Merge zizzer.eecs.umich.edu:/bk/newmem
[gem5.git] / src / cpu / simple / timing.cc
1 /*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31 #include "arch/locked_mem.hh"
32 #include "arch/utility.hh"
33 #include "cpu/exetrace.hh"
34 #include "cpu/simple/timing.hh"
35 #include "mem/packet.hh"
36 #include "mem/packet_access.hh"
37 #include "sim/builder.hh"
38 #include "sim/system.hh"
39
40 using namespace std;
41 using namespace TheISA;
42
43 Port *
44 TimingSimpleCPU::getPort(const std::string &if_name, int idx)
45 {
46 if (if_name == "dcache_port")
47 return &dcachePort;
48 else if (if_name == "icache_port")
49 return &icachePort;
50 else
51 panic("No Such Port\n");
52 }
53
54 void
55 TimingSimpleCPU::init()
56 {
57 BaseCPU::init();
58 #if FULL_SYSTEM
59 for (int i = 0; i < threadContexts.size(); ++i) {
60 ThreadContext *tc = threadContexts[i];
61
62 // initialize CPU, including PC
63 TheISA::initCPU(tc, tc->readCpuId());
64 }
65 #endif
66 }
67
68 Tick
69 TimingSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt)
70 {
71 panic("TimingSimpleCPU doesn't expect recvAtomic callback!");
72 return curTick;
73 }
74
75 void
76 TimingSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt)
77 {
78 //No internal storage to update, jusst return
79 return;
80 }
81
82 void
83 TimingSimpleCPU::CpuPort::recvStatusChange(Status status)
84 {
85 if (status == RangeChange) {
86 if (!snoopRangeSent) {
87 snoopRangeSent = true;
88 sendStatusChange(Port::RangeChange);
89 }
90 return;
91 }
92
93 panic("TimingSimpleCPU doesn't expect recvStatusChange callback!");
94 }
95
96
97 void
98 TimingSimpleCPU::CpuPort::TickEvent::schedule(PacketPtr _pkt, Tick t)
99 {
100 pkt = _pkt;
101 Event::schedule(t);
102 }
103
104 TimingSimpleCPU::TimingSimpleCPU(Params *p)
105 : BaseSimpleCPU(p), icachePort(this, p->clock), dcachePort(this, p->clock),
106 cpu_id(p->cpu_id)
107 {
108 _status = Idle;
109
110 icachePort.snoopRangeSent = false;
111 dcachePort.snoopRangeSent = false;
112
113 ifetch_pkt = dcache_pkt = NULL;
114 drainEvent = NULL;
115 fetchEvent = NULL;
116 previousTick = 0;
117 changeState(SimObject::Running);
118 }
119
120
121 TimingSimpleCPU::~TimingSimpleCPU()
122 {
123 }
124
125 void
126 TimingSimpleCPU::serialize(ostream &os)
127 {
128 SimObject::State so_state = SimObject::getState();
129 SERIALIZE_ENUM(so_state);
130 BaseSimpleCPU::serialize(os);
131 }
132
133 void
134 TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
135 {
136 SimObject::State so_state;
137 UNSERIALIZE_ENUM(so_state);
138 BaseSimpleCPU::unserialize(cp, section);
139 }
140
141 unsigned int
142 TimingSimpleCPU::drain(Event *drain_event)
143 {
144 // TimingSimpleCPU is ready to drain if it's not waiting for
145 // an access to complete.
146 if (status() == Idle || status() == Running || status() == SwitchedOut) {
147 changeState(SimObject::Drained);
148 return 0;
149 } else {
150 changeState(SimObject::Draining);
151 drainEvent = drain_event;
152 return 1;
153 }
154 }
155
156 void
157 TimingSimpleCPU::resume()
158 {
159 if (_status != SwitchedOut && _status != Idle) {
160 assert(system->getMemoryMode() == System::Timing);
161
162 // Delete the old event if it existed.
163 if (fetchEvent) {
164 if (fetchEvent->scheduled())
165 fetchEvent->deschedule();
166
167 delete fetchEvent;
168 }
169
170 fetchEvent =
171 new EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch>(this, false);
172 fetchEvent->schedule(nextCycle());
173 }
174
175 changeState(SimObject::Running);
176 previousTick = curTick;
177 }
178
179 void
180 TimingSimpleCPU::switchOut()
181 {
182 assert(status() == Running || status() == Idle);
183 _status = SwitchedOut;
184 numCycles += curTick - previousTick;
185
186 // If we've been scheduled to resume but are then told to switch out,
187 // we'll need to cancel it.
