arch, cpu: Remove float type accessors.
[gem5.git] / src / cpu / simple_thread.hh
1 /*
2 * Copyright (c) 2011-2012, 2016 ARM Limited
3 * Copyright (c) 2013 Advanced Micro Devices, Inc.
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder. You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2001-2006 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Steve Reinhardt
42 * Nathan Binkert
43 */
44
45 #ifndef __CPU_SIMPLE_THREAD_HH__
46 #define __CPU_SIMPLE_THREAD_HH__
47
48 #include "arch/decoder.hh"
49 #include "arch/generic/tlb.hh"
50 #include "arch/isa.hh"
51 #include "arch/isa_traits.hh"
52 #include "arch/registers.hh"
53 #include "arch/types.hh"
54 #include "base/types.hh"
55 #include "config/the_isa.hh"
56 #include "cpu/thread_context.hh"
57 #include "cpu/thread_state.hh"
58 #include "debug/CCRegs.hh"
59 #include "debug/FloatRegs.hh"
60 #include "debug/IntRegs.hh"
61 #include "debug/VecRegs.hh"
62 #include "mem/page_table.hh"
63 #include "mem/request.hh"
64 #include "sim/byteswap.hh"
65 #include "sim/eventq.hh"
66 #include "sim/process.hh"
67 #include "sim/serialize.hh"
68 #include "sim/system.hh"
69
70 class BaseCPU;
71 class CheckerCPU;
72
73 class FunctionProfile;
74 class ProfileNode;
75
76 namespace TheISA {
77 namespace Kernel {
78 class Statistics;
79 }
80 }
81
82 /**
83 * The SimpleThread object provides a combination of the ThreadState
84 * object and the ThreadContext interface. It implements the
85 * ThreadContext interface so that a ProxyThreadContext class can be
86 * made using SimpleThread as the template parameter (see
87 * thread_context.hh). It adds to the ThreadState object by adding all
88 * the objects needed for simple functional execution, including a
89 * simple architectural register file, and pointers to the ITB and DTB
90 * in full system mode. For CPU models that do not need more advanced
91 * ways to hold state (i.e. a separate physical register file, or
92 * separate fetch and commit PC's), this SimpleThread class provides
93 * all the necessary state for full architecture-level functional
94 * simulation. See the AtomicSimpleCPU or TimingSimpleCPU for
95 * examples.
96 */
97
98 class SimpleThread : public ThreadState
99 {
100 protected:
101 typedef TheISA::MachInst MachInst;
102 typedef TheISA::MiscReg MiscReg;
103 typedef TheISA::FloatReg FloatReg;
104 typedef TheISA::FloatRegBits FloatRegBits;
105 typedef TheISA::CCReg CCReg;
106 using VecRegContainer = TheISA::VecRegContainer;
107 using VecElem = TheISA::VecElem;
108 public:
109 typedef ThreadContext::Status Status;
110
111 protected:
112 union {
113 FloatReg f[TheISA::NumFloatRegs];
114 FloatRegBits i[TheISA::NumFloatRegs];
115 } floatRegs;
