hh"
50 #include "cpu/exetrace.hh"
51 #include "debug/Config.hh"
52 #include "debug/Drain.hh"
53 #include "debug/ExecFaulting.hh"
54 #include "debug/SimpleCPU.hh"
55 #include "mem/packet.hh"
56 #include "mem/packet_access.hh"
57 #include "params/TimingSimpleCPU.hh"
58 #include "sim/faults.hh"
59 #include "sim/full_system.hh"
60 #include "sim/system.hh"
61
62 #include "debug/Mwait.hh"
63
64 using namespace std;
65 using namespace TheISA;
66
67 void
68 TimingSimpleCPU::init()
69 {
70 BaseSimpleCPU::init();
71 }
72
73 void
74 TimingSimpleCPU::TimingCPUPort::TickEvent::schedule(PacketPtr _pkt, Tick t)
75 {
76 pkt = _pkt;
77 cpu->schedule(this, t);
78 }
79
80 TimingSimpleCPU::TimingSimpleCPU(TimingSimpleCPUParams *p)
81 : BaseSimpleCPU(p), fetchTranslation(this), icachePort(this),
82 dcachePort(this), ifetch_pkt(NULL), dcache_pkt(NULL), previousCycle(0),
83 fetchEvent(this)
84 {
85 _status = Idle;
86 }
87
88
89
90 TimingSimpleCPU::~TimingSimpleCPU()
91 {
92 }
93
94 DrainState
95 TimingSimpleCPU::drain()
96 {
97 if (switchedOut())
98 return DrainState::Drained;
99
100 if (_status == Idle ||
101 (_status == BaseSimpleCPU::Running && isDrained())) {
102 DPRINTF(Drain, "No need to drain.\n");
103 activeThreads.clear();
104 return DrainState::Drained;
105 } else {
106 DPRINTF(Drain, "Requesting drain.\n");
107
108 // The fetch event can become descheduled if a drain didn't
109 // succeed on the first attempt. We need to reschedule it if
110 // the CPU is waiting for a microcode routine to complete.
111 if (_status == BaseSimpleCPU::Running && !fetchEvent.scheduled())
112 schedule(fetchEvent, clockEdge());
113
114 return DrainState::Draining;
115 }
116 }
117
118 void
119 TimingSimpleCPU::drainResume()
120 {
121 assert(!fetchEvent.scheduled());
122 if (switchedOut())
123 return;
124
125 DPRINTF(SimpleCPU, "Resume\n");
126 verifyMemoryMode();
127
128 assert(!threadContexts.empty());
129
130 _status = BaseSimpleCPU::Idle;
131
132 for (ThreadID tid = 0; tid < numThreads; tid++) {
133 if (threadInfo[tid]->thread->status() == ThreadContext::Active) {
134 threadInfo[tid]->notIdleFraction = 1;
135
136 activeThreads.push_back(tid);
137
138 _status = BaseSimpleCPU::Running;
139
140 // Fetch if any threads active
141 if (!fetchEvent.scheduled()) {
142 schedule(fetchEvent, nextCycle());
143 }
144 } else {
145 threadInfo[tid]->notIdleFraction = 0;
146 }
147 }
148
149 system->totalNumInsts = 0;
150 }
151
152 bool
153 TimingSimpleCPU::tryCompleteDrain()
154 {
155 if (drainState() != DrainState::Draining)
156 return false;
157
158 DPRINTF(Drain, "tryCompleteDrain.\n");
159 if (!isDrained())
160 return false;
161
162 DPRINTF(Drain, "CPU done draining, processing drain event\n");
163 signalDrainDone();
164
165 return true;
166 }
167
168 void
169 TimingSimpleCPU::switchOut()
170 {
171 SimpleExecContext& t_info = *threadInfo[curThread];
172 M5_VAR_USED SimpleThread* thread = t_info.thread;
173
174 BaseSimpleCPU::switchOut();
175
176 assert(!fetchEvent.scheduled());
177 assert(_status == BaseSimpleCPU::Running || _status == Idle);
178 assert(!t_info.stayAtPC);
