ISA: Replace the translate functions in the TLBs with translateAtomic.
[gem5.git] / src / cpu / simple_thread.hh
1 /*
2 * Copyright (c) 2001-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 * Nathan Binkert
30 */
31
32 #ifndef __CPU_SIMPLE_THREAD_HH__
33 #define __CPU_SIMPLE_THREAD_HH__
34
35 #include "arch/isa_traits.hh"
36 #include "arch/regfile.hh"
37 #include "arch/syscallreturn.hh"
38 #include "arch/tlb.hh"
39 #include "config/full_system.hh"
40 #include "cpu/thread_context.hh"
41 #include "cpu/thread_state.hh"
42 #include "mem/request.hh"
43 #include "sim/byteswap.hh"
44 #include "sim/eventq.hh"
45 #include "sim/host.hh"
46 #include "sim/serialize.hh"
47
48 class BaseCPU;
49
50 #if FULL_SYSTEM
51
52 #include "sim/system.hh"
53
54 class FunctionProfile;
55 class ProfileNode;
56 class FunctionalPort;
57 class PhysicalPort;
58
59 namespace TheISA {
60 namespace Kernel {
61 class Statistics;
62 };
63 };
64
65 #else // !FULL_SYSTEM
66
67 #include "sim/process.hh"
68 #include "mem/page_table.hh"
69 class TranslatingPort;
70
71 #endif // FULL_SYSTEM
72
73 /**
74 * The SimpleThread object provides a combination of the ThreadState
75 * object and the ThreadContext interface. It implements the
76 * ThreadContext interface so that a ProxyThreadContext class can be
77 * made using SimpleThread as the template parameter (see
78 * thread_context.hh). It adds to the ThreadState object by adding all
79 * the objects needed for simple functional execution, including a
80 * simple architectural register file, and pointers to the ITB and DTB
81 * in full system mode. For CPU models that do not need more advanced
82 * ways to hold state (i.e. a separate physical register file, or
83 * separate fetch and commit PC's), this SimpleThread class provides
84 * all the necessary state for full architecture-level functional
85 * simulation. See the AtomicSimpleCPU or TimingSimpleCPU for
86 * examples.
87 */
88
89 class SimpleThread : public ThreadState
90 {
91 protected:
92 typedef TheISA::RegFile RegFile;
93 typedef TheISA::MachInst MachInst;
94 typedef TheISA::MiscRegFile MiscRegFile;
95 typedef TheISA::MiscReg MiscReg;
96 typedef TheISA::FloatReg FloatReg;
97 typedef TheISA::FloatRegBits FloatRegBits;
98 public:
99 typedef ThreadContext::Status Status;
100
101 protected:
102 RegFile regs; // correct-path register context
103
104 public:
105 // pointer to CPU associated with this SimpleThread
106 BaseCPU *cpu;
107
108 ProxyThreadContext<SimpleThread> *tc;
109
110 System *system;
111
112 TheISA::ITB *itb;
113 TheISA::DTB *dtb;
114
115 // constructor: initialize SimpleThread from given process structure
116 #if FULL_SYSTEM
117 SimpleThread(BaseCPU *_cpu, int _thread_num, System *_system,
118 TheISA::ITB *_itb, TheISA::DTB *_dtb,
119 bool use_kernel_stats = true);
120 #else
121 SimpleThread(BaseCPU *_cpu, int _thread_num, Process *_process,
122 TheISA::ITB *_itb, TheISA::DTB *_dtb, int _asid);
123 #endif
124
125 SimpleThread();
126
127 virtual ~SimpleThread();
128
129 virtual void takeOverFrom(ThreadContext *oldContext);
130
131 void regStats(const std::string &name);
132
133 void copyTC(ThreadContext *context);
134
135 void copyState(ThreadContext *oldContext);
136
137 void serialize(std::ostream &os);
138 void unserialize(Checkpoint *cp, const std::string &section);
139
140 /***************************************************************
141 * SimpleThread functions to provide CPU with access to various
142 * state.
143 **************************************************************/
144
145 /** Returns the pointer to this SimpleThread's ThreadContext. Used
146 * when a ThreadContext must be passed to objects outside of the
147 * CPU.
148 */
149 ThreadContext *getTC() { return tc; }
150
151 void demapPage(Addr vaddr, uint64_t asn)
152 {
153 itb->demapPage(vaddr, asn);
154 dtb->demapPage(vaddr, asn);
155 }
156
157 void demapInstPage(Addr vaddr, uint64_t asn)
158 {
159 itb->demapPage(vaddr, asn);
160 }
161
162 void demapDataPage(Addr vaddr, uint64_t asn)
163 {
164 dtb->demapPage(vaddr, asn);
165 }
166
167 #if FULL_SYSTEM
168 int getInstAsid() { return regs.instAsid(); }
169 int getDataAsid() { return regs.dataAsid(); }
170
171 void dumpFuncProfile();
172
173 Fault hwrei();
174
175 bool simPalCheck(int palFunc);
176
177 #endif
178
179 /*******************************************
180 * ThreadContext interface functions.
181 ******************************************/
182
183 BaseCPU *getCpuPtr() { return cpu; }
184
185 TheISA::ITB *getITBPtr() { return itb; }
186
187 TheISA::DTB *getDTBPtr() { return dtb; }
188
189 System *getSystemPtr() { return system; }
190
191 #if FULL_SYSTEM
192 FunctionalPort *getPhysPort() { return physPort; }
193
194 /** Return a virtual port. This port cannot be cached locally in an object.
195 * After a CPU switch it may point to the wrong memory object which could
196 * mean stale data.
197 */
198 VirtualPort *getVirtPort() { return virtPort; }
199 #endif
200
201 Status status() const { return _status; }
202
203 void setStatus(Status newStatus) { _status = newStatus; }
204
205 /// Set the status to Active. Optional delay indicates number of
206 /// cycles to wait before beginning execution.