116 TheISA::IntReg intRegs[TheISA::NumIntRegs];
117 VecRegContainer vecRegs[TheISA::NumVecRegs];
118 #ifdef ISA_HAS_CC_REGS
119 TheISA::CCReg ccRegs[TheISA::NumCCRegs];
120 #endif
121 TheISA::ISA *const isa; // one "instance" of the current ISA.
122
123 TheISA::PCState _pcState;
124
125 /** Did this instruction execute or is it predicated false */
126 bool predicate;
127
128 public:
129 std::string name() const
130 {
131 return csprintf("%s.[tid:%i]", baseCpu->name(), tc->threadId());
132 }
133
134 ProxyThreadContext<SimpleThread> *tc;
135
136 System *system;
137
138 BaseTLB *itb;
139 BaseTLB *dtb;
140
141 TheISA::Decoder decoder;
142
143 // constructor: initialize SimpleThread from given process structure
144 // FS
145 SimpleThread(BaseCPU *_cpu, int _thread_num, System *_system,
146 BaseTLB *_itb, BaseTLB *_dtb, TheISA::ISA *_isa,
147 bool use_kernel_stats = true);
148 // SE
149 SimpleThread(BaseCPU *_cpu, int _thread_num, System *_system,
150 Process *_process, BaseTLB *_itb, BaseTLB *_dtb,
151 TheISA::ISA *_isa);
152
153 virtual ~SimpleThread();
154
155 virtual void takeOverFrom(ThreadContext *oldContext);
156
157 void regStats(const std::string &name);
158
159 void copyState(ThreadContext *oldContext);
160
161 void serialize(CheckpointOut &cp) const override;
162 void unserialize(CheckpointIn &cp) override;
163 void startup();
164
165 /***************************************************************
166 * SimpleThread functions to provide CPU with access to various
167 * state.
168 **************************************************************/
169
170 /** Returns the pointer to this SimpleThread's ThreadContext. Used
171 * when a ThreadContext must be passed to objects outside of the
172 * CPU.
173 */
174 ThreadContext *getTC() { return tc; }
175
176 void demapPage(Addr vaddr, uint64_t asn)
177 {
178 itb->demapPage(vaddr, asn);
179 dtb->demapPage(vaddr, asn);
180 }
181
182 void demapInstPage(Addr vaddr, uint64_t asn)
183 {
184 itb->demapPage(vaddr, asn);
185 }
186
187 void demapDataPage(Addr vaddr, uint64_t asn)
188 {
189 dtb->demapPage(vaddr, asn);
190 }
191
192 void dumpFuncProfile();
193
194 Fault hwrei();
195
196 bool simPalCheck(int palFunc);
197
198 /*******************************************
199 * ThreadContext interface functions.
200 ******************************************/
201
202 BaseCPU *getCpuPtr() { return baseCpu; }
203
204 BaseTLB *getITBPtr() { return itb; }
205
206 BaseTLB *getDTBPtr() { return dtb; }
207
208 CheckerCPU *getCheckerCpuPtr() { return NULL; }
209
210 TheISA::Decoder *getDecoderPtr() { return &decoder; }
211
212 System *getSystemPtr() { return system; }
213
214 Status status() const { return _status; }
215
216 void setStatus(Status newStatus) { _status = newStatus; }
217
218 /// Set the status to Active.
219 void activate();
220
221 /// Set the status to Suspended.
222 void suspend();
223
224 /// Set the status to Halted.
225 void halt();
226
227 void copyArchRegs(ThreadContext *tc);
228
229 void clearArchRegs()
230 {
231 _pcState = 0;
232 memset(intRegs, 0, sizeof(intRegs));
233 memset(floatRegs.i, 0, sizeof(floatRegs.i));
234 for (int i = 0; i < TheISA::NumVecRegs; i++) {
235 vecRegs[i].zero();
236 }
237 #ifdef ISA_HAS_CC_REGS
238 memset(ccRegs, 0, sizeof(ccRegs));
239 #endif
240 isa->clear();
241 }
242
243 //
244 // New accessors for new decoder.
