inorder: find register dependencies "lazily"
[gem5.git] / src / cpu / simple_thread.hh
1 /*
2 * Copyright (c) 2001-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 * Nathan Binkert
30 */
31
32 #ifndef __CPU_SIMPLE_THREAD_HH__
33 #define __CPU_SIMPLE_THREAD_HH__
34
35 #include "arch/isa.hh"
36 #include "arch/isa_traits.hh"
37 #include "arch/registers.hh"
38 #include "arch/tlb.hh"
39 #include "arch/types.hh"
40 #include "base/types.hh"
41 #include "config/full_system.hh"
42 #include "config/the_isa.hh"
43 #include "cpu/thread_context.hh"
44 #include "cpu/thread_state.hh"
45 #include "debug/FloatRegs.hh"
46 #include "debug/IntRegs.hh"
47 #include "mem/request.hh"
48 #include "sim/byteswap.hh"
49 #include "sim/eventq.hh"
50 #include "sim/serialize.hh"
51
52 class BaseCPU;
53
54 #if FULL_SYSTEM
55
56 #include "sim/system.hh"
57
58 class FunctionProfile;
59 class ProfileNode;
60 class FunctionalPort;
61 class PhysicalPort;
62
63 namespace TheISA {
64 namespace Kernel {
65 class Statistics;
66 };
67 };
68
69 #else // !FULL_SYSTEM
70
71 #include "mem/page_table.hh"
72 #include "sim/process.hh"
73 class TranslatingPort;
74
75 #endif // FULL_SYSTEM
76
77 /**
78 * The SimpleThread object provides a combination of the ThreadState
79 * object and the ThreadContext interface. It implements the
80 * ThreadContext interface so that a ProxyThreadContext class can be
81 * made using SimpleThread as the template parameter (see
82 * thread_context.hh). It adds to the ThreadState object by adding all
83 * the objects needed for simple functional execution, including a
84 * simple architectural register file, and pointers to the ITB and DTB
85 * in full system mode. For CPU models that do not need more advanced
86 * ways to hold state (i.e. a separate physical register file, or
87 * separate fetch and commit PC's), this SimpleThread class provides
88 * all the necessary state for full architecture-level functional
89 * simulation. See the AtomicSimpleCPU or TimingSimpleCPU for
90 * examples.
91 */
92
93 class SimpleThread : public ThreadState
94 {
95 protected:
96 typedef TheISA::MachInst MachInst;
97 typedef TheISA::MiscReg MiscReg;
98 typedef TheISA::FloatReg FloatReg;
99 typedef TheISA::FloatRegBits FloatRegBits;
100 public:
101 typedef ThreadContext::Status Status;
102
103 protected:
104 union {
105 FloatReg f[TheISA::NumFloatRegs];
106 FloatRegBits i[TheISA::NumFloatRegs];
107 } floatRegs;
108 TheISA::IntReg intRegs[TheISA::NumIntRegs];
109 TheISA::ISA isa; // one "instance" of the current ISA.
110
111 TheISA::PCState _pcState;
112
113 /** Did this instruction execute or is it predicated false */
114 bool predicate;
115
116 public:
117 std::string name() const
118 {
119 return csprintf("%s.[tid:%i]", cpu->name(), tc->threadId());
120 }
121
122 // pointer to CPU associated with this SimpleThread
123 BaseCPU *cpu;
124
125 ProxyThreadContext<SimpleThread> *tc;
126
127 System *system;
128
129 TheISA::TLB *itb;
130 TheISA::TLB *dtb;
131
132 // constructor: initialize SimpleThread from given process structure
133 #if FULL_SYSTEM
134 SimpleThread(BaseCPU *_cpu, int _thread_num, System *_system,
135 TheISA::TLB *_itb, TheISA::TLB *_dtb,
136 bool use_kernel_stats = true);
137 #else
138 SimpleThread(BaseCPU *_cpu, int _thread_num, Process *_process,
139 TheISA::TLB *_itb, TheISA::TLB *_dtb);
140 #endif
141
142 SimpleThread();
143
144 virtual ~SimpleThread();
145
146 virtual void takeOverFrom(ThreadContext *oldContext);
147
148 void regStats(const std::string &name);
149
150 void copyTC(ThreadContext *context);
151
152 void copyState(ThreadContext *oldContext);
153
154 void serialize(std::ostream &os);
155 void unserialize(Checkpoint *cp, const std::string &section);
156
157 /***************************************************************
158 * SimpleThread functions to provide CPU with access to various
159 * state.