188 if (fetchEvent && fetchEvent->scheduled())
189 fetchEvent->deschedule();
190 }
191
192
193 void
194 TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
195 {
196 BaseCPU::takeOverFrom(oldCPU);
197
198 // if any of this CPU's ThreadContexts are active, mark the CPU as
199 // running and schedule its tick event.
200 for (int i = 0; i < threadContexts.size(); ++i) {
201 ThreadContext *tc = threadContexts[i];
202 if (tc->status() == ThreadContext::Active && _status != Running) {
203 _status = Running;
204 break;
205 }
206 }
207
208 if (_status != Running) {
209 _status = Idle;
210 }
211
212 Port *peer;
213 if (icachePort.getPeer() == NULL) {
214 peer = oldCPU->getPort("icache_port")->getPeer();
215 icachePort.setPeer(peer);
216 } else {
217 peer = icachePort.getPeer();
218 }
219 peer->setPeer(&icachePort);
220
221 if (dcachePort.getPeer() == NULL) {
222 peer = oldCPU->getPort("dcache_port")->getPeer();
223 dcachePort.setPeer(peer);
224 } else {
225 peer = dcachePort.getPeer();
226 }
227 peer->setPeer(&dcachePort);
228 }
229
230
231 void
232 TimingSimpleCPU::activateContext(int thread_num, int delay)
233 {
234 assert(thread_num == 0);
235 assert(thread);
236
237 assert(_status == Idle);
238
239 notIdleFraction++;
240 _status = Running;
241
242 #if FULL_SYSTEM
243 // Connect the ThreadContext's memory ports (Functional/Virtual
244 // Ports)
245 tc->connectMemPorts();
246 #endif
247
248 // kick things off by initiating the fetch of the next instruction
249 fetchEvent =
250 new EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch>(this, false);
251 fetchEvent->schedule(nextCycle(curTick + cycles(delay)));
252 }
253
254
255 void
256 TimingSimpleCPU::suspendContext(int thread_num)
257 {
258 assert(thread_num == 0);
259 assert(thread);
260
261 assert(_status == Running);
262
263 // just change status to Idle... if status != Running,
264 // completeInst() will not initiate fetch of next instruction.
265
266 notIdleFraction--;
267 _status = Idle;
268 }
269
270
271 template <class T>
272 Fault
273 TimingSimpleCPU::read(Addr addr, T &data, unsigned flags)
274 {
275 Request *req =
276 new Request(/* asid */ 0, addr, sizeof(T), flags, thread->readPC(),
277 cpu_id, /* thread ID */ 0);
278
279 if (traceData) {
280 traceData->setAddr(req->getVaddr());
281 }
282
283 // translate to physical address
284 Fault fault = thread->translateDataReadReq(req);
285
286 // Now do the access.
287 if (fault == NoFault) {
288 PacketPtr pkt =
289 new Packet(req, Packet::ReadReq, Packet::Broadcast);
290 pkt->dataDynamic<T>(new T);
291
292 if (!dcachePort.sendTiming(pkt)) {
293 _status = DcacheRetry;
294 dcache_pkt = pkt;
295 } else {
296 _status = DcacheWaitResponse;
297 // memory system takes ownership of packet
298 dcache_pkt = NULL;
299 }
300 } else {
301 delete req;
302 }
303
304 // This will need a new way to tell if it has a dcache attached.
305 if (req->isUncacheable())
306 recordEvent("Uncached Read");
307
308 return fault;
309 }
310
311 #ifndef DOXYGEN_SHOULD_SKIP_THIS
312
313 template
314 Fault
315 TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
316
317 template
318 Fault
319 TimingSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
320
321 template
322 Fault
323 TimingSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
324
325 template
326 Fault
327 TimingSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
328
329 #endif //DOXYGEN_SHOULD_SKIP_THIS
330
331 template<>
332 Fault
333 TimingSimpleCPU::read(Addr addr, double &data, unsigned flags)
334 {
335 return read(addr, *(uint64_t*)&data, flags);
336 }
337
338 template<>
339 Fault
340 TimingSimpleCPU::read(Addr addr, float &data, unsigned flags)
341 {
342 return read(addr, *(uint32_t*)&data, flags);
343 }
344
345
346 template<>
347 Fault
348 TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
349 {
350 return read(addr, (uint32_t&)data, flags);
351 }
352
353
354 template <class T>
355 Fault
356 TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
357 {
358 Request *req =
359 new Request(/* asid */ 0, addr, sizeof(T), flags, thread->readPC(),
360 cpu_id, /* thread ID */ 0);
361
362 // translate to physical address
363 Fault fault = thread->translateDataWriteReq(req);
364
365 // Now do the access.
