Change ExecContext to ThreadContext. This is being renamed to differentiate between...
[gem5.git] / src / cpu / simple / timing.cc
1 /*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31 #include "arch/utility.hh"
32 #include "cpu/exetrace.hh"
33 #include "cpu/simple/timing.hh"
34 #include "mem/packet_impl.hh"
35 #include "sim/builder.hh"
36
37 using namespace std;
38 using namespace TheISA;
39
40
41 void
42 TimingSimpleCPU::init()
43 {
44 //Create Memory Ports (conect them up)
45 Port *mem_dport = mem->getPort("");
46 dcachePort.setPeer(mem_dport);
47 mem_dport->setPeer(&dcachePort);
48
49 Port *mem_iport = mem->getPort("");
50 icachePort.setPeer(mem_iport);
51 mem_iport->setPeer(&icachePort);
52
53 BaseCPU::init();
54 #if FULL_SYSTEM
55 for (int i = 0; i < threadContexts.size(); ++i) {
56 ThreadContext *tc = threadContexts[i];
57
58 // initialize CPU, including PC
59 TheISA::initCPU(tc, tc->readCpuId());
60 }
61 #endif
62 }
63
64 Tick
65 TimingSimpleCPU::CpuPort::recvAtomic(Packet *pkt)
66 {
67 panic("TimingSimpleCPU doesn't expect recvAtomic callback!");
68 return curTick;
69 }
70
71 void
72 TimingSimpleCPU::CpuPort::recvFunctional(Packet *pkt)
73 {
74 panic("TimingSimpleCPU doesn't expect recvFunctional callback!");
75 }
76
77 void
78 TimingSimpleCPU::CpuPort::recvStatusChange(Status status)
79 {
80 if (status == RangeChange)
81 return;
82
83 panic("TimingSimpleCPU doesn't expect recvStatusChange callback!");
84 }
85
86 TimingSimpleCPU::TimingSimpleCPU(Params *p)
87 : BaseSimpleCPU(p), icachePort(this), dcachePort(this)
88 {
89 _status = Idle;
90 ifetch_pkt = dcache_pkt = NULL;
91 }
92
93
94 TimingSimpleCPU::~TimingSimpleCPU()
95 {
96 }
97
98 void
99 TimingSimpleCPU::serialize(ostream &os)
100 {
101 BaseSimpleCPU::serialize(os);
102 SERIALIZE_ENUM(_status);
103 }
104
105 void
106 TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
107 {
108 BaseSimpleCPU::unserialize(cp, section);
109 UNSERIALIZE_ENUM(_status);
110 }
111
112 void
113 TimingSimpleCPU::switchOut(Sampler *s)
114 {
115 sampler = s;
116 if (status() == Running) {
117 _status = SwitchedOut;
118 }
119 sampler->signalSwitched();
120 }
121
122
123 void
124 TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
125 {
126 BaseCPU::takeOverFrom(oldCPU);
127
128 // if any of this CPU's ThreadContexts are active, mark the CPU as
129 // running and schedule its tick event.
130 for (int i = 0; i < threadContexts.size(); ++i) {
131 ThreadContext *tc = threadContexts[i];
132 if (tc->status() == ThreadContext::Active && _status != Running) {
133 _status = Running;
134 break;
135 }
136 }
137 }
138
139
140 void
141 TimingSimpleCPU::activateContext(int thread_num, int delay)
142 {
143 assert(thread_num == 0);
144 assert(cpuXC);
145
146 assert(_status == Idle);
147
148 notIdleFraction++;
149 _status = Running;
150 // kick things off by initiating the fetch of the next instruction
151 Event *e =
152 new EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch>(this, true);
153 e->schedule(curTick + cycles(delay));
154 }
155
156
157 void
158 TimingSimpleCPU::suspendContext(int thread_num)
159 {
160 assert(thread_num == 0);
161 assert(cpuXC);
162
163 assert(_status == Running);
164
165 // just change status to Idle... if status != Running,
166 // completeInst() will not initiate fetch of next instruction.