160 **************************************************************/
161
162 /** Returns the pointer to this SimpleThread's ThreadContext. Used
163 * when a ThreadContext must be passed to objects outside of the
164 * CPU.
165 */
166 ThreadContext *getTC() { return tc; }
167
168 void demapPage(Addr vaddr, uint64_t asn)
169 {
170 itb->demapPage(vaddr, asn);
171 dtb->demapPage(vaddr, asn);
172 }
173
174 void demapInstPage(Addr vaddr, uint64_t asn)
175 {
176 itb->demapPage(vaddr, asn);
177 }
178
179 void demapDataPage(Addr vaddr, uint64_t asn)
180 {
181 dtb->demapPage(vaddr, asn);
182 }
183
184 #if FULL_SYSTEM
185 void dumpFuncProfile();
186
187 Fault hwrei();
188
189 bool simPalCheck(int palFunc);
190
191 #endif
192
193 /*******************************************
194 * ThreadContext interface functions.
195 ******************************************/
196
197 BaseCPU *getCpuPtr() { return cpu; }
198
199 TheISA::TLB *getITBPtr() { return itb; }
200
201 TheISA::TLB *getDTBPtr() { return dtb; }
202
203 System *getSystemPtr() { return system; }
204
205 #if FULL_SYSTEM
206 FunctionalPort *getPhysPort() { return physPort; }
207
208 /** Return a virtual port. This port cannot be cached locally in an object.
209 * After a CPU switch it may point to the wrong memory object which could
210 * mean stale data.
211 */
212 VirtualPort *getVirtPort() { return virtPort; }
213 #endif
214
215 Status status() const { return _status; }
216
217 void setStatus(Status newStatus) { _status = newStatus; }
218
219 /// Set the status to Active. Optional delay indicates number of
220 /// cycles to wait before beginning execution.
221 void activate(int delay = 1);
222
223 /// Set the status to Suspended.
224 void suspend();
225
226 /// Set the status to Halted.
227 void halt();
228
229 virtual bool misspeculating();
230
231 void copyArchRegs(ThreadContext *tc);
232
233 void clearArchRegs()
234 {
235 _pcState = 0;
236 memset(intRegs, 0, sizeof(intRegs));
237 memset(floatRegs.i, 0, sizeof(floatRegs.i));
238 isa.clear();
239 }
240
241 //
242 // New accessors for new decoder.