366 if (fault == NoFault) {
367 assert(dcache_pkt == NULL);
368 dcache_pkt = new Packet(req, Packet::WriteReq, Packet::Broadcast);
369 dcache_pkt->allocate();
370 dcache_pkt->set(data);
371
372 bool do_access = true; // flag to suppress cache access
373
374 if (req->isLocked()) {
375 do_access = TheISA::handleLockedWrite(thread, req);
376 }
377
378 if (do_access) {
379 if (!dcachePort.sendTiming(dcache_pkt)) {
380 _status = DcacheRetry;
381 } else {
382 _status = DcacheWaitResponse;
383 // memory system takes ownership of packet
384 dcache_pkt = NULL;
385 }
386 }
387 } else {
388 delete req;
389 }
390
391 // This will need a new way to tell if it's hooked up to a cache or not.
392 if (req->isUncacheable())
393 recordEvent("Uncached Write");
394
395 // If the write needs to have a fault on the access, consider calling
396 // changeStatus() and changing it to "bad addr write" or something.
397 return fault;
398 }
399
400
401 #ifndef DOXYGEN_SHOULD_SKIP_THIS
402 template
403 Fault
404 TimingSimpleCPU::write(uint64_t data, Addr addr,
405 unsigned flags, uint64_t *res);
406
407 template
408 Fault
409 TimingSimpleCPU::write(uint32_t data, Addr addr,
410 unsigned flags, uint64_t *res);
411
412 template
413 Fault
414 TimingSimpleCPU::write(uint16_t data, Addr addr,
415 unsigned flags, uint64_t *res);
416
417 template
418 Fault
419 TimingSimpleCPU::write(uint8_t data, Addr addr,
420 unsigned flags, uint64_t *res);
421
422 #endif //DOXYGEN_SHOULD_SKIP_THIS
423
424 template<>
425 Fault
426 TimingSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
427 {
428 return write(*(uint64_t*)&data, addr, flags, res);
429 }
430
431 template<>
432 Fault
433 TimingSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
434 {
435 return write(*(uint32_t*)&data, addr, flags, res);
436 }
437
438
439 template<>
440 Fault
441 TimingSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
442 {
443 return write((uint32_t)data, addr, flags, res);
444 }
445
446
447 void
448 TimingSimpleCPU::fetch()
449 {
450 if (!curStaticInst || !curStaticInst->isDelayedCommit())
451 checkForInterrupts();
452
453 Request *ifetch_req = new Request();
454 ifetch_req->setThreadContext(cpu_id, /* thread ID */ 0);
455 Fault fault = setupFetchRequest(ifetch_req);
456
457 ifetch_pkt = new Packet(ifetch_req, Packet::ReadReq, Packet::Broadcast);
458 ifetch_pkt->dataStatic(&inst);
459
460 if (fault == NoFault) {
461 if (!icachePort.sendTiming(ifetch_pkt)) {
462 // Need to wait for retry
463 _status = IcacheRetry;
464 } else {
465 // Need to wait for cache to respond
466 _status = IcacheWaitResponse;
467 // ownership of packet transferred to memory system
468 ifetch_pkt = NULL;
469 }
470 } else {
471 delete ifetch_req;
472 delete ifetch_pkt;
473 // fetch fault: advance directly to next instruction (fault handler)
474 advanceInst(fault);
475 }
476
477 numCycles += curTick - previousTick;
478 previousTick = curTick;
479 }
480
481
482 void
483 TimingSimpleCPU::advanceInst(Fault fault)
484 {
485 advancePC(fault);
486
487 if (_status == Running) {
488 // kick off fetch of next instruction... callback from icache
489 // response will cause that instruction to be executed,
490 // keeping the CPU running.