167
168 notIdleFraction--;
169 _status = Idle;
170 }
171
172
173 template <class T>
174 Fault
175 TimingSimpleCPU::read(Addr addr, T &data, unsigned flags)
176 {
177 // need to fill in CPU & thread IDs here
178 Request *data_read_req = new Request();
179
180 data_read_req->setVirt(0, addr, sizeof(T), flags, cpuXC->readPC());
181
182 if (traceData) {
183 traceData->setAddr(data_read_req->getVaddr());
184 }
185
186 // translate to physical address
187 Fault fault = cpuXC->translateDataReadReq(data_read_req);
188
189 // Now do the access.
190 if (fault == NoFault) {
191 Packet *data_read_pkt =
192 new Packet(data_read_req, Packet::ReadReq, Packet::Broadcast);
193 data_read_pkt->dataDynamic<T>(new T);
194
195 if (!dcachePort.sendTiming(data_read_pkt)) {
196 _status = DcacheRetry;
197 dcache_pkt = data_read_pkt;
198 } else {
199 _status = DcacheWaitResponse;
200 dcache_pkt = NULL;
201 }
202 }
203
204 // This will need a new way to tell if it has a dcache attached.
205 if (data_read_req->getFlags() & UNCACHEABLE)
206 recordEvent("Uncached Read");
207
208 return fault;
209 }
210
211 #ifndef DOXYGEN_SHOULD_SKIP_THIS
212
213 template
214 Fault
215 TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
216
217 template
218 Fault
219 TimingSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
220
221 template
222 Fault
223 TimingSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
224
225 template
226 Fault
227 TimingSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
228
229 #endif //DOXYGEN_SHOULD_SKIP_THIS
230
231 template<>
232 Fault
233 TimingSimpleCPU::read(Addr addr, double &data, unsigned flags)
234 {
235 return read(addr, *(uint64_t*)&data, flags);
236 }
237
238 template<>
239 Fault
240 TimingSimpleCPU::read(Addr addr, float &data, unsigned flags)
241 {
242 return read(addr, *(uint32_t*)&data, flags);
243 }
244
245
246 template<>
247 Fault
248 TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
249 {
250 return read(addr, (uint32_t&)data, flags);
251 }
252
253
254 template <class T>
255 Fault
256 TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
257 {
258 // need to fill in CPU & thread IDs here
259 Request *data_write_req = new Request();
260 data_write_req->setVirt(0, addr, sizeof(T), flags, cpuXC->readPC());
261
262 // translate to physical address
263 Fault fault = cpuXC->translateDataWriteReq(data_write_req);
264 // Now do the access.
265 if (fault == NoFault) {
266 Packet *data_write_pkt =
267 new Packet(data_write_req, Packet::WriteReq, Packet::Broadcast);
268 data_write_pkt->allocate();
269 data_write_pkt->set(data);
270
271 if (!dcachePort.sendTiming(data_write_pkt)) {
272 _status = DcacheRetry;
273 dcache_pkt = data_write_pkt;
274 } else {
275 _status = DcacheWaitResponse;
276 dcache_pkt = NULL;
277 }
278 }
279
280 // This will need a new way to tell if it's hooked up to a cache or not.
281 if (data_write_req->getFlags() & UNCACHEABLE)
282 recordEvent("Uncached Write");
283
284 // If the write needs to have a fault on the access, consider calling
285 // changeStatus() and changing it to "bad addr write" or something.
