fa80a283a27d6ecd10edad40e551d2b84bc971f0
[gem5.git] / src / cpu / simple_thread.hh
1 /*
2 * Copyright (c) 2001-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 * Nathan Binkert
30 */
31
32 #ifndef __CPU_SIMPLE_THREAD_HH__
33 #define __CPU_SIMPLE_THREAD_HH__
34
35 #include "arch/isa_traits.hh"
36 #include "arch/regfile.hh"
37 #include "arch/syscallreturn.hh"
38 #include "arch/tlb.hh"
39 #include "config/full_system.hh"
40 #include "cpu/thread_context.hh"
41 #include "cpu/thread_state.hh"
42 #include "mem/request.hh"
43 #include "sim/byteswap.hh"
44 #include "sim/eventq.hh"
45 #include "sim/host.hh"
46 #include "sim/serialize.hh"
47
48 class BaseCPU;
49
50 #if FULL_SYSTEM
51
52 #include "sim/system.hh"
53
54 class FunctionProfile;
55 class ProfileNode;
56 class FunctionalPort;
57 class PhysicalPort;
58
59 namespace TheISA {
60 namespace Kernel {
61 class Statistics;
62 };
63 };
64
65 #else // !FULL_SYSTEM
66
67 #include "sim/process.hh"
68 #include "mem/page_table.hh"
69 class TranslatingPort;
70
71 #endif // FULL_SYSTEM
72
73 /**
74 * The SimpleThread object provides a combination of the ThreadState
75 * object and the ThreadContext interface. It implements the
76 * ThreadContext interface so that a ProxyThreadContext class can be
77 * made using SimpleThread as the template parameter (see
78 * thread_context.hh). It adds to the ThreadState object by adding all
79 * the objects needed for simple functional execution, including a
80 * simple architectural register file, and pointers to the ITB and DTB
81 * in full system mode. For CPU models that do not need more advanced
82 * ways to hold state (i.e. a separate physical register file, or
83 * separate fetch and commit PC's), this SimpleThread class provides
84 * all the necessary state for full architecture-level functional
85 * simulation. See the AtomicSimpleCPU or TimingSimpleCPU for
86 * examples.
87 */
88
89 class SimpleThread : public ThreadState
90 {
91 protected:
92 typedef TheISA::RegFile RegFile;
93 typedef TheISA::MachInst MachInst;
94 typedef TheISA::MiscRegFile MiscRegFile;
95 typedef TheISA::MiscReg MiscReg;
96 typedef TheISA::FloatReg FloatReg;
97 typedef TheISA::FloatRegBits FloatRegBits;
98 public:
99 typedef ThreadContext::Status Status;
100
101 protected:
102 RegFile regs; // correct-path register context
103
104 public:
105 // pointer to CPU associated with this SimpleThread
106 BaseCPU *cpu;
107
108 ProxyThreadContext<SimpleThread> *tc;
109
110 System *system;
111
112 TheISA::ITB *itb;
113 TheISA::DTB *dtb;
114
115 // constructor: initialize SimpleThread from given process structure
116 #if FULL_SYSTEM
117 SimpleThread(BaseCPU *_cpu, int _thread_num, System *_system,
118 TheISA::ITB *_itb, TheISA::DTB *_dtb,
119 bool use_kernel_stats = true);
120 #else
121 SimpleThread(BaseCPU *_cpu, int _thread_num, Process *_process,
122 TheISA::ITB *_itb, TheISA::DTB *_dtb, int _asid);
123 #endif
124
125 SimpleThread();
126
127 virtual ~SimpleThread();
128
129 virtual void takeOverFrom(ThreadContext *oldContext);
130
131 void regStats(const std::string &name);
132
133 void copyTC(ThreadContext *context);
134
135 void copyState(ThreadContext *oldContext);
136
137 void serialize(std::ostream &os);
138 void unserialize(Checkpoint *cp, const std::string &section);
139
140 /***************************************************************
141 * SimpleThread functions to provide CPU with access to various
142 * state, and to provide address translation methods.