491 fetch();
492 }
493 }
494
495
496 void
497 TimingSimpleCPU::completeIfetch(PacketPtr pkt)
498 {
499 // received a response from the icache: execute the received
500 // instruction
501 assert(pkt->result == Packet::Success);
502 assert(_status == IcacheWaitResponse);
503
504 _status = Running;
505
506 numCycles += curTick - previousTick;
507 previousTick = curTick;
508
509 if (getState() == SimObject::Draining) {
510 delete pkt->req;
511 delete pkt;
512
513 completeDrain();
514 return;
515 }
516
517 preExecute();
518 if (curStaticInst->isMemRef() && !curStaticInst->isDataPrefetch()) {
519 // load or store: just send to dcache
520 Fault fault = curStaticInst->initiateAcc(this, traceData);
521 if (_status != Running) {
522 // instruction will complete in dcache response callback
523 assert(_status == DcacheWaitResponse || _status == DcacheRetry);
524 assert(fault == NoFault);
525 } else {
526 if (fault == NoFault) {
527 // early fail on store conditional: complete now
528 assert(dcache_pkt != NULL);
529 fault = curStaticInst->completeAcc(dcache_pkt, this,
530 traceData);
531 delete dcache_pkt->req;
532 delete dcache_pkt;
533 dcache_pkt = NULL;
534 }
535 postExecute();
536 advanceInst(fault);
537 }
538 } else {
539 // non-memory instruction: execute completely now
540 Fault fault = curStaticInst->execute(this, traceData);
541 postExecute();
542 advanceInst(fault);
543 }
544
545 delete pkt->req;
546 delete pkt;
547 }
548
549 void
550 TimingSimpleCPU::IcachePort::ITickEvent::process()
551 {
552 cpu->completeIfetch(pkt);
553 }
554
555 bool
556 TimingSimpleCPU::IcachePort::recvTiming(PacketPtr pkt)
557 {
558 if (pkt->isResponse()) {
559 // delay processing of returned data until next CPU clock edge
560 Tick mem_time = pkt->req->getTime();
561 Tick next_tick = cpu->nextCycle(mem_time);
562
563 if (next_tick == curTick)
564 cpu->completeIfetch(pkt);
565 else
566 tickEvent.schedule(pkt, next_tick);
567
568 return true;
569 }
570 else {
571 //Snooping a Coherence Request, do nothing
572 return true;
573 }
574 }
575
576 void
577 TimingSimpleCPU::IcachePort::recvRetry()
578 {
579 // we shouldn't get a retry unless we have a packet that we're
580 // waiting to transmit
581 assert(cpu->ifetch_pkt != NULL);
582 assert(cpu->_status == IcacheRetry);
583 PacketPtr tmp = cpu->ifetch_pkt;
584 if (sendTiming(tmp)) {
585 cpu->_status = IcacheWaitResponse;
586 cpu->ifetch_pkt = NULL;
587 }
588 }
589
590 void
591 TimingSimpleCPU::completeDataAccess(PacketPtr pkt)
592 {
593 // received a response from the dcache: complete the load or store
594 // instruction
595 assert(pkt->result == Packet::Success);
596 assert(_status == DcacheWaitResponse);
597 _status = Running;
598
599 numCycles += curTick - previousTick;
600 previousTick = curTick;
601
602 Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
603
604 if (pkt->isRead() && pkt->req->isLocked()) {
605 TheISA::handleLockedRead(thread, pkt->req);
606 }
607
608 delete pkt->req;
609 delete pkt;
610
611 postExecute();
612
613 if (getState() == SimObject::Draining) {
614 advancePC(fault);
615 completeDrain();
616
617 return;
618 }
619
620 advanceInst(fault);
621 }
622
623
624 void
625 TimingSimpleCPU::completeDrain()
626 {
627 DPRINTF(Config, "Done draining\n");
628 changeState(SimObject::Drained);
629 drainEvent->process();
630 }
631
632 bool
633 TimingSimpleCPU::DcachePort::recvTiming(PacketPtr pkt)
634 {
635 if (pkt->isResponse()) {
636 // delay processing of returned data until next CPU clock edge
637 Tick mem_time = pkt->req->getTime();
638 Tick next_tick = cpu->nextCycle(mem_time);
639
640 if (next_tick == curTick)
641 cpu->completeDataAccess(pkt);
642 else
643 tickEvent.schedule(pkt, next_tick);
644
645 return true;
646 }
647 else {
648 //Snooping a coherence req, do nothing
649 return true;
650 }
651 }
652
653 void
654 TimingSimpleCPU::DcachePort::DTickEvent::process()
655 {
656 cpu->completeDataAccess(pkt);
657 }
658
659 void
660 TimingSimpleCPU::DcachePort::recvRetry()
661 {