245 //
246 uint64_t readIntReg(int reg_idx)
247 {
248 int flatIndex = isa->flattenIntIndex(reg_idx);
249 assert(flatIndex < TheISA::NumIntRegs);
250 uint64_t regVal(readIntRegFlat(flatIndex));
251 DPRINTF(IntRegs, "Reading int reg %d (%d) as %#x.\n",
252 reg_idx, flatIndex, regVal);
253 return regVal;
254 }
255
256 FloatRegBits readFloatRegBits(int reg_idx)
257 {
258 int flatIndex = isa->flattenFloatIndex(reg_idx);
259 assert(flatIndex < TheISA::NumFloatRegs);
260 FloatRegBits regVal(readFloatRegBitsFlat(flatIndex));
261 DPRINTF(FloatRegs, "Reading float reg %d (%d) bits as %#x, %f.\n",
262 reg_idx, flatIndex, regVal, floatRegs.f[flatIndex]);
263 return regVal;
264 }
265
266 const VecRegContainer&
267 readVecReg(const RegId& reg) const
268 {
269 int flatIndex = isa->flattenVecIndex(reg.index());
270 assert(flatIndex < TheISA::NumVecRegs);
271 const VecRegContainer& regVal = readVecRegFlat(flatIndex);
272 DPRINTF(VecRegs, "Reading vector reg %d (%d) as %s.\n",
273 reg.index(), flatIndex, regVal.as<TheISA::VecElem>().print());
274 return regVal;
275 }
276
277 VecRegContainer&
278 getWritableVecReg(const RegId& reg)
279 {
280 int flatIndex = isa->flattenVecIndex(reg.index());
281 assert(flatIndex < TheISA::NumVecRegs);
282 VecRegContainer& regVal = getWritableVecRegFlat(flatIndex);
283 DPRINTF(VecRegs, "Reading vector reg %d (%d) as %s for modify.\n",
284 reg.index(), flatIndex, regVal.as<TheISA::VecElem>().print());
285 return regVal;
286 }
287
288 /** Vector Register Lane Interfaces. */
289 /** @{ */
290 /** Reads source vector <T> operand. */
291 template <typename T>
292 VecLaneT<T, true>
293 readVecLane(const RegId& reg) const
294 {
295 int flatIndex = isa->flattenVecIndex(reg.index());
296 assert(flatIndex < TheISA::NumVecRegs);
297 auto regVal = readVecLaneFlat<T>(flatIndex, reg.elemIndex());
298 DPRINTF(VecRegs, "Reading vector lane %d (%d)[%d] as %lx.\n",
299 reg.index(), flatIndex, reg.elemIndex(), regVal);
300 return regVal;
301 }
302
303 /** Reads source vector 8bit operand. */
304 virtual ConstVecLane8
305 readVec8BitLaneReg(const RegId& reg) const
306 { return readVecLane<uint8_t>(reg); }
307
308 /** Reads source vector 16bit operand. */
309 virtual ConstVecLane16
310 readVec16BitLaneReg(const RegId& reg) const
311 { return readVecLane<uint16_t>(reg); }
312
313 /** Reads source vector 32bit operand. */
314 virtual ConstVecLane32
315 readVec32BitLaneReg(const RegId& reg) const
316 { return readVecLane<uint32_t>(reg); }
317
318 /** Reads source vector 64bit operand. */
319 virtual ConstVecLane64
320 readVec64BitLaneReg(const RegId& reg) const
321 { return readVecLane<uint64_t>(reg); }
322
323 /** Write a lane of the destination vector register. */
324 template <typename LD>
325 void setVecLaneT(const RegId& reg, const LD& val)
326 {
327 int flatIndex = isa->flattenVecIndex(reg.index());
328 assert(flatIndex < TheISA::NumVecRegs);
329 setVecLaneFlat(flatIndex, reg.elemIndex(), val);
330 DPRINTF(VecRegs, "Reading vector lane %d (%d)[%d] to %lx.\n",
331 reg.index(), flatIndex, reg.elemIndex(), val);
332 }
333 virtual void setVecLane(const RegId& reg,
334 const LaneData<LaneSize::Byte>& val)
335 { return setVecLaneT(reg, val); }
