merge
[gem5.git] / src / cpu / simple_thread.hh
1 /*
2 * Copyright (c) 2001-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 * Nathan Binkert
30 */
31
32 #ifndef __CPU_SIMPLE_THREAD_HH__
33 #define __CPU_SIMPLE_THREAD_HH__
34
35 #include "arch/isa.hh"
36 #include "arch/isa_traits.hh"
37 #include "arch/registers.hh"
38 #include "arch/tlb.hh"
39 #include "arch/types.hh"
40 #include "base/types.hh"
41 #include "config/full_system.hh"
42 #include "cpu/thread_context.hh"
43 #include "cpu/thread_state.hh"
44 #include "mem/request.hh"
45 #include "sim/byteswap.hh"
46 #include "sim/eventq.hh"
47 #include "sim/serialize.hh"
48
49 class BaseCPU;
50
51 #if FULL_SYSTEM
52
53 #include "sim/system.hh"
54
55 class FunctionProfile;
56 class ProfileNode;
57 class FunctionalPort;
58 class PhysicalPort;
59
60 namespace TheISA {
61 namespace Kernel {
62 class Statistics;
63 };
64 };
65
66 #else // !FULL_SYSTEM
67
68 #include "sim/process.hh"
69 #include "mem/page_table.hh"
70 class TranslatingPort;
71
72 #endif // FULL_SYSTEM
73
74 /**
75 * The SimpleThread object provides a combination of the ThreadState
76 * object and the ThreadContext interface. It implements the
77 * ThreadContext interface so that a ProxyThreadContext class can be
78 * made using SimpleThread as the template parameter (see
79 * thread_context.hh). It adds to the ThreadState object by adding all
80 * the objects needed for simple functional execution, including a
81 * simple architectural register file, and pointers to the ITB and DTB
82 * in full system mode. For CPU models that do not need more advanced
83 * ways to hold state (i.e. a separate physical register file, or
84 * separate fetch and commit PC's), this SimpleThread class provides
85 * all the necessary state for full architecture-level functional
86 * simulation. See the AtomicSimpleCPU or TimingSimpleCPU for
87 * examples.
88 */
89
90 class SimpleThread : public ThreadState
91 {
92 protected:
93 typedef TheISA::MachInst MachInst;
94 typedef TheISA::MiscReg MiscReg;
95 typedef TheISA::FloatReg FloatReg;
96 typedef TheISA::FloatRegBits FloatRegBits;
97 public:
98 typedef ThreadContext::Status Status;
99
100 protected:
101 union {
102 FloatReg f[TheISA::NumFloatRegs];
103 FloatRegBits i[TheISA::NumFloatRegs];
104 } floatRegs;
105 TheISA::IntReg intRegs[TheISA::NumIntRegs];
106 TheISA::ISA isa; // one "instance" of the current ISA.
107
108 /** The current microcode pc for the currently executing macro
109 * operation.
110 */
111 MicroPC microPC;
112
113 /** The next microcode pc for the currently executing macro
114 * operation.
115 */
116 MicroPC nextMicroPC;
117
118 /** The current pc.
119 */
120 Addr PC;
121
122 /** The next pc.
123 */
124 Addr nextPC;
125
126 /** The next next pc.
127 */
128 Addr nextNPC;
129
130 public:
131 // pointer to CPU associated with this SimpleThread
132 BaseCPU *cpu;
133
134 ProxyThreadContext<SimpleThread> *tc;
135
136 System *system;
137
138 TheISA::TLB *itb;
139 TheISA::TLB *dtb;
140
141 // constructor: initialize SimpleThread from given process structure
142 #if FULL_SYSTEM
143 SimpleThread(BaseCPU *_cpu, int _thread_num, System *_system,
144 TheISA::TLB *_itb, TheISA::TLB *_dtb,
145 bool use_kernel_stats = true);
146 #else
147 SimpleThread(BaseCPU *_cpu, int _thread_num, Process *_process,
148 TheISA::TLB *_itb, TheISA::TLB *_dtb);
149 #endif
150
151 SimpleThread();
152
153 virtual ~SimpleThread();
154
155 virtual void takeOverFrom(ThreadContext *oldContext);
156
157 void regStats(const std::string &name);
158
159 void copyTC(ThreadContext *context);
160
161 void copyState(ThreadContext *oldContext);
162
163 void serialize(std::ostream &os);
164 void unserialize(Checkpoint *cp, const std::string &section);
165
166 /***************************************************************
167 * SimpleThread functions to provide CPU with access to various
168 * state.
