Merge with head, hopefully the last time for this batch.
[gem5.git] / src / cpu / simple / timing.cc
1 /*
2 * Copyright (c) 2010 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Steve Reinhardt
41 */
42
43 #include "arch/locked_mem.hh"
44 #include "arch/mmapped_ipr.hh"
45 #include "arch/utility.hh"
46 #include "base/bigint.hh"
47 #include "config/the_isa.hh"
48 #include "cpu/simple/timing.hh"
49 #include "cpu/exetrace.hh"
50 #include "debug/Config.hh"
51 #include "debug/ExecFaulting.hh"
52 #include "debug/SimpleCPU.hh"
53 #include "mem/packet.hh"
54 #include "mem/packet_access.hh"
55 #include "params/TimingSimpleCPU.hh"
56 #include "sim/faults.hh"
57 #include "sim/full_system.hh"
58 #include "sim/system.hh"
59
60 using namespace std;
61 using namespace TheISA;
62
63 Port *
64 TimingSimpleCPU::getPort(const std::string &if_name, int idx)
65 {
66 if (if_name == "dcache_port")
67 return &dcachePort;
68 else if (if_name == "icache_port")
69 return &icachePort;
70 else
71 panic("No Such Port\n");
72 }
73
74 void
75 TimingSimpleCPU::init()
76 {
77 BaseCPU::init();
78 if (FullSystem) {
79 for (int i = 0; i < threadContexts.size(); ++i) {
80 ThreadContext *tc = threadContexts[i];
81 // initialize CPU, including PC
82 TheISA::initCPU(tc, _cpuId);
83 }
84 }
85
86 // Initialise the ThreadContext's memory proxies
87 tcBase()->initMemProxies(tcBase());
88 }
89
90 void
91 TimingSimpleCPU::TimingCPUPort::TickEvent::schedule(PacketPtr _pkt, Tick t)
92 {
93 pkt = _pkt;
94 cpu->schedule(this, t);
95 }
96
97 TimingSimpleCPU::TimingSimpleCPU(TimingSimpleCPUParams *p)
98 : BaseSimpleCPU(p), fetchTranslation(this), icachePort(this),
99 dcachePort(this), fetchEvent(this)
100 {
101 _status = Idle;
102
103 ifetch_pkt = dcache_pkt = NULL;
104 drainEvent = NULL;
105 previousTick = 0;
106 changeState(SimObject::Running);
107 system->totalNumInsts = 0;
108 }
109
110
111 TimingSimpleCPU::~TimingSimpleCPU()
112 {
113 }
114
115 void
116 TimingSimpleCPU::serialize(ostream &os)
117 {
118 SimObject::State so_state = SimObject::getState();
119 SERIALIZE_ENUM(so_state);
120 BaseSimpleCPU::serialize(os);
121 }
122
123 void
124 TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
125 {
126 SimObject::State so_state;
127 UNSERIALIZE_ENUM(so_state);
128 BaseSimpleCPU::unserialize(cp, section);
129 }
130
131 unsigned int
132 TimingSimpleCPU::drain(Event *drain_event)
133 {
134 // TimingSimpleCPU is ready to drain if it's not waiting for
135 // an access to complete.
136 if (_status == Idle || _status == Running || _status == SwitchedOut) {
137 changeState(SimObject::Drained);
138 return 0;
139 } else {
140 changeState(SimObject::Draining);
141 drainEvent = drain_event;
142 return 1;
143 }
144 }
145
146 void
147 TimingSimpleCPU::resume()
148 {
149 DPRINTF(SimpleCPU, "Resume\n");
150 if (_status != SwitchedOut && _status != Idle) {
151 assert(system->getMemoryMode() == Enums::timing);
152
153 if (fetchEvent.scheduled())
154 deschedule(fetchEvent);
155
156 schedule(fetchEvent, nextCycle());
157 }
158
159 changeState(SimObject::Running);
160 }
161
162 void
163 TimingSimpleCPU::switchOut()
164 {
165 assert(_status == Running || _status == Idle);
166 _status = SwitchedOut;
167 numCycles += tickToCycles(curTick() - previousTick);
168
169 // If we've been scheduled to resume but are then told to switch out,
170 // we'll need to cancel it.
171 if (fetchEvent.scheduled())
172 deschedule(fetchEvent);
173 }
174
175
176 void
177 TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
178 {
179 BaseCPU::takeOverFrom(oldCPU);
180
181 // if any of this CPU's ThreadContexts are active, mark the CPU as
182 // running and schedule its tick event.