336 virtual void setVecLane(const RegId& reg,
337 const LaneData<LaneSize::TwoByte>& val)
338 { return setVecLaneT(reg, val); }
339 virtual void setVecLane(const RegId& reg,
340 const LaneData<LaneSize::FourByte>& val)
341 { return setVecLaneT(reg, val); }
342 virtual void setVecLane(const RegId& reg,
343 const LaneData<LaneSize::EightByte>& val)
344 { return setVecLaneT(reg, val); }
345 /** @} */
346
347 const VecElem& readVecElem(const RegId& reg) const
348 {
349 int flatIndex = isa->flattenVecElemIndex(reg.index());
350 assert(flatIndex < TheISA::NumVecRegs);
351 const VecElem& regVal = readVecElemFlat(flatIndex, reg.elemIndex());
352 DPRINTF(VecRegs, "Reading element %d of vector reg %d (%d) as"
353 " %#x.\n", reg.elemIndex(), reg.index(), flatIndex, regVal);
354 return regVal;
355 }
356
357
358 CCReg readCCReg(int reg_idx)
359 {
360 #ifdef ISA_HAS_CC_REGS
361 int flatIndex = isa->flattenCCIndex(reg_idx);
362 assert(0 <= flatIndex);
363 assert(flatIndex < TheISA::NumCCRegs);
364 uint64_t regVal(readCCRegFlat(flatIndex));
365 DPRINTF(CCRegs, "Reading CC reg %d (%d) as %#x.\n",
366 reg_idx, flatIndex, regVal);
367 return regVal;
368 #else
369 panic("Tried to read a CC register.");
370 return 0;
371 #endif
372 }
373
374 void setIntReg(int reg_idx, uint64_t val)
375 {
376 int flatIndex = isa->flattenIntIndex(reg_idx);
377 assert(flatIndex < TheISA::NumIntRegs);
378 DPRINTF(IntRegs, "Setting int reg %d (%d) to %#x.\n",
379 reg_idx, flatIndex, val);
380 setIntRegFlat(flatIndex, val);
381 }
382
383 void setFloatRegBits(int reg_idx, FloatRegBits val)
384 {
385 int flatIndex = isa->flattenFloatIndex(reg_idx);
386 assert(flatIndex < TheISA::NumFloatRegs);
387 // XXX: Fix array out of bounds compiler error for gem5.fast
388 // when checkercpu enabled
389 if (flatIndex < TheISA::NumFloatRegs)
390 setFloatRegBitsFlat(flatIndex, val);
391 DPRINTF(FloatRegs, "Setting float reg %d (%d) bits to %#x, %#f.\n",
392 reg_idx, flatIndex, val, floatRegs.f[flatIndex]);
393 }
394
395 void setVecReg(const RegId& reg, const VecRegContainer& val)
396 {
397 int flatIndex = isa->flattenVecIndex(reg.index());
398 assert(flatIndex < TheISA::NumVecRegs);
399 setVecRegFlat(flatIndex, val);
400 DPRINTF(VecRegs, "Setting vector reg %d (%d) to %s.\n",
401 reg.index(), flatIndex, val.print());
402 }
403
404 void setVecElem(const RegId& reg, const VecElem& val)
405 {
406 int flatIndex = isa->flattenVecElemIndex(reg.index());
407 assert(flatIndex < TheISA::NumVecRegs);
408 setVecElemFlat(flatIndex, reg.elemIndex(), val);
409 DPRINTF(VecRegs, "Setting element %d of vector reg %d (%d) to"
410 " %#x.\n", reg.elemIndex(), reg.index(), flatIndex, val);
411 }
412
413 void setCCReg(int reg_idx, CCReg val)
414 {
415 #ifdef ISA_HAS_CC_REGS
416 int flatIndex = isa->flattenCCIndex(reg_idx);
417 assert(flatIndex < TheISA::NumCCRegs);
418 DPRINTF(CCRegs, "Setting CC reg %d (%d) to %#x.\n",
419 reg_idx, flatIndex, val);
420 setCCRegFlat(flatIndex, val);
421 #else
422 panic("Tried to set a CC register.");
423 #endif
424 }
425
426 TheISA::PCState
427 pcState()
428 {
429 return _pcState;
430 }
431
432 void
433 pcState(const TheISA::PCState &val)
434 {
