cpu-o3: Fix handling of some mem. order violations
[gem5.git] / src / cpu / static_inst.hh
1 /*
2 * Copyright (c) 2017 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2003-2005 The Regents of The University of Michigan
15 * Copyright (c) 2013 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Steve Reinhardt
42 */
43
44 #ifndef __CPU_STATIC_INST_HH__
45 #define __CPU_STATIC_INST_HH__
46
47 #include <bitset>
48 #include <memory>
49 #include <string>
50
51 #include "arch/registers.hh"
52 #include "arch/types.hh"
53 #include "base/logging.hh"
54 #include "base/refcnt.hh"
55 #include "base/types.hh"
56 #include "config/the_isa.hh"
57 #include "cpu/op_class.hh"
58 #include "cpu/reg_class.hh"
59 #include "cpu/static_inst_fwd.hh"
60 #include "cpu/thread_context.hh"
61 #include "enums/StaticInstFlags.hh"
62 #include "sim/byteswap.hh"
63
64 // forward declarations
65 class Packet;
66
67 class ExecContext;
68
69 class SymbolTable;
70
71 namespace Trace {
72 class InstRecord;
73 }
74
75 /**
76 * Base, ISA-independent static instruction class.
77 *
78 * The main component of this class is the vector of flags and the
79 * associated methods for reading them. Any object that can rely
80 * solely on these flags can process instructions without being
81 * recompiled for multiple ISAs.
82 */
83 class StaticInst : public RefCounted, public StaticInstFlags
84 {
85 public:
86 /// Binary extended machine instruction type.
87 typedef TheISA::ExtMachInst ExtMachInst;
88
89 enum {
90 MaxInstSrcRegs = TheISA::MaxInstSrcRegs, //< Max source regs
91 MaxInstDestRegs = TheISA::MaxInstDestRegs //< Max dest regs
92 };
93
94 protected:
95
96 /// Flag values for this instruction.
97 std::bitset<Num_Flags> flags;
98
99 /// See opClass().
100 OpClass _opClass;
101
102 /// See numSrcRegs().
103 int8_t _numSrcRegs;
104
105 /// See numDestRegs().
106 int8_t _numDestRegs;
107
108 /// The following are used to track physical register usage
109 /// for machines with separate int & FP reg files.
110 //@{
111 int8_t _numFPDestRegs;
112 int8_t _numIntDestRegs;
113 int8_t _numCCDestRegs;
114 //@}
115
116 /** To use in architectures with vector register file. */
117 /** @{ */
118 int8_t _numVecDestRegs;
119 int8_t _numVecElemDestRegs;
120 int8_t _numVecPredDestRegs;
121 /** @} */
122
123 public:
124
125 /// @name Register information.
126 /// The sum of numFPDestRegs(), numIntDestRegs(), numVecDestRegs(),
127 /// numVecElemDestRegs() and numVecPredDestRegs() equals numDestRegs().
128 /// The former two functions are used to track physical register usage for
129 /// machines with separate int & FP reg files, the next three are for
130 /// machines with vector and predicate register files.
131 //@{
132 /// Number of source registers.
133 int8_t numSrcRegs() const { return _numSrcRegs; }
134 /// Number of destination registers.
135 int8_t numDestRegs() const { return _numDestRegs; }
136 /// Number of floating-point destination regs.
137 int8_t numFPDestRegs() const { return _numFPDestRegs; }
138 /// Number of integer destination regs.
139 int8_t numIntDestRegs() const { return _numIntDestRegs; }
140 /// Number of vector destination regs.
141 int8_t numVecDestRegs() const { return _numVecDestRegs; }
142 /// Number of vector element destination regs.
143 int8_t numVecElemDestRegs() const { return _numVecElemDestRegs; }
144 /// Number of predicate destination regs.
145 int8_t numVecPredDestRegs() const { return _numVecPredDestRegs; }
146 /// Number of coprocesor destination regs.
147 int8_t numCCDestRegs() const { return _numCCDestRegs; }
148 //@}
149
150 /// @name Flag accessors.
151 /// These functions are used to access the values of the various
152 /// instruction property flags. See StaticInst::Flags for descriptions
153 /// of the individual flags.