183 for (int i = 0; i < threadContexts.size(); ++i) {
184 ThreadContext *tc = threadContexts[i];
185 if (tc->status() == ThreadContext::Active && _status != Running) {
186 _status = Running;
187 break;
188 }
189 }
190
191 if (_status != Running) {
192 _status = Idle;
193 }
194 assert(threadContexts.size() == 1);
195 previousTick = curTick();
196 }
197
198
199 void
200 TimingSimpleCPU::activateContext(ThreadID thread_num, int delay)
201 {
202 DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
203
204 assert(thread_num == 0);
205 assert(thread);
206
207 assert(_status == Idle);
208
209 notIdleFraction++;
210 _status = Running;
211
212 // kick things off by initiating the fetch of the next instruction
213 schedule(fetchEvent, nextCycle(curTick() + ticks(delay)));
214 }
215
216
217 void
218 TimingSimpleCPU::suspendContext(ThreadID thread_num)
219 {
220 DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
221
222 assert(thread_num == 0);
223 assert(thread);
224
225 if (_status == Idle)
226 return;
227
228 assert(_status == Running);
229
230 // just change status to Idle... if status != Running,
231 // completeInst() will not initiate fetch of next instruction.
232
233 notIdleFraction--;
234 _status = Idle;
235 }
236
237 bool
238 TimingSimpleCPU::handleReadPacket(PacketPtr pkt)
239 {
240 RequestPtr req = pkt->req;
241 if (req->isMmappedIpr()) {
242 Tick delay;
243 delay = TheISA::handleIprRead(thread->getTC(), pkt);
244 new IprEvent(pkt, this, nextCycle(curTick() + delay));
245 _status = DcacheWaitResponse;
246 dcache_pkt = NULL;
247 } else if (!dcachePort.sendTiming(pkt)) {
248 _status = DcacheRetry;
249 dcache_pkt = pkt;
250 } else {
251 _status = DcacheWaitResponse;
252 // memory system takes ownership of packet
253 dcache_pkt = NULL;
254 }
255 return dcache_pkt == NULL;
256 }
257
258 void
259 TimingSimpleCPU::sendData(RequestPtr req, uint8_t *data, uint64_t *res,
260 bool read)
261 {
262 PacketPtr pkt;
263 buildPacket(pkt, req, read);
264 pkt->dataDynamicArray<uint8_t>(data);
265 if (req->getFlags().isSet(Request::NO_ACCESS)) {
266 assert(!dcache_pkt);
267 pkt->makeResponse();
268 completeDataAccess(pkt);
269 } else if (read) {
270 handleReadPacket(pkt);
271 } else {
272 bool do_access = true; // flag to suppress cache access
273
274 if (req->isLLSC()) {
275 do_access = TheISA::handleLockedWrite(thread, req);
276 } else if (req->isCondSwap()) {
277 assert(res);
278 req->setExtraData(*res);
279 }
280
281 if (do_access) {
282 dcache_pkt = pkt;
283 handleWritePacket();
284 } else {
285 _status = DcacheWaitResponse;
286 completeDataAccess(pkt);
287 }
288 }
289 }
290
291 void
292 TimingSimpleCPU::sendSplitData(RequestPtr req1, RequestPtr req2,
293 RequestPtr req, uint8_t *data, bool read)
294 {
295 PacketPtr pkt1, pkt2;
296 buildSplitPacket(pkt1, pkt2, req1, req2, req, data, read);
297 if (req->getFlags().isSet(Request::NO_ACCESS)) {
298 assert(!dcache_pkt);
299 pkt1->makeResponse();
300 completeDataAccess(pkt1);
301 } else if (read) {
302 SplitFragmentSenderState * send_state =
303 dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
304 if (handleReadPacket(pkt1)) {
305 send_state->clearFromParent();
306 send_state = dynamic_cast<SplitFragmentSenderState *>(
307 pkt2->senderState);
308 if (handleReadPacket(pkt2)) {
309 send_state->clearFromParent();
310 }
311 }
312 } else {
313 dcache_pkt = pkt1;
314 SplitFragmentSenderState * send_state =
315 dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
316 if (handleWritePacket()) {
317 send_state->clearFromParent();
318 dcache_pkt = pkt2;
319 send_state = dynamic_cast<SplitFragmentSenderState *>(
320 pkt2->senderState);
321 if (handleWritePacket()) {
322 send_state->clearFromParent();
323 }
324 }
325 }
326 }
327
328 void
329 TimingSimpleCPU::translationFault(Fault fault)
330 {
331 // fault may be NoFault in cases where a fault is suppressed,
332 // for instance prefetches.
