inorder: add insts to cpu event
[gem5.git] / src / cpu / simple_thread.hh
1 /*
2 * Copyright (c) 2001-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 * Nathan Binkert
30 */
31
32 #ifndef __CPU_SIMPLE_THREAD_HH__
33 #define __CPU_SIMPLE_THREAD_HH__
34
35 #include "arch/isa.hh"
36 #include "arch/isa_traits.hh"
37 #include "arch/registers.hh"
38 #include "arch/tlb.hh"
39 #include "arch/types.hh"
40 #include "base/types.hh"
41 #include "config/full_system.hh"
42 #include "config/the_isa.hh"
43 #include "cpu/thread_context.hh"
44 #include "cpu/thread_state.hh"
45 #include "mem/request.hh"
46 #include "sim/byteswap.hh"
47 #include "sim/eventq.hh"
48 #include "sim/serialize.hh"
49
50 class BaseCPU;
51
52 #if FULL_SYSTEM
53
54 #include "sim/system.hh"
55
56 class FunctionProfile;
57 class ProfileNode;
58 class FunctionalPort;
59 class PhysicalPort;
60
61 namespace TheISA {
62 namespace Kernel {
63 class Statistics;
64 };
65 };
66
67 #else // !FULL_SYSTEM
68
69 #include "sim/process.hh"
70 #include "mem/page_table.hh"
71 class TranslatingPort;
72
73 #endif // FULL_SYSTEM
74
75 /**
76 * The SimpleThread object provides a combination of the ThreadState
77 * object and the ThreadContext interface. It implements the
78 * ThreadContext interface so that a ProxyThreadContext class can be
79 * made using SimpleThread as the template parameter (see
80 * thread_context.hh). It adds to the ThreadState object by adding all
81 * the objects needed for simple functional execution, including a
82 * simple architectural register file, and pointers to the ITB and DTB
83 * in full system mode. For CPU models that do not need more advanced
84 * ways to hold state (i.e. a separate physical register file, or
85 * separate fetch and commit PC's), this SimpleThread class provides
86 * all the necessary state for full architecture-level functional
87 * simulation. See the AtomicSimpleCPU or TimingSimpleCPU for
88 * examples.
89 */
90
91 class SimpleThread : public ThreadState
92 {
93 protected:
94 typedef TheISA::MachInst MachInst;
95 typedef TheISA::MiscReg MiscReg;
96 typedef TheISA::FloatReg FloatReg;
97 typedef TheISA::FloatRegBits FloatRegBits;
98 public:
99 typedef ThreadContext::Status Status;
100
101 protected:
102 union {
103 FloatReg f[TheISA::NumFloatRegs];
104 FloatRegBits i[TheISA::NumFloatRegs];
105 } floatRegs;
106 TheISA::IntReg intRegs[TheISA::NumIntRegs];
107 TheISA::ISA isa; // one "instance" of the current ISA.
108
109 /** The current microcode pc for the currently executing macro
110 * operation.
111 */
112 MicroPC microPC;
113
114 /** The next microcode pc for the currently executing macro
115 * operation.
116 */
117 MicroPC nextMicroPC;
118
119 /** The current pc.
120 */
121 Addr PC;
122
123 /** The next pc.
124 */
125 Addr nextPC;
126
127 /** The next next pc.