179 assert(thread->microPC() == 0);
180
181 updateCycleCounts();
182 }
183
184
185 void
186 TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
187 {
188 BaseSimpleCPU::takeOverFrom(oldCPU);
189
190 previousCycle = curCycle();
191 }
192
193 void
194 TimingSimpleCPU::verifyMemoryMode() const
195 {
196 if (!system->isTimingMode()) {
197 fatal("The timing CPU requires the memory system to be in "
198 "'timing' mode.\n");
199 }
200 }
201
202 void
203 TimingSimpleCPU::activateContext(ThreadID thread_num)
204 {
205 DPRINTF(SimpleCPU, "ActivateContext %d\n", thread_num);
206
207 assert(thread_num < numThreads);
208
209 threadInfo[thread_num]->notIdleFraction = 1;
210 if (_status == BaseSimpleCPU::Idle)
211 _status = BaseSimpleCPU::Running;
212
213 // kick things off by initiating the fetch of the next instruction
214 if (!fetchEvent.scheduled())
215 schedule(fetchEvent, clockEdge(Cycles(0)));
216
217 if (std::find(activeThreads.begin(), activeThreads.end(), thread_num)
218 == activeThreads.end()) {
219 activeThreads.push_back(thread_num);
220 }
221 }
222
223
224 void
225 TimingSimpleCPU::suspendContext(ThreadID thread_num)
226 {
227 DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
228
229 assert(thread_num < numThreads);
230 activeThreads.remove(thread_num);
231
232 if (_status == Idle)
233 return;
234
235 assert(_status == BaseSimpleCPU::Running);
236
237 threadInfo[thread_num]->notIdleFraction = 0;
238
239 if (activeThreads.empty()) {
240 _status = Idle;
241
242 if (fetchEvent.scheduled()) {
243 deschedule(fetchEvent);
244 }
245 }
246 }
247
248 bool
249 TimingSimpleCPU::handleReadPacket(PacketPtr pkt)
250 {
251 SimpleExecContext &t_info = *threadInfo[curThread];
252 SimpleThread* thread = t_info.thread;
253
254 RequestPtr req = pkt->req;
255
256 // We're about the issues a locked load, so tell the monitor
257 // to start caring about this address
258 if (pkt->isRead() && pkt->req->isLLSC()) {
259 TheISA::handleLockedRead(thread, pkt->req);
260 }
261 if (req->isMmappedIpr()) {
262 Cycles delay = TheISA::handleIprRead(thread->getTC(), pkt);
263 new IprEvent(pkt, this, clockEdge(delay));
264 _status = DcacheWaitResponse;
265 dcache_pkt = NULL;
266 } else if (!dcachePort.sendTimingReq(pkt)) {
267 _status = DcacheRetry;
268 dcache_pkt = pkt;
269 } else {
270 _status = DcacheWaitResponse;
271 // memory system takes ownership of packet
272 dcache_pkt = NULL;
273 }
274 return dcache_pkt == NULL;
275 }
276
277 void
278 TimingSimpleCPU::sendData(RequestPtr req, uint8_t *data, uint64_t *res,
279 bool read)
280 {
281 SimpleExecContext &t_info = *threadInfo[curThread];
282 SimpleThread* thread = t_info.thread;
283
284 PacketPtr pkt = buildPacket(req, read);
285 pkt->dataDynamic<uint8_t>(data);
286 if (req->getFlags().isSet(Request::NO_ACCESS)) {
287 assert(!dcache_pkt);
288 pkt->makeResponse();
289 completeDataAccess(pkt);
290 } else if (read) {
291 handleReadPacket(pkt);
292 } else {
293 bool do_access = true; // flag to suppress cache access
294
295 if (req->isLLSC()) {
296 do_access = TheISA::handleLockedWrite(thread, req, dcachePort.cacheBlockMask);