333 numCycles += tickToCycles(curTick() - previousTick);
334 previousTick = curTick();
335
336 if (traceData) {
337 // Since there was a fault, we shouldn't trace this instruction.
338 delete traceData;
339 traceData = NULL;
340 }
341
342 postExecute();
343
344 if (getState() == SimObject::Draining) {
345 advancePC(fault);
346 completeDrain();
347 } else {
348 advanceInst(fault);
349 }
350 }
351
352 void
353 TimingSimpleCPU::buildPacket(PacketPtr &pkt, RequestPtr req, bool read)
354 {
355 MemCmd cmd;
356 if (read) {
357 cmd = MemCmd::ReadReq;
358 if (req->isLLSC())
359 cmd = MemCmd::LoadLockedReq;
360 } else {
361 cmd = MemCmd::WriteReq;
362 if (req->isLLSC()) {
363 cmd = MemCmd::StoreCondReq;
364 } else if (req->isSwap()) {
365 cmd = MemCmd::SwapReq;
366 }
367 }
368 pkt = new Packet(req, cmd, Packet::Broadcast);
369 }
370
371 void
372 TimingSimpleCPU::buildSplitPacket(PacketPtr &pkt1, PacketPtr &pkt2,
373 RequestPtr req1, RequestPtr req2, RequestPtr req,
374 uint8_t *data, bool read)
375 {
376 pkt1 = pkt2 = NULL;
377
378 assert(!req1->isMmappedIpr() && !req2->isMmappedIpr());
379
380 if (req->getFlags().isSet(Request::NO_ACCESS)) {
381 buildPacket(pkt1, req, read);
382 return;
383 }
384
385 buildPacket(pkt1, req1, read);
386 buildPacket(pkt2, req2, read);
387
388 req->setPhys(req1->getPaddr(), req->getSize(), req1->getFlags());
389 PacketPtr pkt = new Packet(req, pkt1->cmd.responseCommand(),
390 Packet::Broadcast);
391
392 pkt->dataDynamicArray<uint8_t>(data);
393 pkt1->dataStatic<uint8_t>(data);
394 pkt2->dataStatic<uint8_t>(data + req1->getSize());
395
396 SplitMainSenderState * main_send_state = new SplitMainSenderState;
397 pkt->senderState = main_send_state;
398 main_send_state->fragments[0] = pkt1;
399 main_send_state->fragments[1] = pkt2;
400 main_send_state->outstanding = 2;
401 pkt1->senderState = new SplitFragmentSenderState(pkt, 0);
402 pkt2->senderState = new SplitFragmentSenderState(pkt, 1);
403 }
404
405 Fault
406 TimingSimpleCPU::readMem(Addr addr, uint8_t *data,
407 unsigned size, unsigned flags)
408 {
409 Fault fault;
410 const int asid = 0;
411 const ThreadID tid = 0;
412 const Addr pc = thread->instAddr();
413 unsigned block_size = dcachePort.peerBlockSize();
414 BaseTLB::Mode mode = BaseTLB::Read;
415
416 if (traceData) {
417 traceData->setAddr(addr);
418 }
419
420 RequestPtr req = new Request(asid, addr, size,
421 flags, pc, _cpuId, tid);
422
423 Addr split_addr = roundDown(addr + size - 1, block_size);
424 assert(split_addr <= addr || split_addr - addr < block_size);
425
426 _status = DTBWaitResponse;
427 if (split_addr > addr) {
428 RequestPtr req1, req2;
429 assert(!req->isLLSC() && !req->isSwap());
430 req->splitOnVaddr(split_addr, req1, req2);
431
432 WholeTranslationState *state =
433 new WholeTranslationState(req, req1, req2, new uint8_t[size],
434 NULL, mode);
435 DataTranslation<TimingSimpleCPU *> *trans1 =
436 new DataTranslation<TimingSimpleCPU *>(this, state, 0);
437 DataTranslation<TimingSimpleCPU *> *trans2 =
438 new DataTranslation<TimingSimpleCPU *>(this, state, 1);
439
440 thread->dtb->translateTiming(req1, tc, trans1, mode);
441 thread->dtb->translateTiming(req2, tc, trans2, mode);
442 } else {
443 WholeTranslationState *state =
444 new WholeTranslationState(req, new uint8_t[size], NULL, mode);
445 DataTranslation<TimingSimpleCPU *> *translation