154 //@{
155
156 bool isNop() const { return flags[IsNop]; }
157
158 bool isMemRef() const { return flags[IsMemRef]; }
159 bool isLoad() const { return flags[IsLoad]; }
160 bool isStore() const { return flags[IsStore]; }
161 bool isAtomic() const { return flags[IsAtomic]; }
162 bool isStoreConditional() const { return flags[IsStoreConditional]; }
163 bool isInstPrefetch() const { return flags[IsInstPrefetch]; }
164 bool isDataPrefetch() const { return flags[IsDataPrefetch]; }
165 bool isPrefetch() const { return isInstPrefetch() ||
166 isDataPrefetch(); }
167
168 bool isInteger() const { return flags[IsInteger]; }
169 bool isFloating() const { return flags[IsFloating]; }
170 bool isVector() const { return flags[IsVector]; }
171 bool isCC() const { return flags[IsCC]; }
172
173 bool isControl() const { return flags[IsControl]; }
174 bool isCall() const { return flags[IsCall]; }
175 bool isReturn() const { return flags[IsReturn]; }
176 bool isDirectCtrl() const { return flags[IsDirectControl]; }
177 bool isIndirectCtrl() const { return flags[IsIndirectControl]; }
178 bool isCondCtrl() const { return flags[IsCondControl]; }
179 bool isUncondCtrl() const { return flags[IsUncondControl]; }
180 bool isCondDelaySlot() const { return flags[IsCondDelaySlot]; }
181
182 bool isThreadSync() const { return flags[IsThreadSync]; }
183 bool isSerializing() const { return flags[IsSerializing] ||
184 flags[IsSerializeBefore] ||
185 flags[IsSerializeAfter]; }
186 bool isSerializeBefore() const { return flags[IsSerializeBefore]; }
187 bool isSerializeAfter() const { return flags[IsSerializeAfter]; }
188 bool isSquashAfter() const { return flags[IsSquashAfter]; }
189 bool isMemBarrier() const { return flags[IsMemBarrier]; }
190 bool isWriteBarrier() const { return flags[IsWriteBarrier]; }
191 bool isNonSpeculative() const { return flags[IsNonSpeculative]; }
192 bool isQuiesce() const { return flags[IsQuiesce]; }
193 bool isIprAccess() const { return flags[IsIprAccess]; }
194 bool isUnverifiable() const { return flags[IsUnverifiable]; }
195 bool isSyscall() const { return flags[IsSyscall]; }
196 bool isMacroop() const { return flags[IsMacroop]; }
197 bool isMicroop() const { return flags[IsMicroop]; }
198 bool isDelayedCommit() const { return flags[IsDelayedCommit]; }
199 bool isLastMicroop() const { return flags[IsLastMicroop]; }
200 bool isFirstMicroop() const { return flags[IsFirstMicroop]; }
201 //This flag doesn't do anything yet
202 bool isMicroBranch() const { return flags[IsMicroBranch]; }
203 //@}
204
205 void setFirstMicroop() { flags[IsFirstMicroop] = true; }
206 void setLastMicroop() { flags[IsLastMicroop] = true; }
207 void setDelayedCommit() { flags[IsDelayedCommit] = true; }
208 void setFlag(Flags f) { flags[f] = true; }
209
210 /// Operation class. Used to select appropriate function unit in issue.
211 OpClass opClass() const { return _opClass; }
212
213
214 /// Return logical index (architectural reg num) of i'th destination reg.
215 /// Only the entries from 0 through numDestRegs()-1 are valid.
216 const RegId& destRegIdx(int i) const { return _destRegIdx[i]; }
217
218 /// Return logical index (architectural reg num) of i'th source reg.
219 /// Only the entries from 0 through numSrcRegs()-1 are valid.
220 const RegId& srcRegIdx(int i) const { return _srcRegIdx[i]; }
221
222 /// Pointer to a statically allocated "null" instruction object.
223 static StaticInstPtr nullStaticInstPtr;
224
225 /// Pointer to a statically allocated generic "nop" instruction object.
226 static StaticInstPtr nopStaticInstPtr;
227
228 /// The binary machine instruction.
229 const ExtMachInst machInst;
230
231 protected:
232
233 /// See destRegIdx().
234 RegId _destRegIdx[MaxInstDestRegs];
235 /// See srcRegIdx().
236 RegId _srcRegIdx[MaxInstSrcRegs];
237
238 /**
239 * Base mnemonic (e.g., "add"). Used by generateDisassembly()
240 * methods. Also useful to readily identify instructions from
241 * within the debugger when #cachedDisassembly has not been
242 * initialized.