297 } else if (req->isCondSwap()) {
298 assert(res);
299 req->setExtraData(*res);
300 }
301
302 if (do_access) {
303 dcache_pkt = pkt;
304 handleWritePacket();
305 threadSnoop(pkt, curThread);
306 } else {
307 _status = DcacheWaitResponse;
308 completeDataAccess(pkt);
309 }
310 }
311 }
312
313 void
314 TimingSimpleCPU::sendSplitData(RequestPtr req1, RequestPtr req2,
315 RequestPtr req, uint8_t *data, bool read)
316 {
317 PacketPtr pkt1, pkt2;
318 buildSplitPacket(pkt1, pkt2, req1, req2, req, data, read);
319 if (req->getFlags().isSet(Request::NO_ACCESS)) {
320 assert(!dcache_pkt);
321 pkt1->makeResponse();
322 completeDataAccess(pkt1);
323 } else if (read) {
324 SplitFragmentSenderState * send_state =
325 dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
326 if (handleReadPacket(pkt1)) {
327 send_state->clearFromParent();
328 send_state = dynamic_cast<SplitFragmentSenderState *>(
329 pkt2->senderState);
330 if (handleReadPacket(pkt2)) {
331 send_state->clearFromParent();
332 }
333 }
334 } else {
335 dcache_pkt = pkt1;
336 SplitFragmentSenderState * send_state =
337 dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
338 if (handleWritePacket()) {
339 send_state->clearFromParent();
340 dcache_pkt = pkt2;
341 send_state = dynamic_cast<SplitFragmentSenderState *>(
342 pkt2->senderState);
343 if (handleWritePacket()) {
344 send_state->clearFromParent();
345 }
346 }
347 }
348 }
349
350 void
351 TimingSimpleCPU::translationFault(const Fault &fault)
352 {
353 // fault may be NoFault in cases where a fault is suppressed,
354 // for instance prefetches.
355 updateCycleCounts();
356
357 if (traceData) {
358 // Since there was a fault, we shouldn't trace this instruction.
359 delete traceData;
360 traceData = NULL;
361 }
362
363 postExecute();
364
365 advanceInst(fault);
366 }
367
368 PacketPtr
369 TimingSimpleCPU::buildPacket(RequestPtr req, bool read)
370 {
371 return read ? Packet::createRead(req) : Packet::createWrite(req);
372 }
373
374 void
375 TimingSimpleCPU::buildSplitPacket(PacketPtr &pkt1, PacketPtr &pkt2,
376 RequestPtr req1, RequestPtr req2, RequestPtr req,
377 uint8_t *data, bool read)
378 {
379 pkt1 = pkt2 = NULL;
380
381 assert(!req1->isMmappedIpr() && !req2->isMmappedIpr());
382
383 if (req->getFlags().isSet(Request::NO_ACCESS)) {
384 pkt1 = buildPacket(req, read);
385 return;
386 }
387
388 pkt1 = buildPacket(req1, read);
389 pkt2 = buildPacket(req2, read);
390
391 PacketPtr pkt = new Packet(req, pkt1->cmd.responseCommand());
392
393 pkt->dataDynamic<uint8_t>(data);
394 pkt1->dataStatic<uint8_t>(data);
395 pkt2->dataStatic<uint8_t>(data + req1->getSize());
396
397 SplitMainSenderState * main_send_state = new SplitMainSenderState;
398 pkt->senderState = main_send_state;
399 main_send_state->fragments[0] = pkt1;
400 main_send_state->fragments[1] = pkt2;
401 main_send_state->outstanding = 2;
402 pkt1->senderState = new SplitFragmentSenderState(pkt, 0);
403 pkt2->senderState = new SplitFragmentSenderState(pkt, 1);
404 }
405
406 Fault
407 TimingSimpleCPU::readMem(Addr addr, uint8_t *data,
408 unsigned size, unsigned flags)
409 {