446 = new DataTranslation<TimingSimpleCPU *>(this, state);
447 thread->dtb->translateTiming(req, tc, translation, mode);
448 }
449
450 return NoFault;
451 }
452
453 bool
454 TimingSimpleCPU::handleWritePacket()
455 {
456 RequestPtr req = dcache_pkt->req;
457 if (req->isMmappedIpr()) {
458 Tick delay;
459 delay = TheISA::handleIprWrite(thread->getTC(), dcache_pkt);
460 new IprEvent(dcache_pkt, this, nextCycle(curTick() + delay));
461 _status = DcacheWaitResponse;
462 dcache_pkt = NULL;
463 } else if (!dcachePort.sendTiming(dcache_pkt)) {
464 _status = DcacheRetry;
465 } else {
466 _status = DcacheWaitResponse;
467 // memory system takes ownership of packet
468 dcache_pkt = NULL;
469 }
470 return dcache_pkt == NULL;
471 }
472
473 Fault
474 TimingSimpleCPU::writeMem(uint8_t *data, unsigned size,
475 Addr addr, unsigned flags, uint64_t *res)
476 {
477 uint8_t *newData = new uint8_t[size];
478 memcpy(newData, data, size);
479
480 const int asid = 0;
481 const ThreadID tid = 0;
482 const Addr pc = thread->instAddr();
483 unsigned block_size = dcachePort.peerBlockSize();
484 BaseTLB::Mode mode = BaseTLB::Write;
485
486 if (traceData) {
487 traceData->setAddr(addr);
488 }
489
490 RequestPtr req = new Request(asid, addr, size,
491 flags, pc, _cpuId, tid);
492
493 Addr split_addr = roundDown(addr + size - 1, block_size);
494 assert(split_addr <= addr || split_addr - addr < block_size);
495
496 _status = DTBWaitResponse;
497 if (split_addr > addr) {
498 RequestPtr req1, req2;
499 assert(!req->isLLSC() && !req->isSwap());
500 req->splitOnVaddr(split_addr, req1, req2);
501
502 WholeTranslationState *state =
503 new WholeTranslationState(req, req1, req2, newData, res, mode);
504 DataTranslation<TimingSimpleCPU *> *trans1 =
505 new DataTranslation<TimingSimpleCPU *>(this, state, 0);
506 DataTranslation<TimingSimpleCPU *> *trans2 =
507 new DataTranslation<TimingSimpleCPU *>(this, state, 1);
508
509 thread->dtb->translateTiming(req1, tc, trans1, mode);
510 thread->dtb->translateTiming(req2, tc, trans2, mode);
511 } else {
512 WholeTranslationState *state =
513 new WholeTranslationState(req, newData, res, mode);
514 DataTranslation<TimingSimpleCPU *> *translation =
515 new DataTranslation<TimingSimpleCPU *>(this, state);
516 thread->dtb->translateTiming(req, tc, translation, mode);
517 }
518
519 // Translation faults will be returned via finishTranslation()
520 return NoFault;
521 }
522
523
524 void
525 TimingSimpleCPU::finishTranslation(WholeTranslationState *state)
526 {
527 _status = Running;
528
529 if (state->getFault() != NoFault) {
530 if (state->isPrefetch()) {
531 state->setNoFault();
532 }
533 delete [] state->data;
534 state->deleteReqs();
535 translationFault(state->getFault());
536 } else {
537 if (!state->isSplit) {
538 sendData(state->mainReq, state->data, state->res,
539 state->mode == BaseTLB::Read);
540 } else {
541 sendSplitData(state->sreqLow, state->sreqHigh, state->mainReq,
542 state->data, state->mode == BaseTLB::Read);
543 }
544 }
545
546 delete state;
547 }
548
549
550 void
551 TimingSimpleCPU::fetch()
552 {
553 DPRINTF(SimpleCPU, "Fetch\n");
554
555 if (!curStaticInst || !curStaticInst->isDelayedCommit())
556 checkForInterrupts();
557
558 checkPcEventQueue();
559
560 // We must have just got suspended by a PC event
561 if (_status == Idle)
562 return;
563
