Merge with head.
[gem5.git] / src / cpu / static_inst.hh
1 /*
2 * Copyright (c) 2003-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31 #ifndef __CPU_STATIC_INST_HH__
32 #define __CPU_STATIC_INST_HH__
33
34 #include <bitset>
35 #include <string>
36
37 #include "arch/isa_traits.hh"
38 #include "arch/utility.hh"
39 #include "sim/faults.hh"
40 #include "base/bitfield.hh"
41 #include "base/hashmap.hh"
42 #include "base/misc.hh"
43 #include "base/refcnt.hh"
44 #include "cpu/op_class.hh"
45 #include "cpu/o3/dyn_inst.hh"
46 #include "sim/faults.hh"
47 #include "sim/host.hh"
48
49 // forward declarations
50 struct AlphaSimpleImpl;
51 struct OzoneImpl;
52 struct SimpleImpl;
53 class ThreadContext;
54 class DynInst;
55 class Packet;
56
57 template <class Impl>
58 class OzoneDynInst;
59
60 class CheckerCPU;
61 class FastCPU;
62 class AtomicSimpleCPU;
63 class TimingSimpleCPU;
64 class InorderCPU;
65 class SymbolTable;
66 class AddrDecodePage;
67
68 namespace Trace {
69 class InstRecord;
70 }
71
72 typedef uint32_t MicroPC;
73
74 /**
75 * Base, ISA-independent static instruction class.
76 *
77 * The main component of this class is the vector of flags and the
78 * associated methods for reading them. Any object that can rely
79 * solely on these flags can process instructions without being
80 * recompiled for multiple ISAs.
81 */
82 class StaticInstBase : public RefCounted
83 {
84 protected:
85
86 /// Set of boolean static instruction properties.
87 ///
88 /// Notes:
89 /// - The IsInteger and IsFloating flags are based on the class of
90 /// registers accessed by the instruction. Although most
91 /// instructions will have exactly one of these two flags set, it
92 /// is possible for an instruction to have neither (e.g., direct
93 /// unconditional branches, memory barriers) or both (e.g., an
94 /// FP/int conversion).
95 /// - If IsMemRef is set, then exactly one of IsLoad or IsStore
96 /// will be set.
97 /// - If IsControl is set, then exactly one of IsDirectControl or
98 /// IsIndirect Control will be set, and exactly one of
99 /// IsCondControl or IsUncondControl will be set.
100 /// - IsSerializing, IsMemBarrier, and IsWriteBarrier are
101 /// implemented as flags since in the current model there's no
102 /// other way for instructions to inject behavior into the
103 /// pipeline outside of fetch. Once we go to an exec-in-exec CPU
104 /// model we should be able to get rid of these flags and
105 /// implement this behavior via the execute() methods.
106 ///
107 enum Flags {
108 IsNop, ///< Is a no-op (no effect at all).
109
110 IsInteger, ///< References integer regs.
111 IsFloating, ///< References FP regs.
112
113 IsMemRef, ///< References memory (load, store, or prefetch).
114 IsLoad, ///< Reads from memory (load or prefetch).
115 IsStore, ///< Writes to memory.
116 IsStoreConditional, ///< Store conditional instruction.
117 IsInstPrefetch, ///< Instruction-cache prefetch.
118 IsDataPrefetch, ///< Data-cache prefetch.
119 IsCopy, ///< Fast Cache block copy
120
121 IsControl, ///< Control transfer instruction.
122 IsDirectControl, ///< PC relative control transfer.
123 IsIndirectControl, ///< Register indirect control transfer.
124 IsCondControl, ///< Conditional control transfer.
125 IsUncondControl, ///< Unconditional control transfer.
126 IsCall, ///< Subroutine call.
127 IsReturn, ///< Subroutine return.
128
129 IsCondDelaySlot,///< Conditional Delay-Slot Instruction
130
131 IsThreadSync, ///< Thread synchronization operation.
132
133 IsSerializing, ///< Serializes pipeline: won't execute until all
134 /// older instructions have committed.
135 IsSerializeBefore,
136 IsSerializeAfter,
137 IsMemBarrier, ///< Is a memory barrier
138 IsWriteBarrier, ///< Is a write barrier
139
140 IsNonSpeculative, ///< Should not be executed speculatively
141 IsQuiesce, ///< Is a quiesce instruction
142
143 IsIprAccess, ///< Accesses IPRs
144 IsUnverifiable, ///< Can't be verified by a checker
145
146 IsSyscall, ///< Causes a system call to be emulated in syscall
147 /// emulation mode.