410 panic("readMem() is for atomic accesses, and should "
411 "never be called on TimingSimpleCPU.\n");
412 }
413
414 Fault
415 TimingSimpleCPU::initiateMemRead(Addr addr, unsigned size, unsigned flags)
416 {
417 SimpleExecContext &t_info = *threadInfo[curThread];
418 SimpleThread* thread = t_info.thread;
419
420 Fault fault;
421 const int asid = 0;
422 const Addr pc = thread->instAddr();
423 unsigned block_size = cacheLineSize();
424 BaseTLB::Mode mode = BaseTLB::Read;
425
426 if (traceData)
427 traceData->setMem(addr, size, flags);
428
429 RequestPtr req = new Request(asid, addr, size, flags, dataMasterId(), pc,
430 thread->contextId());
431
432 req->taskId(taskId());
433
434 Addr split_addr = roundDown(addr + size - 1, block_size);
435 assert(split_addr <= addr || split_addr - addr < block_size);
436
437 _status = DTBWaitResponse;
438 if (split_addr > addr) {
439 RequestPtr req1, req2;
440 assert(!req->isLLSC() && !req->isSwap());
441 req->splitOnVaddr(split_addr, req1, req2);
442
443 WholeTranslationState *state =
444 new WholeTranslationState(req, req1, req2, new uint8_t[size],
445 NULL, mode);
446 DataTranslation<TimingSimpleCPU *> *trans1 =
447 new DataTranslation<TimingSimpleCPU *>(this, state, 0);
448 DataTranslation<TimingSimpleCPU *> *trans2 =
449 new DataTranslation<TimingSimpleCPU *>(this, state, 1);
450
451 thread->dtb->translateTiming(req1, thread->getTC(), trans1, mode);
452 thread->dtb->translateTiming(req2, thread->getTC(), trans2, mode);
453 } else {
454 WholeTranslationState *state =
455 new WholeTranslationState(req, new uint8_t[size], NULL, mode);
456 DataTranslation<TimingSimpleCPU *> *translation
457 = new DataTranslation<TimingSimpleCPU *>(this, state);
458 thread->dtb->translateTiming(req, thread->getTC(), translation, mode);
459 }
460
461 return NoFault;
462 }
463
464 bool
465 TimingSimpleCPU::handleWritePacket()
466 {
467 SimpleExecContext &t_info = *threadInfo[curThread];
468 SimpleThread* thread = t_info.thread;
469
470 RequestPtr req = dcache_pkt->req;
471 if (req->isMmappedIpr()) {
472 Cycles delay = TheISA::handleIprWrite(thread->getTC(), dcache_pkt);
473 new IprEvent(dcache_pkt, this, clockEdge(delay));
474 _status = DcacheWaitResponse;
475 dcache_pkt = NULL;
476 } else if (!dcachePort.sendTimingReq(dcache_pkt)) {
477 _status = DcacheRetry;
478 } else {
479 _status = DcacheWaitResponse;
480 // memory system takes ownership of packet
481 dcache_pkt = NULL;
482 }
483 return dcache_pkt == NULL;
484 }
485
486 Fault
487 TimingSimpleCPU::writeMem(uint8_t *data, unsigned size,
488 Addr addr, unsigned flags, uint64_t *res)
489 {
490 SimpleExecContext &t_info = *threadInfo[curThread];
491 SimpleThread* thread = t_info.thread;
492
493 uint8_t *newData = new uint8_t[size];
494 const int asid = 0;
495 const Addr pc = thread->instAddr();
496 unsigned block_size = cacheLineSize();
497 BaseTLB::Mode mode = BaseTLB::Write;
498
499 if (data == NULL) {
500 assert(flags & Request::CACHE_BLOCK_ZERO);
501 // This must be a cache block cleaning request
502 memset(newData, 0, size);
503 } else {
504 memcpy(newData, data, size);
505 }