564 TheISA::PCState pcState = thread->pcState();
565 bool needToFetch = !isRomMicroPC(pcState.microPC()) && !curMacroStaticInst;
566
567 if (needToFetch) {
568 _status = Running;
569 Request *ifetch_req = new Request();
570 ifetch_req->setThreadContext(_cpuId, /* thread ID */ 0);
571 setupFetchRequest(ifetch_req);
572 DPRINTF(SimpleCPU, "Translating address %#x\n", ifetch_req->getVaddr());
573 thread->itb->translateTiming(ifetch_req, tc, &fetchTranslation,
574 BaseTLB::Execute);
575 } else {
576 _status = IcacheWaitResponse;
577 completeIfetch(NULL);
578
579 numCycles += tickToCycles(curTick() - previousTick);
580 previousTick = curTick();
581 }
582 }
583
584
585 void
586 TimingSimpleCPU::sendFetch(Fault fault, RequestPtr req, ThreadContext *tc)
587 {
588 if (fault == NoFault) {
589 DPRINTF(SimpleCPU, "Sending fetch for addr %#x(pa: %#x)\n",
590 req->getVaddr(), req->getPaddr());
591 ifetch_pkt = new Packet(req, MemCmd::ReadReq, Packet::Broadcast);
592 ifetch_pkt->dataStatic(&inst);
593 DPRINTF(SimpleCPU, " -- pkt addr: %#x\n", ifetch_pkt->getAddr());
594
595 if (!icachePort.sendTiming(ifetch_pkt)) {
596 // Need to wait for retry
597 _status = IcacheRetry;
598 } else {
599 // Need to wait for cache to respond
600 _status = IcacheWaitResponse;
601 // ownership of packet transferred to memory system
602 ifetch_pkt = NULL;
603 }
604 } else {
605 DPRINTF(SimpleCPU, "Translation of addr %#x faulted\n", req->getVaddr());
606 delete req;
607 // fetch fault: advance directly to next instruction (fault handler)
608 _status = Running;
609 advanceInst(fault);
610 }
611
612 numCycles += tickToCycles(curTick() - previousTick);
613 previousTick = curTick();
614 }
615
616
617 void
618 TimingSimpleCPU::advanceInst(Fault fault)
619 {
620
621 if (_status == Faulting)
622 return;
623
624 if (fault != NoFault) {
625 advancePC(fault);
626 DPRINTF(SimpleCPU, "Fault occured, scheduling fetch event\n");
627 reschedule(fetchEvent, nextCycle(), true);
628 _status = Faulting;
629 return;
630 }
631
632
633 if (!stayAtPC)
634 advancePC(fault);
635
636 if (_status == Running) {
637 // kick off fetch of next instruction... callback from icache
638 // response will cause that instruction to be executed,
639 // keeping the CPU running.
640 fetch();
641 }
642 }
643
644
645 void
646 TimingSimpleCPU::completeIfetch(PacketPtr pkt)
647 {
648 DPRINTF(SimpleCPU, "Complete ICache Fetch for addr %#x\n", pkt ?
649 pkt->getAddr() : 0);
650
651 // received a response from the icache: execute the received
652 // instruction
653
654 assert(!pkt || !pkt->isError());
655 assert(_status == IcacheWaitResponse);
656
657 _status = Running;
658
659 numCycles += tickToCycles(curTick() - previousTick);
660 previousTick = curTick();
661
662 if (getState() == SimObject::Draining) {
663 if (pkt) {
664 delete pkt->req;
665 delete pkt;
666 }
667
668 completeDrain();
669 return;
670 }
671
672 preExecute();
673 if (curStaticInst && curStaticInst->isMemRef()) {
674 // load or store: just send to dcache
675 Fault fault = curStaticInst->initiateAcc(this, traceData);
676
677 // If we're not running now the instruction will complete in a dcache
678 // response callback or the instruction faulted and has started an
679 // ifetch
680 if (_status == Running) {
681 if (fault != NoFault && traceData) {
682 // If there was a fault, we shouldn't trace this instruction.
