Merge zizzer:/bk/newmem
[gem5.git] / src / cpu / simple_thread.hh
1 /*
2 * Copyright (c) 2001-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 * Nathan Binkert
30 */
31
32 #ifndef __CPU_SIMPLE_THREAD_HH__
33 #define __CPU_SIMPLE_THREAD_HH__
34
35 #include "arch/isa_traits.hh"
36 #include "arch/regfile.hh"
37 #include "arch/syscallreturn.hh"
38 #include "config/full_system.hh"
39 #include "cpu/thread_context.hh"
40 #include "cpu/thread_state.hh"
41 #include "mem/physical.hh"
42 #include "mem/request.hh"
43 #include "sim/byteswap.hh"
44 #include "sim/eventq.hh"
45 #include "sim/host.hh"
46 #include "sim/serialize.hh"
47
48 class BaseCPU;
49
50 #if FULL_SYSTEM
51
52 #include "sim/system.hh"
53 #include "arch/tlb.hh"
54
55 class FunctionProfile;
56 class ProfileNode;
57 class FunctionalPort;
58 class PhysicalPort;
59
60 namespace TheISA {
61 namespace Kernel {
62 class Statistics;
63 };
64 };
65
66 #else // !FULL_SYSTEM
67
68 #include "sim/process.hh"
69 #include "mem/page_table.hh"
70 class TranslatingPort;
71
72 #endif // FULL_SYSTEM
73
74 /**
75 * The SimpleThread object provides a combination of the ThreadState
76 * object and the ThreadContext interface. It implements the
77 * ThreadContext interface so that a ProxyThreadContext class can be
78 * made using SimpleThread as the template parameter (see
79 * thread_context.hh). It adds to the ThreadState object by adding all
80 * the objects needed for simple functional execution, including a
81 * simple architectural register file, and pointers to the ITB and DTB
82 * in full system mode. For CPU models that do not need more advanced
83 * ways to hold state (i.e. a separate physical register file, or
84 * separate fetch and commit PC's), this SimpleThread class provides
85 * all the necessary state for full architecture-level functional
86 * simulation. See the AtomicSimpleCPU or TimingSimpleCPU for
87 * examples.
88 */
89
90 class SimpleThread : public ThreadState
91 {
92 protected:
93 typedef TheISA::RegFile RegFile;
94 typedef TheISA::MachInst MachInst;
95 typedef TheISA::MiscRegFile MiscRegFile;
96 typedef TheISA::MiscReg MiscReg;
97 typedef TheISA::FloatReg FloatReg;
98 typedef TheISA::FloatRegBits FloatRegBits;
99 public:
100 typedef ThreadContext::Status Status;
101
102 protected:
103 RegFile regs; // correct-path register context
104
105 public:
106 // pointer to CPU associated with this SimpleThread
107 BaseCPU *cpu;
108
109 ProxyThreadContext<SimpleThread> *tc;
110
111 System *system;
112
113 #if FULL_SYSTEM
114 TheISA::ITB *itb;
115 TheISA::DTB *dtb;
116 #endif
117
118 // constructor: initialize SimpleThread from given process structure
119 #if FULL_SYSTEM
120 SimpleThread(BaseCPU *_cpu, int _thread_num, System *_system,
121 TheISA::ITB *_itb, TheISA::DTB *_dtb,
122 bool use_kernel_stats = true);
123 #else
124 SimpleThread(BaseCPU *_cpu, int _thread_num, Process *_process, int _asid);
125 #endif
126
127 SimpleThread();
128
129 virtual ~SimpleThread();
130
131 virtual void takeOverFrom(ThreadContext *oldContext);
132
133 void regStats(const std::string &name);
134
135 void copyTC(ThreadContext *context);
136
137 void copyState(ThreadContext *oldContext);
138
139 void serialize(std::ostream &os);
140 void unserialize(Checkpoint *cp, const std::string &section);
141
142 /***************************************************************
143 * SimpleThread functions to provide CPU with access to various
144 * state, and to provide address translation methods.
145 **************************************************************/
146
147 /** Returns the pointer to this SimpleThread's ThreadContext. Used
148 * when a ThreadContext must be passed to objects outside of the
149 * CPU.
150 */
151 ThreadContext *getTC() { return tc; }
152
153 #if FULL_SYSTEM
154 int getInstAsid() { return regs.instAsid(); }
155 int getDataAsid() { return regs.dataAsid(); }
156
157 Fault translateInstReq(RequestPtr &req)
158 {
159 return itb->translate(req, tc);
160 }
161
162 Fault translateDataReadReq(RequestPtr &req)
163 {
164 return dtb->translate(req, tc, false);
165 }
166
167 Fault translateDataWriteReq(RequestPtr &req)
168 {
169 return dtb->translate(req, tc, true);
170 }
171
172 void dumpFuncProfile();
173
174 Fault hwrei();
175
176 bool simPalCheck(int palFunc);
177 #else
178
179 Fault translateInstReq(RequestPtr &req)
180 {
181 return process->pTable->translate(req);
182 }
183
184 Fault translateDataReadReq(RequestPtr &req)
185 {
186 return process->pTable->translate(req);
187 }
188
189 Fault translateDataWriteReq(RequestPtr &req)
190 {
191 return process->pTable->translate(req);
192 }
193 #endif
194
195 /*******************************************
196 * ThreadContext interface functions.