506
507 if (traceData)
508 traceData->setMem(addr, size, flags);
509
510 RequestPtr req = new Request(asid, addr, size, flags, dataMasterId(), pc,
511 thread->contextId());
512
513 req->taskId(taskId());
514
515 Addr split_addr = roundDown(addr + size - 1, block_size);
516 assert(split_addr <= addr || split_addr - addr < block_size);
517
518 _status = DTBWaitResponse;
519 if (split_addr > addr) {
520 RequestPtr req1, req2;
521 assert(!req->isLLSC() && !req->isSwap());
522 req->splitOnVaddr(split_addr, req1, req2);
523
524 WholeTranslationState *state =
525 new WholeTranslationState(req, req1, req2, newData, res, mode);
526 DataTranslation<TimingSimpleCPU *> *trans1 =
527 new DataTranslation<TimingSimpleCPU *>(this, state, 0);
528 DataTranslation<TimingSimpleCPU *> *trans2 =
529 new DataTranslation<TimingSimpleCPU *>(this, state, 1);
530
531 thread->dtb->translateTiming(req1, thread->getTC(), trans1, mode);
532 thread->dtb->translateTiming(req2, thread->getTC(), trans2, mode);
533 } else {
534 WholeTranslationState *state =
535 new WholeTranslationState(req, newData, res, mode);
536 DataTranslation<TimingSimpleCPU *> *translation =
537 new DataTranslation<TimingSimpleCPU *>(this, state);
538 thread->dtb->translateTiming(req, thread->getTC(), translation, mode);
539 }
540
541 // Translation faults will be returned via finishTranslation()
542 return NoFault;
543 }
544
545 void
546 TimingSimpleCPU::threadSnoop(PacketPtr pkt, ThreadID sender)
547 {
548 for (ThreadID tid = 0; tid < numThreads; tid++) {
549 if (tid != sender) {
550 if (getCpuAddrMonitor(tid)->doMonitor(pkt)) {
551 wakeup(tid);
552 }
553 TheISA::handleLockedSnoop(threadInfo[tid]->thread, pkt,
554 dcachePort.cacheBlockMask);
555 }
556 }
557 }
558
559 void
560 TimingSimpleCPU::finishTranslation(WholeTranslationState *state)
561 {
562 _status = BaseSimpleCPU::Running;
563
564 if (state->getFault() != NoFault) {
565 if (state->isPrefetch()) {
566 state->setNoFault();
567 }
568 delete [] state->data;
569 state->deleteReqs();
570 translationFault(state->getFault());
571 } else {
572 if (!state->isSplit) {
573 sendData(state->mainReq, state->data, state->res,
574 state->mode == BaseTLB::Read);
575 } else {
576 sendSplitData(state->sreqLow, state->sreqHigh, state->mainReq,
577 state->data, state->mode == BaseTLB::Read);
578 }
579 }
580
581 delete state;
582 }
583
584
585 void
586 TimingSimpleCPU::fetch()
587 {
588 // Change thread if multi-threaded
589 swapActiveThread();
590
591 SimpleExecContext &t_info = *threadInfo[curThread];
592 SimpleThread* thread = t_info.thread;
593
594 DPRINTF(SimpleCPU, "Fetch\n");
595
596 if (!curStaticInst || !curStaticInst->isDelayedCommit()) {
597 checkForInterrupts();
598 checkPcEventQueue();
599 }
600
601 // We must have just got suspended by a PC event
602 if (_status == Idle)
603 return;
604
605 TheISA::PCState pcState = thread->pcState();
606 bool needToFetch = !isRomMicroPC(pcState.microPC()) &&
607 !curMacroStaticInst;
608
609 if (needToFetch) {
610 _status = BaseSimpleCPU::Running;
611 Request *ifetch_req = new Request();
612 ifetch_req->taskId(taskId());