148
149 //Flags for microcode
150 IsMacroop, ///< Is a macroop containing microops
151 IsMicroop, ///< Is a microop
152 IsDelayedCommit, ///< This microop doesn't commit right away
153 IsLastMicroop, ///< This microop ends a microop sequence
154 IsFirstMicroop, ///< This microop begins a microop sequence
155 //This flag doesn't do anything yet
156 IsMicroBranch, ///< This microop branches within the microcode for a macroop
157
158 NumFlags
159 };
160
161 /// Flag values for this instruction.
162 std::bitset<NumFlags> flags;
163
164 /// See opClass().
165 OpClass _opClass;
166
167 /// See numSrcRegs().
168 int8_t _numSrcRegs;
169
170 /// See numDestRegs().
171 int8_t _numDestRegs;
172
173 /// The following are used to track physical register usage
174 /// for machines with separate int & FP reg files.
175 //@{
176 int8_t _numFPDestRegs;
177 int8_t _numIntDestRegs;
178 //@}
179
180 /// Constructor.
181 /// It's important to initialize everything here to a sane
182 /// default, since the decoder generally only overrides
183 /// the fields that are meaningful for the particular
184 /// instruction.
185 StaticInstBase(OpClass __opClass)
186 : _opClass(__opClass), _numSrcRegs(0), _numDestRegs(0),
187 _numFPDestRegs(0), _numIntDestRegs(0)
188 {
189 }
190
191 public:
192
193 /// @name Register information.
194 /// The sum of numFPDestRegs() and numIntDestRegs() equals
195 /// numDestRegs(). The former two functions are used to track
196 /// physical register usage for machines with separate int & FP
197 /// reg files.
198 //@{
199 /// Number of source registers.
200 int8_t numSrcRegs() const { return _numSrcRegs; }
201 /// Number of destination registers.
202 int8_t numDestRegs() const { return _numDestRegs; }
203 /// Number of floating-point destination regs.
204 int8_t numFPDestRegs() const { return _numFPDestRegs; }
205 /// Number of integer destination regs.
206 int8_t numIntDestRegs() const { return _numIntDestRegs; }
207 //@}
208
209 /// @name Flag accessors.
210 /// These functions are used to access the values of the various
211 /// instruction property flags. See StaticInstBase::Flags for descriptions
212 /// of the individual flags.
213 //@{
214
215 bool isNop() const { return flags[IsNop]; }
216
217 bool isMemRef() const { return flags[IsMemRef]; }
218 bool isLoad() const { return flags[IsLoad]; }
219 bool isStore() const { return flags[IsStore]; }
220 bool isStoreConditional() const { return flags[IsStoreConditional]; }
221 bool isInstPrefetch() const { return flags[IsInstPrefetch]; }
222 bool isDataPrefetch() const { return flags[IsDataPrefetch]; }
223 bool isCopy() const { return flags[IsCopy];}
224
225 bool isInteger() const { return flags[IsInteger]; }
226 bool isFloating() const { return flags[IsFloating]; }
227
228 bool isControl() const { return flags[IsControl]; }
229 bool isCall() const { return flags[IsCall]; }
230 bool isReturn() const { return flags[IsReturn]; }
231 bool isDirectCtrl() const { return flags[IsDirectControl]; }
232 bool isIndirectCtrl() const { return flags[IsIndirectControl]; }
233 bool isCondCtrl() const { return flags[IsCondControl]; }
234 bool isUncondCtrl() const { return flags[IsUncondControl]; }
235 bool isCondDelaySlot() const { return flags[IsCondDelaySlot]; }
236
237 bool isThreadSync() const { return flags[IsThreadSync]; }
238 bool isSerializing() const { return flags[IsSerializing] ||
239 flags[IsSerializeBefore] ||
240 flags[IsSerializeAfter]; }
241 bool isSerializeBefore() const { return flags[IsSerializeBefore]; }
242 bool isSerializeAfter() const { return flags[IsSerializeAfter]; }
243 bool isMemBarrier() const { return flags[IsMemBarrier]; }
244 bool isWriteBarrier() const { return flags[IsWriteBarrier]; }
245 bool isNonSpeculative() const { return flags[IsNonSpeculative]; }
246 bool isQuiesce() const { return flags[IsQuiesce]; }
247 bool isIprAccess() const { return flags[IsIprAccess]; }
248 bool isUnverifiable() const { return flags[IsUnverifiable]; }
249 bool isSyscall() const { return flags[IsSyscall]; }
250 bool isMacroop() const { return flags[IsMacroop]; }
251 bool isMicroop() const { return flags[IsMicroop]; }
252 bool isDelayedCommit() const { return flags[IsDelayedCommit]; }
253 bool isLastMicroop() const { return flags[IsLastMicroop]; }
254 bool isFirstMicroop() const { return flags[IsFirstMicroop]; }
255 //This flag doesn't do anything yet
256 bool isMicroBranch() const { return flags[IsMicroBranch]; }
257 //@}
258
259 /// Operation class. Used to select appropriate function unit in issue.