169 **************************************************************/
170
171 /** Returns the pointer to this SimpleThread's ThreadContext. Used
172 * when a ThreadContext must be passed to objects outside of the
173 * CPU.
174 */
175 ThreadContext *getTC() { return tc; }
176
177 void demapPage(Addr vaddr, uint64_t asn)
178 {
179 itb->demapPage(vaddr, asn);
180 dtb->demapPage(vaddr, asn);
181 }
182
183 void demapInstPage(Addr vaddr, uint64_t asn)
184 {
185 itb->demapPage(vaddr, asn);
186 }
187
188 void demapDataPage(Addr vaddr, uint64_t asn)
189 {
190 dtb->demapPage(vaddr, asn);
191 }
192
193 #if FULL_SYSTEM
194 void dumpFuncProfile();
195
196 Fault hwrei();
197
198 bool simPalCheck(int palFunc);
199
200 #endif
201
202 /*******************************************
203 * ThreadContext interface functions.
204 ******************************************/
205
206 BaseCPU *getCpuPtr() { return cpu; }
207
208 TheISA::TLB *getITBPtr() { return itb; }
209
210 TheISA::TLB *getDTBPtr() { return dtb; }
211
212 System *getSystemPtr() { return system; }
213
214 #if FULL_SYSTEM
215 FunctionalPort *getPhysPort() { return physPort; }
216
217 /** Return a virtual port. This port cannot be cached locally in an object.
218 * After a CPU switch it may point to the wrong memory object which could
219 * mean stale data.
220 */
221 VirtualPort *getVirtPort() { return virtPort; }
222 #endif
223
224 Status status() const { return _status; }
225
226 void setStatus(Status newStatus) { _status = newStatus; }
227
228 /// Set the status to Active. Optional delay indicates number of
229 /// cycles to wait before beginning execution.
230 void activate(int delay = 1);
231
232 /// Set the status to Suspended.
233 void suspend();
234
235 /// Set the status to Halted.
236 void halt();
237
238 virtual bool misspeculating();
239
240 Fault instRead(RequestPtr &req)
241 {
242 panic("instRead not implemented");
243 // return funcPhysMem->read(req, inst);
244 return NoFault;
245 }
246
247 void copyArchRegs(ThreadContext *tc);
248
249 void clearArchRegs()
250 {
251 microPC = 0;
252 nextMicroPC = 1;
253 PC = nextPC = nextNPC = 0;
254 memset(intRegs, 0, sizeof(intRegs));
255 memset(floatRegs.i, 0, sizeof(floatRegs.i));
256 }
257
258 //
259 // New accessors for new decoder.