613 ifetch_req->setContext(thread->contextId());
614 setupFetchRequest(ifetch_req);
615 DPRINTF(SimpleCPU, "Translating address %#x\n", ifetch_req->getVaddr());
616 thread->itb->translateTiming(ifetch_req, thread->getTC(),
617 &fetchTranslation, BaseTLB::Execute);
618 } else {
619 _status = IcacheWaitResponse;
620 completeIfetch(NULL);
621
622 updateCycleCounts();
623 }
624 }
625
626
627 void
628 TimingSimpleCPU::sendFetch(const Fault &fault, RequestPtr req,
629 ThreadContext *tc)
630 {
631 if (fault == NoFault) {
632 DPRINTF(SimpleCPU, "Sending fetch for addr %#x(pa: %#x)\n",
633 req->getVaddr(), req->getPaddr());
634 ifetch_pkt = new Packet(req, MemCmd::ReadReq);
635 ifetch_pkt->dataStatic(&inst);
636 DPRINTF(SimpleCPU, " -- pkt addr: %#x\n", ifetch_pkt->getAddr());
637
638 if (!icachePort.sendTimingReq(ifetch_pkt)) {
639 // Need to wait for retry
640 _status = IcacheRetry;
641 } else {
642 // Need to wait for cache to respond
643 _status = IcacheWaitResponse;
644 // ownership of packet transferred to memory system
645 ifetch_pkt = NULL;
646 }
647 } else {
648 DPRINTF(SimpleCPU, "Translation of addr %#x faulted\n", req->getVaddr());
649 delete req;
650 // fetch fault: advance directly to next instruction (fault handler)
651 _status = BaseSimpleCPU::Running;
652 advanceInst(fault);
653 }
654
655 updateCycleCounts();
656 }
657
658
659 void
660 TimingSimpleCPU::advanceInst(const Fault &fault)
661 {
662 SimpleExecContext &t_info = *threadInfo[curThread];
663
664 if (_status == Faulting)
665 return;
666
667 if (fault != NoFault) {
668 advancePC(fault);
669 DPRINTF(SimpleCPU, "Fault occured, scheduling fetch event\n");
670 reschedule(fetchEvent, clockEdge(), true);
671 _status = Faulting;
672 return;
673 }
674
675
676 if (!t_info.stayAtPC)
677 advancePC(fault);
678
679 if (tryCompleteDrain())
680 return;
681
682 if (_status == BaseSimpleCPU::Running) {
683 // kick off fetch of next instruction... callback from icache
684 // response will cause that instruction to be executed,
685 // keeping the CPU running.
686 fetch();
687 }
688 }
689
690
691 void
692 TimingSimpleCPU::completeIfetch(PacketPtr pkt)
693 {
694 SimpleExecContext& t_info = *threadInfo[curThread];
695
696 DPRINTF(SimpleCPU, "Complete ICache Fetch for addr %#x\n", pkt ?
697 pkt->getAddr() : 0);
698
699 // received a response from the icache: execute the received
700 // instruction
701 assert(!pkt || !pkt->isError());
702 assert(_status == IcacheWaitResponse);
703
704 _status = BaseSimpleCPU::Running;
705
706 updateCycleCounts();
707
708 if (pkt)
709 pkt->req->setAccessLatency();
710
711
712 preExecute();
713 if (curStaticInst && curStaticInst->isMemRef()) {
714 // load or store: just send to dcache
715 Fault fault = curStaticInst->initiateAcc(&t_info, traceData);
716
717 // If we're not running now the instruction will complete in a dcache
718 // response callback or the instruction faulted and has started an
719 // ifetch
720 if (_status == BaseSimpleCPU::Running) {
721 if (fault != NoFault && traceData) {
722 // If there was a fault, we shouldn't trace this instruction.