662 // we shouldn't get a retry unless we have a packet that we're
663 // waiting to transmit
664 assert(cpu->dcache_pkt != NULL);
665 assert(cpu->_status == DcacheRetry);
666 PacketPtr tmp = cpu->dcache_pkt;
667 if (sendTiming(tmp)) {
668 cpu->_status = DcacheWaitResponse;
669 // memory system takes ownership of packet
670 cpu->dcache_pkt = NULL;
671 }
672 }
673
674
675 ////////////////////////////////////////////////////////////////////////
676 //
677 // TimingSimpleCPU Simulation Object
678 //
679 BEGIN_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
680
681 Param<Counter> max_insts_any_thread;
682 Param<Counter> max_insts_all_threads;
683 Param<Counter> max_loads_any_thread;
684 Param<Counter> max_loads_all_threads;
685 Param<Tick> progress_interval;
686 SimObjectParam<System *> system;
687 Param<int> cpu_id;
688
689 #if FULL_SYSTEM
690 SimObjectParam<TheISA::ITB *> itb;
691 SimObjectParam<TheISA::DTB *> dtb;
692 Param<Tick> profile;
693
694 Param<bool> do_quiesce;
695 Param<bool> do_checkpoint_insts;
696 Param<bool> do_statistics_insts;
697 #else
698 SimObjectParam<Process *> workload;
699 #endif // FULL_SYSTEM
700
701 Param<int> clock;
702 Param<int> phase;
703
704 Param<bool> defer_registration;
705 Param<int> width;
706 Param<bool> function_trace;
707 Param<Tick> function_trace_start;
708 Param<bool> simulate_stalls;
709
710 END_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
711
712 BEGIN_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
713
714 INIT_PARAM(max_insts_any_thread,
715 "terminate when any thread reaches this inst count"),
716 INIT_PARAM(max_insts_all_threads,
717 "terminate when all threads have reached this inst count"),
718 INIT_PARAM(max_loads_any_thread,
719 "terminate when any thread reaches this load count"),
720 INIT_PARAM(max_loads_all_threads,
721 "terminate when all threads have reached this load count"),
722 INIT_PARAM(progress_interval, "Progress interval"),
723 INIT_PARAM(system, "system object"),
724 INIT_PARAM(cpu_id, "processor ID"),
725
726 #if FULL_SYSTEM
727 INIT_PARAM(itb, "Instruction TLB"),
728 INIT_PARAM(dtb, "Data TLB"),
729 INIT_PARAM(profile, ""),
730 INIT_PARAM(do_quiesce, ""),
731 INIT_PARAM(do_checkpoint_insts, ""),
732 INIT_PARAM(do_statistics_insts, ""),
733 #else
734 INIT_PARAM(workload, "processes to run"),
735 #endif // FULL_SYSTEM
736
737 INIT_PARAM(clock, "clock speed"),
738 INIT_PARAM_DFLT(phase, "clock phase", 0),
739 INIT_PARAM(defer_registration, "defer system registration (for sampling)"),
740 INIT_PARAM(width, "cpu width"),
741 INIT_PARAM(function_trace, "Enable function trace"),
742 INIT_PARAM(function_trace_start, "Cycle to start function trace"),
743 INIT_PARAM(simulate_stalls, "Simulate cache stall cycles")
744
745 END_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
746
747
748 CREATE_SIM_OBJECT(TimingSimpleCPU)
749 {
750 TimingSimpleCPU::Params *params = new TimingSimpleCPU::Params();
751 params->name = getInstanceName();
752 params->numberOfThreads = 1;
753 params->max_insts_any_thread = max_insts_any_thread;
754 params->max_insts_all_threads = max_insts_all_threads;
755 params->max_loads_any_thread = max_loads_any_thread;
756 params->max_loads_all_threads = max_loads_all_threads;
757 params->progress_interval = progress_interval;
758 params->deferRegistration = defer_registration;
759 params->clock = clock;
760 params->phase = phase;
761 params->functionTrace = function_trace;
762 params->functionTraceStart = function_trace_start;
763 params->system = system;
764 params->cpu_id = cpu_id;
765
766 #if FULL_SYSTEM
767 params->itb = itb;
768 params->dtb = dtb;
769 params->profile = profile;
770 params->do_quiesce = do_quiesce;
771 params->do_checkpoint_insts = do_checkpoint_insts;
772 params->do_statistics_insts = do_statistics_insts;
773 #else
774 params->process = workload;
775 #endif
776
777 TimingSimpleCPU *cpu = new TimingSimpleCPU(params);
778 return cpu;
779 }
780
781 REGISTER_SIM_OBJECT("TimingSimpleCPU", TimingSimpleCPU)
782