683 delete traceData;
684 traceData = NULL;
685 }
686
687 postExecute();
688 // @todo remove me after debugging with legion done
689 if (curStaticInst && (!curStaticInst->isMicroop() ||
690 curStaticInst->isFirstMicroop()))
691 instCnt++;
692 advanceInst(fault);
693 }
694 } else if (curStaticInst) {
695 // non-memory instruction: execute completely now
696 Fault fault = curStaticInst->execute(this, traceData);
697
698 // keep an instruction count
699 if (fault == NoFault)
700 countInst();
701 else if (traceData && !DTRACE(ExecFaulting)) {
702 delete traceData;
703 traceData = NULL;
704 }
705
706 postExecute();
707 // @todo remove me after debugging with legion done
708 if (curStaticInst && (!curStaticInst->isMicroop() ||
709 curStaticInst->isFirstMicroop()))
710 instCnt++;
711 advanceInst(fault);
712 } else {
713 advanceInst(NoFault);
714 }
715
716 if (pkt) {
717 delete pkt->req;
718 delete pkt;
719 }
720 }
721
722 void
723 TimingSimpleCPU::IcachePort::ITickEvent::process()
724 {
725 cpu->completeIfetch(pkt);
726 }
727
728 bool
729 TimingSimpleCPU::IcachePort::recvTiming(PacketPtr pkt)
730 {
731 if (pkt->isResponse() && !pkt->wasNacked()) {
732 DPRINTF(SimpleCPU, "Received timing response %#x\n", pkt->getAddr());
733 // delay processing of returned data until next CPU clock edge
734 Tick next_tick = cpu->nextCycle(curTick());
735
736 if (next_tick == curTick())
737 cpu->completeIfetch(pkt);
738 else
739 tickEvent.schedule(pkt, next_tick);
740
741 return true;
742 } else if (pkt->wasNacked()) {
743 assert(cpu->_status == IcacheWaitResponse);
744 pkt->reinitNacked();
745 if (!sendTiming(pkt)) {
746 cpu->_status = IcacheRetry;
747 cpu->ifetch_pkt = pkt;
748 }
749 }
750 //Snooping a Coherence Request, do nothing
751 return true;
752 }
753
754 void
755 TimingSimpleCPU::IcachePort::recvRetry()
756 {
757 // we shouldn't get a retry unless we have a packet that we're
758 // waiting to transmit
759 assert(cpu->ifetch_pkt != NULL);
760 assert(cpu->_status == IcacheRetry);
761 PacketPtr tmp = cpu->ifetch_pkt;
762 if (sendTiming(tmp)) {
763 cpu->_status = IcacheWaitResponse;
764 cpu->ifetch_pkt = NULL;
765 }
766 }
767
768 void
769 TimingSimpleCPU::completeDataAccess(PacketPtr pkt)
770 {
771 // received a response from the dcache: complete the load or store
772 // instruction
773 assert(!pkt->isError());
774 assert(_status == DcacheWaitResponse || _status == DTBWaitResponse ||
775 pkt->req->getFlags().isSet(Request::NO_ACCESS));
776
777 numCycles += tickToCycles(curTick() - previousTick);
778 previousTick = curTick();
779
780 if (pkt->senderState) {
781 SplitFragmentSenderState * send_state =
782 dynamic_cast<SplitFragmentSenderState *>(pkt->senderState);
783 assert(send_state);
784 delete pkt->req;
785 delete pkt;
786 PacketPtr big_pkt = send_state->bigPkt;
787 delete send_state;
788
789 SplitMainSenderState * main_send_state =
790 dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
791 assert(main_send_state);
792 // Record the fact that this packet is no longer outstanding.
793 assert(main_send_state->outstanding != 0);
794 main_send_state->outstanding--;
795
796 if (main_send_state->outstanding) {
797 return;
798 } else {
799 delete main_send_state;
800 big_pkt->senderState = NULL;
801 pkt = big_pkt;
802 }
803 }
804
805 _status = Running;
806
807 Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
808
809 // keep an instruction count
810 if (fault == NoFault)
811 countInst();
812 else if (traceData) {
813 // If there was a fault, we shouldn't trace this instruction.