435 _pcState = val;
436 }
437
438 void
439 pcStateNoRecord(const TheISA::PCState &val)
440 {
441 _pcState = val;
442 }
443
444 Addr
445 instAddr()
446 {
447 return _pcState.instAddr();
448 }
449
450 Addr
451 nextInstAddr()
452 {
453 return _pcState.nextInstAddr();
454 }
455
456 void
457 setNPC(Addr val)
458 {
459 _pcState.setNPC(val);
460 }
461
462 MicroPC
463 microPC()
464 {
465 return _pcState.microPC();
466 }
467
468 bool readPredicate()
469 {
470 return predicate;
471 }
472
473 void setPredicate(bool val)
474 {
475 predicate = val;
476 }
477
478 MiscReg
479 readMiscRegNoEffect(int misc_reg, ThreadID tid = 0) const
480 {
481 return isa->readMiscRegNoEffect(misc_reg);
482 }
483
484 MiscReg
485 readMiscReg(int misc_reg, ThreadID tid = 0)
486 {
487 return isa->readMiscReg(misc_reg, tc);
488 }
489
490 void
491 setMiscRegNoEffect(int misc_reg, const MiscReg &val, ThreadID tid = 0)
492 {
493 return isa->setMiscRegNoEffect(misc_reg, val);
494 }
495
496 void
497 setMiscReg(int misc_reg, const MiscReg &val, ThreadID tid = 0)
498 {
499 return isa->setMiscReg(misc_reg, val, tc);
500 }
501
502 RegId
503 flattenRegId(const RegId& regId) const
504 {
505 return isa->flattenRegId(regId);
506 }
507
508 unsigned readStCondFailures() { return storeCondFailures; }
509
510 void setStCondFailures(unsigned sc_failures)
511 { storeCondFailures = sc_failures; }
512
513 void syscall(int64_t callnum, Fault *fault)
514 {
515 process->syscall(callnum, tc, fault);
516 }
517
518 uint64_t readIntRegFlat(int idx) { return intRegs[idx]; }
519 void setIntRegFlat(int idx, uint64_t val) { intRegs[idx] = val; }
520
521 FloatRegBits readFloatRegBitsFlat(int idx) { return floatRegs.i[idx]; }
522 void setFloatRegBitsFlat(int idx, FloatRegBits val) {
523 floatRegs.i[idx] = val;
524 }
525
526 const VecRegContainer& readVecRegFlat(const RegIndex& reg) const
527 {
528 return vecRegs[reg];
529 }
530
531 VecRegContainer& getWritableVecRegFlat(const RegIndex& reg)
532 {
533 return vecRegs[reg];
534 }
535
536 void setVecRegFlat(const RegIndex& reg, const VecRegContainer& val)
537 {
538 vecRegs[reg] = val;
539 }
540
541 template <typename T>
542 VecLaneT<T, true> readVecLaneFlat(const RegIndex& reg, int lId) const
543 {
544 return vecRegs[reg].laneView<T>(lId);
545 }
546
547 template <typename LD>
548 void setVecLaneFlat(const RegIndex& reg, int lId, const LD& val)
549 {
550 vecRegs[reg].laneView<typename LD::UnderlyingType>(lId) = val;
551 }
552
553 const VecElem& readVecElemFlat(const RegIndex& reg,
554 const ElemIndex& elemIndex) const
555 {
556 return vecRegs[reg].as<TheISA::VecElem>()[elemIndex];
557 }
558
559 void setVecElemFlat(const RegIndex& reg, const ElemIndex& elemIndex,
560 const VecElem val)
561 {
562 vecRegs[reg].as<TheISA::VecElem>()[elemIndex] = val;
563 }
564
565 #ifdef ISA_HAS_CC_REGS
566 CCReg readCCRegFlat(int idx) { return ccRegs[idx]; }
567 void setCCRegFlat(int idx, CCReg val) { ccRegs[idx] = val; }
568 #else
569 CCReg readCCRegFlat(int idx)
570 { panic("readCCRegFlat w/no CC regs!\n"); }
571
572 void setCCRegFlat(int idx, CCReg val)
573 { panic("setCCRegFlat w/no CC regs!\n"); }
574 #endif
575 };
576
577
578 #endif // __CPU_CPU_EXEC_CONTEXT_HH__