207 void activate(int delay = 1);
208
209 /// Set the status to Suspended.
210 void suspend();
211
212 /// Set the status to Unallocated.
213 void deallocate();
214
215 /// Set the status to Halted.
216 void halt();
217
218 virtual bool misspeculating();
219
220 Fault instRead(RequestPtr &req)
221 {
222 panic("instRead not implemented");
223 // return funcPhysMem->read(req, inst);
224 return NoFault;
225 }
226
227 void copyArchRegs(ThreadContext *tc);
228
229 void clearArchRegs() { regs.clear(); }
230
231 //
232 // New accessors for new decoder.
233 //
234 uint64_t readIntReg(int reg_idx)
235 {
236 int flatIndex = TheISA::flattenIntIndex(getTC(), reg_idx);
237 return regs.readIntReg(flatIndex);
238 }
239
240 FloatReg readFloatReg(int reg_idx, int width)
241 {
242 int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
243 return regs.readFloatReg(flatIndex, width);
244 }
245
246 FloatReg readFloatReg(int reg_idx)
247 {
248 int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
249 return regs.readFloatReg(flatIndex);
250 }
251
252 FloatRegBits readFloatRegBits(int reg_idx, int width)
253 {
254 int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
255 return regs.readFloatRegBits(flatIndex, width);
256 }
257
258 FloatRegBits readFloatRegBits(int reg_idx)
259 {
260 int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
261 return regs.readFloatRegBits(flatIndex);
262 }
263
264 void setIntReg(int reg_idx, uint64_t val)
265 {
266 int flatIndex = TheISA::flattenIntIndex(getTC(), reg_idx);
267 regs.setIntReg(flatIndex, val);
268 }
269
270 void setFloatReg(int reg_idx, FloatReg val, int width)
271 {
272 int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
273 regs.setFloatReg(flatIndex, val, width);
274 }
275
276 void setFloatReg(int reg_idx, FloatReg val)
277 {
278 int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
279 regs.setFloatReg(flatIndex, val);
280 }
281
282 void setFloatRegBits(int reg_idx, FloatRegBits val, int width)
283 {
284 int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
285 regs.setFloatRegBits(flatIndex, val, width);
286 }
287
288 void setFloatRegBits(int reg_idx, FloatRegBits val)
289 {
290 int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
291 regs.setFloatRegBits(flatIndex, val);
292 }
293
294 uint64_t readPC()
295 {
296 return regs.readPC();
297 }
298
299 void setPC(uint64_t val)
300 {
301 regs.setPC(val);
302 }
303
304 uint64_t readMicroPC()
305 {
306 return microPC;
307 }
308
309 void setMicroPC(uint64_t val)
310 {
311 microPC = val;
312 }
313
314 uint64_t readNextPC()
315 {
316 return regs.readNextPC();
317 }
318
319 void setNextPC(uint64_t val)
320 {
321 regs.setNextPC(val);
322 }
323
324 uint64_t readNextMicroPC()
325 {
326 return nextMicroPC;
327 }
328
329 void setNextMicroPC(uint64_t val)
330 {
331 nextMicroPC = val;
332 }
333
334 uint64_t readNextNPC()
335 {
336 return regs.readNextNPC();
337 }
338
339 void setNextNPC(uint64_t val)
340 {
341 regs.setNextNPC(val);
342 }
343
344 MiscReg readMiscRegNoEffect(int misc_reg, unsigned tid = 0)
345 {
346 return regs.readMiscRegNoEffect(misc_reg);
347 }
348
349 MiscReg readMiscReg(int misc_reg, unsigned tid = 0)
350 {
351 return regs.readMiscReg(misc_reg, tc);
352 }
353
354 void setMiscRegNoEffect(int misc_reg, const MiscReg &val, unsigned tid = 0)
355 {
356 return regs.setMiscRegNoEffect(misc_reg, val);
357 }
358
359 void setMiscReg(int misc_reg, const MiscReg &val, unsigned tid = 0)
360 {
361 return regs.setMiscReg(misc_reg, val, tc);
362 }
363
364 unsigned readStCondFailures() { return storeCondFailures; }
365
366 void setStCondFailures(unsigned sc_failures)
367 { storeCondFailures = sc_failures; }
368
369 #if !FULL_SYSTEM
370 TheISA::IntReg getSyscallArg(int i)
371 {
372 assert(i < TheISA::NumArgumentRegs);
373 TheISA::IntReg val = regs.readIntReg(
374 TheISA::flattenIntIndex(getTC(), TheISA::ArgumentReg[i]));
375 #if THE_ISA == SPARC_ISA
376 if (bits(this->readMiscRegNoEffect(
377 SparcISA::MISCREG_PSTATE), 3, 3)) {
378 val = bits(val, 31, 0);
379 }
380 #endif
381 return val;
382 }
383
384 // used to shift args for indirect syscall
385 void setSyscallArg(int i, TheISA::IntReg val)
386 {
387 assert(i < TheISA::NumArgumentRegs);
388 regs.setIntReg(TheISA::flattenIntIndex(getTC(),
389 TheISA::ArgumentReg[i]), val);
390 }
391
392 void setSyscallReturn(SyscallReturn return_value)
393 {
394 TheISA::setSyscallReturn(return_value, getTC());
395 }
396
397 void syscall(int64_t callnum)
398 {
399 process->syscall(callnum, tc);
400 }
401 #endif
402 };
403
404
405 // for non-speculative execution context, spec_mode is always false
406 inline bool
407 SimpleThread::misspeculating()
408 {
409 return false;
410 }
411
412 #endif // __CPU_CPU_EXEC_CONTEXT_HH__