723 delete traceData;
724 traceData = NULL;
725 }
726
727 postExecute();
728 // @todo remove me after debugging with legion done
729 if (curStaticInst && (!curStaticInst->isMicroop() ||
730 curStaticInst->isFirstMicroop()))
731 instCnt++;
732 advanceInst(fault);
733 }
734 } else if (curStaticInst) {
735 // non-memory instruction: execute completely now
736 Fault fault = curStaticInst->execute(&t_info, traceData);
737
738 // keep an instruction count
739 if (fault == NoFault)
740 countInst();
741 else if (traceData && !DTRACE(ExecFaulting)) {
742 delete traceData;
743 traceData = NULL;
744 }
745
746 postExecute();
747 // @todo remove me after debugging with legion done
748 if (curStaticInst && (!curStaticInst->isMicroop() ||
749 curStaticInst->isFirstMicroop()))
750 instCnt++;
751 advanceInst(fault);
752 } else {
753 advanceInst(NoFault);
754 }
755
756 if (pkt) {
757 delete pkt->req;
758 delete pkt;
759 }
760 }
761
762 void
763 TimingSimpleCPU::IcachePort::ITickEvent::process()
764 {
765 cpu->completeIfetch(pkt);
766 }
767
768 bool
769 TimingSimpleCPU::IcachePort::recvTimingResp(PacketPtr pkt)
770 {
771 DPRINTF(SimpleCPU, "Received fetch response %#x\n", pkt->getAddr());
772 // we should only ever see one response per cycle since we only
773 // issue a new request once this response is sunk
774 assert(!tickEvent.scheduled());
775 // delay processing of returned data until next CPU clock edge
776 tickEvent.schedule(pkt, cpu->clockEdge());
777
778 return true;
779 }
780
781 void
782 TimingSimpleCPU::IcachePort::recvReqRetry()
783 {
784 // we shouldn't get a retry unless we have a packet that we're
785 // waiting to transmit
786 assert(cpu->ifetch_pkt != NULL);
787 assert(cpu->_status == IcacheRetry);
788 PacketPtr tmp = cpu->ifetch_pkt;
789 if (sendTimingReq(tmp)) {
790 cpu->_status = IcacheWaitResponse;
791 cpu->ifetch_pkt = NULL;
792 }
793 }
794
795 void
796 TimingSimpleCPU::completeDataAccess(PacketPtr pkt)
797 {
798 // received a response from the dcache: complete the load or store
799 // instruction
800 assert(!pkt->isError());
801 assert(_status == DcacheWaitResponse || _status == DTBWaitResponse ||
802 pkt->req->getFlags().isSet(Request::NO_ACCESS));
803
804 pkt->req->setAccessLatency();
805
806 updateCycleCounts();
807
808 if (pkt->senderState) {
809 SplitFragmentSenderState * send_state =
810 dynamic_cast<SplitFragmentSenderState *>(pkt->senderState);
811 assert(send_state);
812 delete pkt->req;
813 delete pkt;
814 PacketPtr big_pkt = send_state->bigPkt;
815 delete send_state;
816
817 SplitMainSenderState * main_send_state =
818 dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
819 assert(main_send_state);
820 // Record the fact that this packet is no longer outstanding.
821 assert(main_send_state->outstanding != 0);
822 main_send_state->outstanding--;
823
824 if (main_send_state->outstanding) {
825 return;
826 } else {
827 delete main_send_state;
828 big_pkt->senderState = NULL;
829 pkt = big_pkt;
830 }
831 }
832
833 _status = BaseSimpleCPU::Running;
834
835 Fault fault = curStaticInst->completeAcc(pkt, threadInfo[curThread],
836 traceData);
837
838 // keep an instruction count
839 if (fault == NoFault)
840 countInst();
841 else if (traceData) {
842 // If there was a fault, we shouldn't trace this instruction.
843 delete traceData;
844 traceData = NULL;
845 }
846
847 delete pkt->req;
848 delete pkt;
849
850 postExecute();
851
852 advanceInst(fault);
853 }
854
855 void
856 TimingSimpleCPU::updateCycleCounts()
857 {
858 const Cycles delta(curCycle() - previousCycle);
859
860 numCycles += delta;
861 ppCycles->notify(delta);
862
863 previousCycle = curCycle();
864 }
865
866 void
867 TimingSimpleCPU::DcachePort::recvTimingSnoopReq(PacketPtr pkt)
868 {
869 for (ThreadID tid = 0; tid < cpu->numThreads; tid++) {
870 if (cpu->getCpuAddrMonitor(tid)->doMonitor(pkt)) {
871 cpu->wakeup(tid);
872 }
873 }
874
875 // Making it uniform across all CPUs:
876 // The CPUs need to be woken up only on an invalidation packet (when using caches)
877 // or on an incoming write packet (when not using caches)
878 // It is not necessary to wake up the processor on all incoming packets
879 if (pkt->isInvalidate() || pkt->isWrite()) {
880 for (auto &t_info : cpu->threadInfo) {
881 TheISA::handleLockedSnoop(t_info->thread, pkt, cacheBlockMask);
882 }
883 }
884 }
885
886 void
887 TimingSimpleCPU::DcachePort::recvFunctionalSnoop(PacketPtr pkt)
888 {
889 for (ThreadID tid = 0; tid < cpu->numThreads; tid++) {
890 if (cpu->getCpuAddrMonitor(tid)->doMonitor(pkt)) {
891 cpu->wakeup(tid);
892 }
893 }
894 }
895
896 bool
897 TimingSimpleCPU::DcachePort::recvTimingResp(PacketPtr pkt)
898 {
899 DPRINTF(SimpleCPU, "Received load/store response %#x\n", pkt->getAddr());
900
901 // The timing CPU is not really ticked, instead it relies on the
902 // memory system (fetch and load/store) to set the pace.