128 */
129 Addr nextNPC;
130
131 public:
132 // pointer to CPU associated with this SimpleThread
133 BaseCPU *cpu;
134
135 ProxyThreadContext<SimpleThread> *tc;
136
137 System *system;
138
139 TheISA::TLB *itb;
140 TheISA::TLB *dtb;
141
142 // constructor: initialize SimpleThread from given process structure
143 #if FULL_SYSTEM
144 SimpleThread(BaseCPU *_cpu, int _thread_num, System *_system,
145 TheISA::TLB *_itb, TheISA::TLB *_dtb,
146 bool use_kernel_stats = true);
147 #else
148 SimpleThread(BaseCPU *_cpu, int _thread_num, Process *_process,
149 TheISA::TLB *_itb, TheISA::TLB *_dtb);
150 #endif
151
152 SimpleThread();
153
154 virtual ~SimpleThread();
155
156 virtual void takeOverFrom(ThreadContext *oldContext);
157
158 void regStats(const std::string &name);
159
160 void copyTC(ThreadContext *context);
161
162 void copyState(ThreadContext *oldContext);
163
164 void serialize(std::ostream &os);
165 void unserialize(Checkpoint *cp, const std::string &section);
166
167 /***************************************************************
168 * SimpleThread functions to provide CPU with access to various
169 * state.
170 **************************************************************/
171
172 /** Returns the pointer to this SimpleThread's ThreadContext. Used
173 * when a ThreadContext must be passed to objects outside of the
174 * CPU.
175 */
176 ThreadContext *getTC() { return tc; }
177
178 void demapPage(Addr vaddr, uint64_t asn)
179 {
180 itb->demapPage(vaddr, asn);
181 dtb->demapPage(vaddr, asn);
182 }
183
184 void demapInstPage(Addr vaddr, uint64_t asn)
185 {
186 itb->demapPage(vaddr, asn);
187 }
188
189 void demapDataPage(Addr vaddr, uint64_t asn)
190 {
191 dtb->demapPage(vaddr, asn);
192 }
193
194 #if FULL_SYSTEM
195 void dumpFuncProfile();
196
197 Fault hwrei();
198
199 bool simPalCheck(int palFunc);
200
201 #endif
202
203 /*******************************************
204 * ThreadContext interface functions.
205 ******************************************/
206
207 BaseCPU *getCpuPtr() { return cpu; }
208
209 TheISA::TLB *getITBPtr() { return itb; }
210
211 TheISA::TLB *getDTBPtr() { return dtb; }
212
213 System *getSystemPtr() { return system; }
214
215 #if FULL_SYSTEM
216 FunctionalPort *getPhysPort() { return physPort; }
217
218 /** Return a virtual port. This port cannot be cached locally in an object.
219 * After a CPU switch it may point to the wrong memory object which could
220 * mean stale data.
221 */
222 VirtualPort *getVirtPort() { return virtPort; }
223 #endif
224
225 Status status() const { return _status; }
226
227 void setStatus(Status newStatus) { _status = newStatus; }
228
229 /// Set the status to Active. Optional delay indicates number of
230 /// cycles to wait before beginning execution.
231 void activate(int delay = 1);
232
233 /// Set the status to Suspended.
234 void suspend();
235
236 /// Set the status to Halted.
237 void halt();
238
239 virtual bool misspeculating();
240
241 Fault instRead(RequestPtr &req)
242 {
243 panic("instRead not implemented");
244 // return funcPhysMem->read(req, inst);
245 return NoFault;
246 }
247
248 void copyArchRegs(ThreadContext *tc);
249
250 void clearArchRegs()
251 {
252 microPC = 0;
253 nextMicroPC = 1;
254 PC = nextPC = nextNPC = 0;
255 memset(intRegs, 0, sizeof(intRegs));
256 memset(floatRegs.i, 0, sizeof(floatRegs.i));
257 }
258
259 //
260 // New accessors for new decoder.