143 **************************************************************/
144
145 /** Returns the pointer to this SimpleThread's ThreadContext. Used
146 * when a ThreadContext must be passed to objects outside of the
147 * CPU.
148 */
149 ThreadContext *getTC() { return tc; }
150
151 Fault translateInstReq(RequestPtr &req)
152 {
153 return itb->translate(req, tc);
154 }
155
156 Fault translateDataReadReq(RequestPtr &req)
157 {
158 return dtb->translate(req, tc, false);
159 }
160
161 Fault translateDataWriteReq(RequestPtr &req)
162 {
163 return dtb->translate(req, tc, true);
164 }
165
166 void demapPage(Addr vaddr, uint64_t asn)
167 {
168 itb->demapPage(vaddr, asn);
169 dtb->demapPage(vaddr, asn);
170 }
171
172 void demapInstPage(Addr vaddr, uint64_t asn)
173 {
174 itb->demapPage(vaddr, asn);
175 }
176
177 void demapDataPage(Addr vaddr, uint64_t asn)
178 {
179 dtb->demapPage(vaddr, asn);
180 }
181
182 #if FULL_SYSTEM
183 int getInstAsid() { return regs.instAsid(); }
184 int getDataAsid() { return regs.dataAsid(); }
185
186 void dumpFuncProfile();
187
188 Fault hwrei();
189
190 bool simPalCheck(int palFunc);
191
192 #endif
193
194 /*******************************************
195 * ThreadContext interface functions.
196 ******************************************/
197
198 BaseCPU *getCpuPtr() { return cpu; }
199
200 int getThreadNum() { return tid; }
201
202 TheISA::ITB *getITBPtr() { return itb; }
203
204 TheISA::DTB *getDTBPtr() { return dtb; }
205
206 #if FULL_SYSTEM
207 System *getSystemPtr() { return system; }
208
209 FunctionalPort *getPhysPort() { return physPort; }
210
211 /** Return a virtual port. If no thread context is specified then a static
212 * port is returned. Otherwise a port is created and returned. It must be
213 * deleted by deleteVirtPort(). */
214 VirtualPort *getVirtPort(ThreadContext *tc);
215
216 void delVirtPort(VirtualPort *vp);
217 #endif
218
219 Status status() const { return _status; }
220
221 void setStatus(Status newStatus) { _status = newStatus; }
222
223 /// Set the status to Active. Optional delay indicates number of
224 /// cycles to wait before beginning execution.
225 void activate(int delay = 1);
226
227 /// Set the status to Suspended.
228 void suspend();
229
230 /// Set the status to Unallocated.
231 void deallocate();
232
233 /// Set the status to Halted.
234 void halt();
235
236 virtual bool misspeculating();
237
238 Fault instRead(RequestPtr &req)
239 {
240 panic("instRead not implemented");
241 // return funcPhysMem->read(req, inst);
242 return NoFault;
243 }
244
245 void copyArchRegs(ThreadContext *tc);
246
247 void clearArchRegs() { regs.clear(); }
248
249 //
250 // New accessors for new decoder.