286 return fault;
287 }
288
289
290 #ifndef DOXYGEN_SHOULD_SKIP_THIS
291 template
292 Fault
293 TimingSimpleCPU::write(uint64_t data, Addr addr,
294 unsigned flags, uint64_t *res);
295
296 template
297 Fault
298 TimingSimpleCPU::write(uint32_t data, Addr addr,
299 unsigned flags, uint64_t *res);
300
301 template
302 Fault
303 TimingSimpleCPU::write(uint16_t data, Addr addr,
304 unsigned flags, uint64_t *res);
305
306 template
307 Fault
308 TimingSimpleCPU::write(uint8_t data, Addr addr,
309 unsigned flags, uint64_t *res);
310
311 #endif //DOXYGEN_SHOULD_SKIP_THIS
312
313 template<>
314 Fault
315 TimingSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
316 {
317 return write(*(uint64_t*)&data, addr, flags, res);
318 }
319
320 template<>
321 Fault
322 TimingSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
323 {
324 return write(*(uint32_t*)&data, addr, flags, res);
325 }
326
327
328 template<>
329 Fault
330 TimingSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
331 {
332 return write((uint32_t)data, addr, flags, res);
333 }
334
335
336 void
337 TimingSimpleCPU::fetch()
338 {
339 checkForInterrupts();
340
341 // need to fill in CPU & thread IDs here
342 Request *ifetch_req = new Request();
343 Fault fault = setupFetchRequest(ifetch_req);
344
345 ifetch_pkt = new Packet(ifetch_req, Packet::ReadReq, Packet::Broadcast);
346 ifetch_pkt->dataStatic(&inst);
347
348 if (fault == NoFault) {
349 if (!icachePort.sendTiming(ifetch_pkt)) {
350 // Need to wait for retry
351 _status = IcacheRetry;
352 } else {
353 // Need to wait for cache to respond
354 _status = IcacheWaitResponse;
355 // ownership of packet transferred to memory system
356 ifetch_pkt = NULL;
357 }
358 } else {
359 // fetch fault: advance directly to next instruction (fault handler)
360 advanceInst(fault);
361 }
362 }
363
364
365 void
366 TimingSimpleCPU::advanceInst(Fault fault)
367 {
368 advancePC(fault);
369
370 if (_status == Running) {
371 // kick off fetch of next instruction... callback from icache
372 // response will cause that instruction to be executed,
373 // keeping the CPU running.
374 fetch();
375 }
376 }
377
378
379 void
380 TimingSimpleCPU::completeIfetch(Packet *pkt)
381 {
382 // received a response from the icache: execute the received
383 // instruction
384 assert(pkt->result == Packet::Success);
385 assert(_status == IcacheWaitResponse);
386 _status = Running;
387
388 delete pkt->req;
389 delete pkt;
390
391 preExecute();
392 if (curStaticInst->isMemRef() && !curStaticInst->isDataPrefetch()) {
393 // load or store: just send to dcache
394 Fault fault = curStaticInst->initiateAcc(this, traceData);
395 if (fault == NoFault) {
396 // successfully initiated access: instruction will
397 // complete in dcache response callback
398 assert(_status == DcacheWaitResponse);
399 } else {
400 // fault: complete now to invoke fault handler
401 postExecute();
402 advanceInst(fault);
403 }
404 } else {
405 // non-memory instruction: execute completely now
406 Fault fault = curStaticInst->execute(this, traceData);
407 postExecute();
408 advanceInst(fault);
409 }
410 }
411
412
413 bool
414 TimingSimpleCPU::IcachePort::recvTiming(Packet *pkt)
415 {
416 cpu->completeIfetch(pkt);
417 return true;
418 }
419
420 void
421 TimingSimpleCPU::IcachePort::recvRetry()
422 {
423 // we shouldn't get a retry unless we have a packet that we're
424 // waiting to transmit
425 assert(cpu->ifetch_pkt != NULL);
426 assert(cpu->_status == IcacheRetry);
427 Packet *tmp = cpu->ifetch_pkt;
428 if (sendTiming(tmp)) {
429 cpu->_status = IcacheWaitResponse;
430 cpu->ifetch_pkt = NULL;
431 }
432 }
433
434 void
435 TimingSimpleCPU::completeDataAccess(Packet *pkt)
436 {
437 // received a response from the dcache: complete the load or store
438 // instruction
439 assert(pkt->result == Packet::Success);