261 //
262 uint64_t readIntReg(int reg_idx)
263 {
264 int flatIndex = isa.flattenIntIndex(reg_idx);
265 assert(flatIndex < TheISA::NumIntRegs);
266 uint64_t regVal = intRegs[flatIndex];
267 DPRINTF(IntRegs, "Reading int reg %d as %#x.\n", reg_idx, regVal);
268 return regVal;
269 }
270
271 FloatReg readFloatReg(int reg_idx)
272 {
273 int flatIndex = isa.flattenFloatIndex(reg_idx);
274 assert(flatIndex < TheISA::NumFloatRegs);
275 return floatRegs.f[flatIndex];
276 }
277
278 FloatRegBits readFloatRegBits(int reg_idx)
279 {
280 int flatIndex = isa.flattenFloatIndex(reg_idx);
281 assert(flatIndex < TheISA::NumFloatRegs);
282 return floatRegs.i[flatIndex];
283 }
284
285 void setIntReg(int reg_idx, uint64_t val)
286 {
287 int flatIndex = isa.flattenIntIndex(reg_idx);
288 assert(flatIndex < TheISA::NumIntRegs);
289 DPRINTF(IntRegs, "Setting int reg %d to %#x.\n", reg_idx, val);
290 intRegs[flatIndex] = val;
291 }
292
293 void setFloatReg(int reg_idx, FloatReg val)
294 {
295 int flatIndex = isa.flattenFloatIndex(reg_idx);
296 assert(flatIndex < TheISA::NumFloatRegs);
297 floatRegs.f[flatIndex] = val;
298 }
299
300 void setFloatRegBits(int reg_idx, FloatRegBits val)
301 {
302 int flatIndex = isa.flattenFloatIndex(reg_idx);
303 assert(flatIndex < TheISA::NumFloatRegs);
304 floatRegs.i[flatIndex] = val;
305 }
306
307 uint64_t readPC()
308 {
309 return PC;
310 }
311
312 void setPC(uint64_t val)
313 {
314 PC = val;
315 }
316
317 uint64_t readMicroPC()
318 {
319 return microPC;
320 }
321
322 void setMicroPC(uint64_t val)
323 {
324 microPC = val;
325 }
326
327 uint64_t readNextPC()
328 {
329 return nextPC;
330 }
331
332 void setNextPC(uint64_t val)
333 {
334 nextPC = val;
335 }
336
337 uint64_t readNextMicroPC()
338 {
339 return nextMicroPC;
340 }
341
342 void setNextMicroPC(uint64_t val)
343 {
344 nextMicroPC = val;
345 }
346
347 uint64_t readNextNPC()
348 {
349 #if ISA_HAS_DELAY_SLOT
350 return nextNPC;
351 #else
352 return nextPC + sizeof(TheISA::MachInst);
353 #endif
354 }
355
356 void setNextNPC(uint64_t val)
357 {
358 #if ISA_HAS_DELAY_SLOT
359 nextNPC = val;
360 #endif
361 }
362
363 MiscReg
364 readMiscRegNoEffect(int misc_reg, ThreadID tid = 0)
365 {
366 return isa.readMiscRegNoEffect(misc_reg);
367 }
368
369 MiscReg
370 readMiscReg(int misc_reg, ThreadID tid = 0)
371 {
372 return isa.readMiscReg(misc_reg, tc);
373 }
374
375 void
376 setMiscRegNoEffect(int misc_reg, const MiscReg &val, ThreadID tid = 0)
377 {
378 return isa.setMiscRegNoEffect(misc_reg, val);
379 }
380
381 void
382 setMiscReg(int misc_reg, const MiscReg &val, ThreadID tid = 0)
383 {
384 return isa.setMiscReg(misc_reg, val, tc);
385 }
386
387 int
388 flattenIntIndex(int reg)
389 {
390 return isa.flattenIntIndex(reg);
391 }
392
393 int
394 flattenFloatIndex(int reg)
395 {
396 return isa.flattenFloatIndex(reg);
397 }
398
399 unsigned readStCondFailures() { return storeCondFailures; }
400
401 void setStCondFailures(unsigned sc_failures)
402 { storeCondFailures = sc_failures; }
403
404 #if !FULL_SYSTEM
405 void syscall(int64_t callnum)
406 {
407 process->syscall(callnum, tc);
408 }
409 #endif
410 };
411
412
413 // for non-speculative execution context, spec_mode is always false
414 inline bool
415 SimpleThread::misspeculating()
416 {
417 return false;
418 }
419
420 #endif // __CPU_CPU_EXEC_CONTEXT_HH__