251 //
252 uint64_t readIntReg(int reg_idx)
253 {
254 int flatIndex = TheISA::flattenIntIndex(getTC(), reg_idx);
255 return regs.readIntReg(flatIndex);
256 }
257
258 FloatReg readFloatReg(int reg_idx, int width)
259 {
260 int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
261 return regs.readFloatReg(flatIndex, width);
262 }
263
264 FloatReg readFloatReg(int reg_idx)
265 {
266 int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
267 return regs.readFloatReg(flatIndex);
268 }
269
270 FloatRegBits readFloatRegBits(int reg_idx, int width)
271 {
272 int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
273 return regs.readFloatRegBits(flatIndex, width);
274 }
275
276 FloatRegBits readFloatRegBits(int reg_idx)
277 {
278 int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
279 return regs.readFloatRegBits(flatIndex);
280 }
281
282 void setIntReg(int reg_idx, uint64_t val)
283 {
284 int flatIndex = TheISA::flattenIntIndex(getTC(), reg_idx);
285 regs.setIntReg(flatIndex, val);
286 }
287
288 void setFloatReg(int reg_idx, FloatReg val, int width)
289 {
290 int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
291 regs.setFloatReg(flatIndex, val, width);
292 }
293
294 void setFloatReg(int reg_idx, FloatReg val)
295 {
296 int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
297 regs.setFloatReg(flatIndex, val);
298 }
299
300 void setFloatRegBits(int reg_idx, FloatRegBits val, int width)
301 {
302 int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
303 regs.setFloatRegBits(flatIndex, val, width);
304 }
305
306 void setFloatRegBits(int reg_idx, FloatRegBits val)
307 {
308 int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
309 regs.setFloatRegBits(flatIndex, val);
310 }
311
312 uint64_t readPC()
313 {
314 return regs.readPC();
315 }
316
317 void setPC(uint64_t val)
318 {
319 regs.setPC(val);
320 }
321
322 uint64_t readMicroPC()
323 {
324 return microPC;
325 }
326
327 void setMicroPC(uint64_t val)
328 {
329 microPC = val;
330 }
331
332 uint64_t readNextPC()
333 {
334 return regs.readNextPC();
335 }
336
337 void setNextPC(uint64_t val)
338 {
339 regs.setNextPC(val);
340 }
341
342 uint64_t readNextMicroPC()
343 {
344 return nextMicroPC;
345 }
346
347 void setNextMicroPC(uint64_t val)
348 {
349 nextMicroPC = val;
350 }
351
352 uint64_t readNextNPC()
353 {
354 return regs.readNextNPC();
355 }
356
357 void setNextNPC(uint64_t val)
358 {
359 regs.setNextNPC(val);
360 }
361
362 MiscReg readMiscRegNoEffect(int misc_reg, unsigned tid = 0)
363 {
364 return regs.readMiscRegNoEffect(misc_reg);
365 }
366
367 MiscReg readMiscReg(int misc_reg, unsigned tid = 0)
368 {
369 return regs.readMiscReg(misc_reg, tc);
370 }
371
372 void setMiscRegNoEffect(int misc_reg, const MiscReg &val, unsigned tid = 0)
373 {
374 return regs.setMiscRegNoEffect(misc_reg, val);
375 }
376
377 void setMiscReg(int misc_reg, const MiscReg &val, unsigned tid = 0)
378 {
379 return regs.setMiscReg(misc_reg, val, tc);
380 }
381
382 unsigned readStCondFailures() { return storeCondFailures; }
383
384 void setStCondFailures(unsigned sc_failures)
385 { storeCondFailures = sc_failures; }
386
387 #if !FULL_SYSTEM
388 TheISA::IntReg getSyscallArg(int i)
389 {
390 assert(i < TheISA::NumArgumentRegs);
391 return regs.readIntReg(TheISA::flattenIntIndex(getTC(),
392 TheISA::ArgumentReg[i]));
393 }
394
395 // used to shift args for indirect syscall
396 void setSyscallArg(int i, TheISA::IntReg val)
397 {
398 assert(i < TheISA::NumArgumentRegs);
399 regs.setIntReg(TheISA::flattenIntIndex(getTC(),
400 TheISA::ArgumentReg[i]), val);
401 }
402
403 void setSyscallReturn(SyscallReturn return_value)
404 {
405 TheISA::setSyscallReturn(return_value, getTC());
406 }
407
408 void syscall(int64_t callnum)
409 {
410 process->syscall(callnum, tc);
411 }
412 #endif
413
414 void changeRegFileContext(TheISA::RegContextParam param,
415 TheISA::RegContextVal val)
416 {
417 regs.changeContext(param, val);
418 }
419 };
420
421
422 // for non-speculative execution context, spec_mode is always false
423 inline bool
424 SimpleThread::misspeculating()
425 {
426 return false;
427 }
428
429 #endif // __CPU_CPU_EXEC_CONTEXT_HH__