440 assert(_status == DcacheWaitResponse);
441 _status = Running;
442
443 Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
444
445 delete pkt->req;
446 delete pkt;
447
448 postExecute();
449 advanceInst(fault);
450 }
451
452
453
454 bool
455 TimingSimpleCPU::DcachePort::recvTiming(Packet *pkt)
456 {
457 cpu->completeDataAccess(pkt);
458 return true;
459 }
460
461 void
462 TimingSimpleCPU::DcachePort::recvRetry()
463 {
464 // we shouldn't get a retry unless we have a packet that we're
465 // waiting to transmit
466 assert(cpu->dcache_pkt != NULL);
467 assert(cpu->_status == DcacheRetry);
468 Packet *tmp = cpu->dcache_pkt;
469 if (sendTiming(tmp)) {
470 cpu->_status = DcacheWaitResponse;
471 cpu->dcache_pkt = NULL;
472 }
473 }
474
475
476 ////////////////////////////////////////////////////////////////////////
477 //
478 // TimingSimpleCPU Simulation Object
479 //
480 BEGIN_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
481
482 Param<Counter> max_insts_any_thread;
483 Param<Counter> max_insts_all_threads;
484 Param<Counter> max_loads_any_thread;
485 Param<Counter> max_loads_all_threads;
486 SimObjectParam<MemObject *> mem;
487
488 #if FULL_SYSTEM
489 SimObjectParam<AlphaITB *> itb;
490 SimObjectParam<AlphaDTB *> dtb;
491 SimObjectParam<System *> system;
492 Param<int> cpu_id;
493 Param<Tick> profile;
494 #else
495 SimObjectParam<Process *> workload;
496 #endif // FULL_SYSTEM
497
498 Param<int> clock;
499
500 Param<bool> defer_registration;
501 Param<int> width;
502 Param<bool> function_trace;
503 Param<Tick> function_trace_start;
504 Param<bool> simulate_stalls;
505
506 END_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
507
508 BEGIN_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
509
510 INIT_PARAM(max_insts_any_thread,
511 "terminate when any thread reaches this inst count"),
512 INIT_PARAM(max_insts_all_threads,
513 "terminate when all threads have reached this inst count"),
514 INIT_PARAM(max_loads_any_thread,
515 "terminate when any thread reaches this load count"),
516 INIT_PARAM(max_loads_all_threads,
517 "terminate when all threads have reached this load count"),
518 INIT_PARAM(mem, "memory"),
519
520 #if FULL_SYSTEM
521 INIT_PARAM(itb, "Instruction TLB"),
522 INIT_PARAM(dtb, "Data TLB"),
523 INIT_PARAM(system, "system object"),
524 INIT_PARAM(cpu_id, "processor ID"),
525 INIT_PARAM(profile, ""),
526 #else
527 INIT_PARAM(workload, "processes to run"),
528 #endif // FULL_SYSTEM
529
530 INIT_PARAM(clock, "clock speed"),
531 INIT_PARAM(defer_registration, "defer system registration (for sampling)"),
532 INIT_PARAM(width, "cpu width"),
533 INIT_PARAM(function_trace, "Enable function trace"),
534 INIT_PARAM(function_trace_start, "Cycle to start function trace"),
535 INIT_PARAM(simulate_stalls, "Simulate cache stall cycles")
536
537 END_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
538
539
540 CREATE_SIM_OBJECT(TimingSimpleCPU)
541 {
542 TimingSimpleCPU::Params *params = new TimingSimpleCPU::Params();
543 params->name = getInstanceName();
544 params->numberOfThreads = 1;
545 params->max_insts_any_thread = max_insts_any_thread;
546 params->max_insts_all_threads = max_insts_all_threads;
547 params->max_loads_any_thread = max_loads_any_thread;
548 params->max_loads_all_threads = max_loads_all_threads;
549 params->deferRegistration = defer_registration;
550 params->clock = clock;
551 params->functionTrace = function_trace;
552 params->functionTraceStart = function_trace_start;
553 params->mem = mem;
554
555 #if FULL_SYSTEM
556 params->itb = itb;
557 params->dtb = dtb;
558 params->system = system;
559 params->cpu_id = cpu_id;
560 params->profile = profile;
561 #else
562 params->process = workload;
563 #endif
564
565 TimingSimpleCPU *cpu = new TimingSimpleCPU(params);
566 return cpu;
567 }
568
569 REGISTER_SIM_OBJECT("TimingSimpleCPU", TimingSimpleCPU)
570