243 //
244 uint64_t readIntReg(int reg_idx)
245 {
246 int flatIndex = isa.flattenIntIndex(reg_idx);
247 assert(flatIndex < TheISA::NumIntRegs);
248 uint64_t regVal = intRegs[flatIndex];
249 DPRINTF(IntRegs, "Reading int reg %d (%d) as %#x.\n",
250 reg_idx, flatIndex, regVal);
251 return regVal;
252 }
253
254 FloatReg readFloatReg(int reg_idx)
255 {
256 int flatIndex = isa.flattenFloatIndex(reg_idx);
257 assert(flatIndex < TheISA::NumFloatRegs);
258 FloatReg regVal = floatRegs.f[flatIndex];
259 DPRINTF(FloatRegs, "Reading float reg %d (%d) as %f, %#x.\n",
260 reg_idx, flatIndex, regVal, floatRegs.i[flatIndex]);
261 return regVal;
262 }
263
264 FloatRegBits readFloatRegBits(int reg_idx)
265 {
266 int flatIndex = isa.flattenFloatIndex(reg_idx);
267 assert(flatIndex < TheISA::NumFloatRegs);
268 FloatRegBits regVal = floatRegs.i[flatIndex];
269 DPRINTF(FloatRegs, "Reading float reg %d (%d) bits as %#x, %f.\n",
270 reg_idx, flatIndex, regVal, floatRegs.f[flatIndex]);
271 return regVal;
272 }
273
274 void setIntReg(int reg_idx, uint64_t val)
275 {
276 int flatIndex = isa.flattenIntIndex(reg_idx);
277 assert(flatIndex < TheISA::NumIntRegs);
278 DPRINTF(IntRegs, "Setting int reg %d (%d) to %#x.\n",
279 reg_idx, flatIndex, val);
280 intRegs[flatIndex] = val;
281 }
282
283 void setFloatReg(int reg_idx, FloatReg val)
284 {
285 int flatIndex = isa.flattenFloatIndex(reg_idx);
286 assert(flatIndex < TheISA::NumFloatRegs);
287 floatRegs.f[flatIndex] = val;
288 DPRINTF(FloatRegs, "Setting float reg %d (%d) to %f, %#x.\n",
289 reg_idx, flatIndex, val, floatRegs.i[flatIndex]);
290 }
291
292 void setFloatRegBits(int reg_idx, FloatRegBits val)
293 {
294 int flatIndex = isa.flattenFloatIndex(reg_idx);
295 assert(flatIndex < TheISA::NumFloatRegs);
296 floatRegs.i[flatIndex] = val;
297 DPRINTF(FloatRegs, "Setting float reg %d (%d) bits to %#x, %#f.\n",
298 reg_idx, flatIndex, val, floatRegs.f[flatIndex]);
299 }
300
301 TheISA::PCState
302 pcState()
303 {
304 return _pcState;
305 }
306
307 void
308 pcState(const TheISA::PCState &val)
309 {
310 _pcState = val;
311 }
312
313 Addr
314 instAddr()
315 {
316 return _pcState.instAddr();
317 }
318
319 Addr
320 nextInstAddr()
321 {
322 return _pcState.nextInstAddr();
323 }
324
325 MicroPC
326 microPC()
327 {
328 return _pcState.microPC();
329 }
330
331 bool readPredicate()
332 {
333 return predicate;
334 }
335
336 void setPredicate(bool val)
337 {
338 predicate = val;
339 }
340
341 MiscReg
342 readMiscRegNoEffect(int misc_reg, ThreadID tid = 0)
343 {
344 return isa.readMiscRegNoEffect(misc_reg);
345 }
346
347 MiscReg
348 readMiscReg(int misc_reg, ThreadID tid = 0)
349 {
350 return isa.readMiscReg(misc_reg, tc);
351 }
352
353 void
354 setMiscRegNoEffect(int misc_reg, const MiscReg &val, ThreadID tid = 0)
355 {
356 return isa.setMiscRegNoEffect(misc_reg, val);
357 }
358
359 void
360 setMiscReg(int misc_reg, const MiscReg &val, ThreadID tid = 0)
361 {
362 return isa.setMiscReg(misc_reg, val, tc);
363 }
364
365 int
366 flattenIntIndex(int reg)
367 {
368 return isa.flattenIntIndex(reg);
369 }
370
371 int
372 flattenFloatIndex(int reg)
373 {
374 return isa.flattenFloatIndex(reg);
375 }
376
377 unsigned readStCondFailures() { return storeCondFailures; }
378
379 void setStCondFailures(unsigned sc_failures)
380 { storeCondFailures = sc_failures; }
381
382 #if !FULL_SYSTEM
383 void syscall(int64_t callnum)
384 {
385 process->syscall(callnum, tc);
386 }
387 #endif
388 };
389
390
391 // for non-speculative execution context, spec_mode is always false
392 inline bool
393 SimpleThread::misspeculating()
394 {
395 return false;
396 }
397
398 #endif // __CPU_CPU_EXEC_CONTEXT_HH__