243 */
244 const char *mnemonic;
245
246 /**
247 * String representation of disassembly (lazily evaluated via
248 * disassemble()).
249 */
250 mutable std::string *cachedDisassembly;
251
252 /**
253 * Internal function to generate disassembly string.
254 */
255 virtual std::string
256 generateDisassembly(Addr pc, const SymbolTable *symtab) const = 0;
257
258 /// Constructor.
259 /// It's important to initialize everything here to a sane
260 /// default, since the decoder generally only overrides
261 /// the fields that are meaningful for the particular
262 /// instruction.
263 StaticInst(const char *_mnemonic, ExtMachInst _machInst, OpClass __opClass)
264 : _opClass(__opClass), _numSrcRegs(0), _numDestRegs(0),
265 _numFPDestRegs(0), _numIntDestRegs(0), _numCCDestRegs(0),
266 _numVecDestRegs(0), _numVecElemDestRegs(0), _numVecPredDestRegs(0),
267 machInst(_machInst), mnemonic(_mnemonic), cachedDisassembly(0)
268 { }
269
270 public:
271 virtual ~StaticInst();
272
273 virtual Fault execute(ExecContext *xc,
274 Trace::InstRecord *traceData) const = 0;
275
276 virtual Fault initiateAcc(ExecContext *xc,
277 Trace::InstRecord *traceData) const
278 {
279 panic("initiateAcc not defined!");
280 }
281
282 virtual Fault completeAcc(Packet *pkt, ExecContext *xc,
283 Trace::InstRecord *traceData) const
284 {
285 panic("completeAcc not defined!");
286 }
287
288 virtual void advancePC(TheISA::PCState &pcState) const = 0;
289
290 /**
291 * Return the microop that goes with a particular micropc. This should
292 * only be defined/used in macroops which will contain microops
293 */
294 virtual StaticInstPtr fetchMicroop(MicroPC upc) const;
295
296 /**
297 * Return the target address for a PC-relative branch.
298 * Invalid if not a PC-relative branch (i.e. isDirectCtrl()
299 * should be true).
300 */
301 virtual TheISA::PCState branchTarget(const TheISA::PCState &pc) const;
302
303 /**
304 * Return the target address for an indirect branch (jump). The
305 * register value is read from the supplied thread context, so
306 * the result is valid only if the thread context is about to
307 * execute the branch in question. Invalid if not an indirect
308 * branch (i.e. isIndirectCtrl() should be true).
309 */
310 virtual TheISA::PCState branchTarget(ThreadContext *tc) const;
311
312 /**
313 * Return true if the instruction is a control transfer, and if so,
314 * return the target address as well.
315 */
316 bool hasBranchTarget(const TheISA::PCState &pc, ThreadContext *tc,
317 TheISA::PCState &tgt) const;
318
319 /**
320 * Return string representation of disassembled instruction.
321 * The default version of this function will call the internal
322 * virtual generateDisassembly() function to get the string,
323 * then cache it in #cachedDisassembly. If the disassembly
324 * should not be cached, this function should be overridden directly.
325 */
326 virtual const std::string &disassemble(Addr pc,
327 const SymbolTable *symtab = 0) const;
328
329 /**
330 * Print a separator separated list of this instruction's set flag
331 * names on the given stream.
332 */
333 void printFlags(std::ostream &outs, const std::string &separator) const;
334
335 /// Return name of machine instruction
336 std::string getName() { return mnemonic; }
337
338 protected:
339 template<typename T>
340 size_t
341 simpleAsBytes(void *buf, size_t max_size, const T &t)
342 {
343 size_t size = sizeof(T);
344 if (size <= max_size)
345 *reinterpret_cast<T *>(buf) = htole<T>(t);
346 return size;
347 }
348
349 public:
350 /**
351 * Instruction classes can override this function to return a
352 * a representation of themselves as a blob of bytes, generally assumed to
353 * be that instructions ExtMachInst.
354 *
355 * buf is a buffer to hold the bytes.
356 * max_size is the size allocated for that buffer by the caller.
357 * The return value is how much data was actually put into the buffer,
358 * zero if no data was put in the buffer, or the necessary size of the
359 * buffer if there wasn't enough space.
360 */
361 virtual size_t asBytes(void *buf, size_t max_size) { return 0; }
362 };
363
364 #endif // __CPU_STATIC_INST_HH__