197 ******************************************/
198
199 BaseCPU *getCpuPtr() { return cpu; }
200
201 int getThreadNum() { return tid; }
202
203 #if FULL_SYSTEM
204 System *getSystemPtr() { return system; }
205
206 TheISA::ITB *getITBPtr() { return itb; }
207
208 TheISA::DTB *getDTBPtr() { return dtb; }
209
210 FunctionalPort *getPhysPort() { return physPort; }
211
212 /** Return a virtual port. If no thread context is specified then a static
213 * port is returned. Otherwise a port is created and returned. It must be
214 * deleted by deleteVirtPort(). */
215 VirtualPort *getVirtPort(ThreadContext *tc);
216
217 void delVirtPort(VirtualPort *vp);
218 #endif
219
220 Status status() const { return _status; }
221
222 void setStatus(Status newStatus) { _status = newStatus; }
223
224 /// Set the status to Active. Optional delay indicates number of
225 /// cycles to wait before beginning execution.
226 void activate(int delay = 1);
227
228 /// Set the status to Suspended.
229 void suspend();
230
231 /// Set the status to Unallocated.
232 void deallocate();
233
234 /// Set the status to Halted.
235 void halt();
236
237 virtual bool misspeculating();
238
239 Fault instRead(RequestPtr &req)
240 {
241 panic("instRead not implemented");
242 // return funcPhysMem->read(req, inst);
243 return NoFault;
244 }
245
246 void copyArchRegs(ThreadContext *tc);
247
248 void clearArchRegs() { regs.clear(); }
249
250 //
251 // New accessors for new decoder.
252 //
253 uint64_t readIntReg(int reg_idx)
254 {
255 return regs.readIntReg(TheISA::flattenIntIndex(getTC(), reg_idx));
256 }
257
258 FloatReg readFloatReg(int reg_idx, int width)
259 {
260 return regs.readFloatReg(reg_idx, width);
261 }
262
263 FloatReg readFloatReg(int reg_idx)
264 {
265 return regs.readFloatReg(reg_idx);
266 }
267
268 FloatRegBits readFloatRegBits(int reg_idx, int width)
269 {
270 return regs.readFloatRegBits(reg_idx, width);
271 }
272
273 FloatRegBits readFloatRegBits(int reg_idx)
274 {
275 return regs.readFloatRegBits(reg_idx);
276 }
277
278 void setIntReg(int reg_idx, uint64_t val)
279 {
280 regs.setIntReg(TheISA::flattenIntIndex(getTC(), reg_idx), val);
281 }
282
283 void setFloatReg(int reg_idx, FloatReg val, int width)
284 {
285 regs.setFloatReg(reg_idx, val, width);
286 }
287
288 void setFloatReg(int reg_idx, FloatReg val)
289 {
290 regs.setFloatReg(reg_idx, val);
291 }
292
293 void setFloatRegBits(int reg_idx, FloatRegBits val, int width)
294 {
295 regs.setFloatRegBits(reg_idx, val, width);
296 }
297
298 void setFloatRegBits(int reg_idx, FloatRegBits val)
299 {
300 regs.setFloatRegBits(reg_idx, val);
301 }
302
303 uint64_t readPC()
304 {
305 return regs.readPC();
306 }
307
308 void setPC(uint64_t val)
309 {
310 regs.setPC(val);
311 }
312
313 uint64_t readMicroPC()
314 {
315 return microPC;
316 }
317
318 void setMicroPC(uint64_t val)
319 {
320 microPC = val;
321 }
322
323 uint64_t readNextPC()
324 {
325 return regs.readNextPC();
326 }
327
328 void setNextPC(uint64_t val)
329 {
330 regs.setNextPC(val);
331 }
332
333 uint64_t readNextMicroPC()
334 {
335 return nextMicroPC;
336 }
337
338 void setNextMicroPC(uint64_t val)
339 {
340 nextMicroPC = val;
341 }
342
343 uint64_t readNextNPC()
344 {
345 return regs.readNextNPC();
346 }
347
348 void setNextNPC(uint64_t val)
349 {
350 regs.setNextNPC(val);
351 }
352
353 MiscReg readMiscReg(int misc_reg)
354 {
355 return regs.readMiscReg(misc_reg);
356 }
357
358 MiscReg readMiscRegWithEffect(int misc_reg)
359 {
360 return regs.readMiscRegWithEffect(misc_reg, tc);
361 }
362
363 void setMiscReg(int misc_reg, const MiscReg &val)
364 {
365 return regs.setMiscReg(misc_reg, val);
366 }
367
368 void setMiscRegWithEffect(int misc_reg, const MiscReg &val)
369 {
370 return regs.setMiscRegWithEffect(misc_reg, val, tc);
371 }
372
373 unsigned readStCondFailures() { return storeCondFailures; }
374
375 void setStCondFailures(unsigned sc_failures)
376 { storeCondFailures = sc_failures; }
377
378 #if !FULL_SYSTEM
379 TheISA::IntReg getSyscallArg(int i)
380 {
381 return regs.readIntReg(TheISA::flattenIntIndex(getTC(),
382 TheISA::ArgumentReg0 + i));
383 }
384
385 // used to shift args for indirect syscall
386 void setSyscallArg(int i, TheISA::IntReg val)
387 {
388 regs.setIntReg(TheISA::flattenIntIndex(getTC(),
389 TheISA::ArgumentReg0 + i), val);
390 }
391
392 void setSyscallReturn(SyscallReturn return_value)
393 {
394 TheISA::setSyscallReturn(return_value, getTC());
395 }
396
397 void syscall(int64_t callnum)
398 {
399 process->syscall(callnum, tc);
400 }
401 #endif
402
403 void changeRegFileContext(TheISA::RegContextParam param,
404 TheISA::RegContextVal val)
405 {
406 regs.changeContext(param, val);
407 }
408 };
409
410
411 // for non-speculative execution context, spec_mode is always false
412 inline bool
413 SimpleThread::misspeculating()
414 {
415 return false;
416 }
417
418 #endif // __CPU_CPU_EXEC_CONTEXT_HH__