260 //
261 uint64_t readIntReg(int reg_idx)
262 {
263 int flatIndex = isa.flattenIntIndex(reg_idx);
264 assert(flatIndex < TheISA::NumIntRegs);
265 uint64_t regVal = intRegs[flatIndex];
266 DPRINTF(IntRegs, "Reading int reg %d as %#x.\n", reg_idx, regVal);
267 return regVal;
268 }
269
270 FloatReg readFloatReg(int reg_idx)
271 {
272 int flatIndex = isa.flattenFloatIndex(reg_idx);
273 assert(flatIndex < TheISA::NumFloatRegs);
274 return floatRegs.f[flatIndex];
275 }
276
277 FloatRegBits readFloatRegBits(int reg_idx)
278 {
279 int flatIndex = isa.flattenFloatIndex(reg_idx);
280 assert(flatIndex < TheISA::NumFloatRegs);
281 return floatRegs.i[flatIndex];
282 }
283
284 void setIntReg(int reg_idx, uint64_t val)
285 {
286 int flatIndex = isa.flattenIntIndex(reg_idx);
287 assert(flatIndex < TheISA::NumIntRegs);
288 DPRINTF(IntRegs, "Setting int reg %d to %#x.\n", reg_idx, val);
289 intRegs[flatIndex] = val;
290 }
291
292 void setFloatReg(int reg_idx, FloatReg val)
293 {
294 int flatIndex = isa.flattenFloatIndex(reg_idx);
295 assert(flatIndex < TheISA::NumFloatRegs);
296 floatRegs.f[flatIndex] = val;
297 }
298
299 void setFloatRegBits(int reg_idx, FloatRegBits val)
300 {
301 int flatIndex = isa.flattenFloatIndex(reg_idx);
302 assert(flatIndex < TheISA::NumFloatRegs);
303 floatRegs.i[flatIndex] = val;
304 }
305
306 uint64_t readPC()
307 {
308 return PC;
309 }
310
311 void setPC(uint64_t val)
312 {
313 PC = val;
314 }
315
316 uint64_t readMicroPC()
317 {
318 return microPC;
319 }
320
321 void setMicroPC(uint64_t val)
322 {
323 microPC = val;
324 }
325
326 uint64_t readNextPC()
327 {
328 return nextPC;
329 }
330
331 void setNextPC(uint64_t val)
332 {
333 nextPC = val;
334 }
335
336 uint64_t readNextMicroPC()
337 {
338 return nextMicroPC;
339 }
340
341 void setNextMicroPC(uint64_t val)
342 {
343 nextMicroPC = val;
344 }
345
346 uint64_t readNextNPC()
347 {
348 #if ISA_HAS_DELAY_SLOT
349 return nextNPC;
350 #else
351 return nextPC + sizeof(TheISA::MachInst);
352 #endif
353 }
354
355 void setNextNPC(uint64_t val)
356 {
357 #if ISA_HAS_DELAY_SLOT
358 nextNPC = val;
359 #endif
360 }
361
362 MiscReg
363 readMiscRegNoEffect(int misc_reg, ThreadID tid = 0)
364 {
365 return isa.readMiscRegNoEffect(misc_reg);
366 }
367
368 MiscReg
369 readMiscReg(int misc_reg, ThreadID tid = 0)
370 {
371 return isa.readMiscReg(misc_reg, tc);
372 }
373
374 void
375 setMiscRegNoEffect(int misc_reg, const MiscReg &val, ThreadID tid = 0)
376 {
377 return isa.setMiscRegNoEffect(misc_reg, val);
378 }
379
380 void
381 setMiscReg(int misc_reg, const MiscReg &val, ThreadID tid = 0)
382 {
383 return isa.setMiscReg(misc_reg, val, tc);
384 }
385
386 int
387 flattenIntIndex(int reg)
388 {
389 return isa.flattenIntIndex(reg);
390 }
391
392 int
393 flattenFloatIndex(int reg)
394 {
395 return isa.flattenFloatIndex(reg);
396 }
397
398 unsigned readStCondFailures() { return storeCondFailures; }
399
400 void setStCondFailures(unsigned sc_failures)
401 { storeCondFailures = sc_failures; }
402
403 #if !FULL_SYSTEM
404 void syscall(int64_t callnum)
405 {
406 process->syscall(callnum, tc);
407 }
408 #endif
409 };
410
411
412 // for non-speculative execution context, spec_mode is always false
413 inline bool
414 SimpleThread::misspeculating()
415 {
416 return false;
417 }
418
419 #endif // __CPU_CPU_EXEC_CONTEXT_HH__