814 delete traceData;
815 traceData = NULL;
816 }
817
818 // the locked flag may be cleared on the response packet, so check
819 // pkt->req and not pkt to see if it was a load-locked
820 if (pkt->isRead() && pkt->req->isLLSC()) {
821 TheISA::handleLockedRead(thread, pkt->req);
822 }
823
824 delete pkt->req;
825 delete pkt;
826
827 postExecute();
828
829 if (getState() == SimObject::Draining) {
830 advancePC(fault);
831 completeDrain();
832
833 return;
834 }
835
836 advanceInst(fault);
837 }
838
839
840 void
841 TimingSimpleCPU::completeDrain()
842 {
843 DPRINTF(Config, "Done draining\n");
844 changeState(SimObject::Drained);
845 drainEvent->process();
846 }
847
848 bool
849 TimingSimpleCPU::DcachePort::recvTiming(PacketPtr pkt)
850 {
851 if (pkt->isResponse() && !pkt->wasNacked()) {
852 // delay processing of returned data until next CPU clock edge
853 Tick next_tick = cpu->nextCycle(curTick());
854
855 if (next_tick == curTick()) {
856 cpu->completeDataAccess(pkt);
857 } else {
858 if (!tickEvent.scheduled()) {
859 tickEvent.schedule(pkt, next_tick);
860 } else {
861 // In the case of a split transaction and a cache that is
862 // faster than a CPU we could get two responses before
863 // next_tick expires
864 if (!retryEvent.scheduled())
865 cpu->schedule(retryEvent, next_tick);
866 return false;
867 }
868 }
869
870 return true;
871 }
872 else if (pkt->wasNacked()) {
873 assert(cpu->_status == DcacheWaitResponse);
874 pkt->reinitNacked();
875 if (!sendTiming(pkt)) {
876 cpu->_status = DcacheRetry;
877 cpu->dcache_pkt = pkt;
878 }
879 }
880 //Snooping a Coherence Request, do nothing
881 return true;
882 }
883
884 void
885 TimingSimpleCPU::DcachePort::DTickEvent::process()
886 {
887 cpu->completeDataAccess(pkt);
888 }
889
890 void
891 TimingSimpleCPU::DcachePort::recvRetry()
892 {
893 // we shouldn't get a retry unless we have a packet that we're
894 // waiting to transmit
895 assert(cpu->dcache_pkt != NULL);
896 assert(cpu->_status == DcacheRetry);
897 PacketPtr tmp = cpu->dcache_pkt;
898 if (tmp->senderState) {
899 // This is a packet from a split access.
900 SplitFragmentSenderState * send_state =
901 dynamic_cast<SplitFragmentSenderState *>(tmp->senderState);
902 assert(send_state);
903 PacketPtr big_pkt = send_state->bigPkt;
904
905 SplitMainSenderState * main_send_state =
906 dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
907 assert(main_send_state);
908
909 if (sendTiming(tmp)) {
910 // If we were able to send without retrying, record that fact
911 // and try sending the other fragment.
912 send_state->clearFromParent();
913 int other_index = main_send_state->getPendingFragment();
914 if (other_index > 0) {
915 tmp = main_send_state->fragments[other_index];
916 cpu->dcache_pkt = tmp;
917 if ((big_pkt->isRead() && cpu->handleReadPacket(tmp)) ||
918 (big_pkt->isWrite() && cpu->handleWritePacket())) {
919 main_send_state->fragments[other_index] = NULL;
920 }
921 } else {
922 cpu->_status = DcacheWaitResponse;
923 // memory system takes ownership of packet
924 cpu->dcache_pkt = NULL;
925 }
926 }
927 } else if (sendTiming(tmp)) {
928 cpu->_status = DcacheWaitResponse;
929 // memory system takes ownership of packet
930 cpu->dcache_pkt = NULL;
931 }
932 }
933
934 TimingSimpleCPU::IprEvent::IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu,
935 Tick t)
936 : pkt(_pkt), cpu(_cpu)
937 {
938 cpu->schedule(this, t);
939 }
940
941 void
942 TimingSimpleCPU::IprEvent::process()
943 {
944 cpu->completeDataAccess(pkt);
945 }
946
947 const char *
948 TimingSimpleCPU::IprEvent::description() const
949 {
950 return "Timing Simple CPU Delay IPR event";
951 }
952
953
954 void
955 TimingSimpleCPU::printAddr(Addr a)
956 {
957 dcachePort.printAddr(a);
958 }
959
960
961 ////////////////////////////////////////////////////////////////////////
962 //
963 // TimingSimpleCPU Simulation Object
964 //
965 TimingSimpleCPU *
966 TimingSimpleCPUParams::create()
967 {
968 numThreads = 1;
969 if (!FullSystem && workload.size() != 1)
970 panic("only one workload allowed");
971 return new TimingSimpleCPU(this);
972 }