903 if (!tickEvent.scheduled()) {
904 // Delay processing of returned data until next CPU clock edge
905 tickEvent.schedule(pkt, cpu->clockEdge());
906 return true;
907 } else {
908 // In the case of a split transaction and a cache that is
909 // faster than a CPU we could get two responses in the
910 // same tick, delay the second one
911 if (!retryRespEvent.scheduled())
912 cpu->schedule(retryRespEvent, cpu->clockEdge(Cycles(1)));
913 return false;
914 }
915 }
916
917 void
918 TimingSimpleCPU::DcachePort::DTickEvent::process()
919 {
920 cpu->completeDataAccess(pkt);
921 }
922
923 void
924 TimingSimpleCPU::DcachePort::recvReqRetry()
925 {
926 // we shouldn't get a retry unless we have a packet that we're
927 // waiting to transmit
928 assert(cpu->dcache_pkt != NULL);
929 assert(cpu->_status == DcacheRetry);
930 PacketPtr tmp = cpu->dcache_pkt;
931 if (tmp->senderState) {
932 // This is a packet from a split access.
933 SplitFragmentSenderState * send_state =
934 dynamic_cast<SplitFragmentSenderState *>(tmp->senderState);
935 assert(send_state);
936 PacketPtr big_pkt = send_state->bigPkt;
937
938 SplitMainSenderState * main_send_state =
939 dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
940 assert(main_send_state);
941
942 if (sendTimingReq(tmp)) {
943 // If we were able to send without retrying, record that fact
944 // and try sending the other fragment.
945 send_state->clearFromParent();
946 int other_index = main_send_state->getPendingFragment();
947 if (other_index > 0) {
948 tmp = main_send_state->fragments[other_index];
949 cpu->dcache_pkt = tmp;
950 if ((big_pkt->isRead() && cpu->handleReadPacket(tmp)) ||
951 (big_pkt->isWrite() && cpu->handleWritePacket())) {
952 main_send_state->fragments[other_index] = NULL;
953 }
954 } else {
955 cpu->_status = DcacheWaitResponse;
956 // memory system takes ownership of packet
957 cpu->dcache_pkt = NULL;
958 }
959 }
960 } else if (sendTimingReq(tmp)) {
961 cpu->_status = DcacheWaitResponse;
962 // memory system takes ownership of packet
963 cpu->dcache_pkt = NULL;
964 }
965 }
966
967 TimingSimpleCPU::IprEvent::IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu,
968 Tick t)
969 : pkt(_pkt), cpu(_cpu)
970 {
971 cpu->schedule(this, t);
972 }
973
974 void
975 TimingSimpleCPU::IprEvent::process()
976 {
977 cpu->completeDataAccess(pkt);
978 }
979
980 const char *
981 TimingSimpleCPU::IprEvent::description() const
982 {
983 return "Timing Simple CPU Delay IPR event";
984 }
985
986
987 void
988 TimingSimpleCPU::printAddr(Addr a)
989 {
990 dcachePort.printAddr(a);
991 }
992
993
994 ////////////////////////////////////////////////////////////////////////
995 //
996 // TimingSimpleCPU Simulation Object
997 //
998 TimingSimpleCPU *
999 TimingSimpleCPUParams::create()
1000 {
1001 return new TimingSimpleCPU(this);
1002 }