260 OpClass opClass() const { return _opClass; }
261 };
262
263
264 // forward declaration
265 class StaticInstPtr;
266
267 /**
268 * Generic yet ISA-dependent static instruction class.
269 *
270 * This class builds on StaticInstBase, defining fields and interfaces
271 * that are generic across all ISAs but that differ in details
272 * according to the specific ISA being used.
273 */
274 class StaticInst : public StaticInstBase
275 {
276 public:
277
278 /// Binary machine instruction type.
279 typedef TheISA::MachInst MachInst;
280 /// Binary extended machine instruction type.
281 typedef TheISA::ExtMachInst ExtMachInst;
282 /// Logical register index type.
283 typedef TheISA::RegIndex RegIndex;
284
285 enum {
286 MaxInstSrcRegs = TheISA::MaxInstSrcRegs, //< Max source regs
287 MaxInstDestRegs = TheISA::MaxInstDestRegs, //< Max dest regs
288 };
289
290
291 /// Return logical index (architectural reg num) of i'th destination reg.
292 /// Only the entries from 0 through numDestRegs()-1 are valid.
293 RegIndex destRegIdx(int i) const { return _destRegIdx[i]; }
294
295 /// Return logical index (architectural reg num) of i'th source reg.
296 /// Only the entries from 0 through numSrcRegs()-1 are valid.
297 RegIndex srcRegIdx(int i) const { return _srcRegIdx[i]; }
298
299 /// Pointer to a statically allocated "null" instruction object.
300 /// Used to give eaCompInst() and memAccInst() something to return
301 /// when called on non-memory instructions.
302 static StaticInstPtr nullStaticInstPtr;
303
304 /**
305 * Memory references only: returns "fake" instruction representing
306 * the effective address part of the memory operation. Used to
307 * obtain the dependence info (numSrcRegs and srcRegIdx[]) for
308 * just the EA computation.
309 */
310 virtual const
311 StaticInstPtr &eaCompInst() const { return nullStaticInstPtr; }
312
313 /**
314 * Memory references only: returns "fake" instruction representing
315 * the memory access part of the memory operation. Used to
316 * obtain the dependence info (numSrcRegs and srcRegIdx[]) for
317 * just the memory access (not the EA computation).
318 */
319 virtual const
320 StaticInstPtr &memAccInst() const { return nullStaticInstPtr; }
321
322 /// The binary machine instruction.
323 const ExtMachInst machInst;
324
325 protected:
326
327 /// See destRegIdx().
328 RegIndex _destRegIdx[MaxInstDestRegs];
329 /// See srcRegIdx().
330 RegIndex _srcRegIdx[MaxInstSrcRegs];
331
332 /**
333 * Base mnemonic (e.g., "add"). Used by generateDisassembly()
334 * methods. Also useful to readily identify instructions from
335 * within the debugger when #cachedDisassembly has not been
336 * initialized.
337 */
338 const char *mnemonic;
339
340 /**
341 * String representation of disassembly (lazily evaluated via
342 * disassemble()).
343 */
344 mutable std::string *cachedDisassembly;
345
346 /**
347 * Internal function to generate disassembly string.
348 */
349 virtual std::string
350 generateDisassembly(Addr pc, const SymbolTable *symtab) const = 0;
351
352 /// Constructor.
353 StaticInst(const char *_mnemonic, ExtMachInst _machInst, OpClass __opClass)
354 : StaticInstBase(__opClass),
355 machInst(_machInst), mnemonic(_mnemonic), cachedDisassembly(0)
356 { }
357
358 public:
359
360 virtual ~StaticInst()
361 {
362 if (cachedDisassembly)
363 delete cachedDisassembly;
364 }
365
366 /**
367 * The execute() signatures are auto-generated by scons based on the
368 * set of CPU models we are compiling in today.
369 */
370 #include "cpu/static_inst_exec_sigs.hh"
371
372 /**
373 * Return the microop that goes with a particular micropc. This should
374 * only be defined/used in macroops which will contain microops
375 */
376 virtual StaticInstPtr fetchMicroop(MicroPC micropc);
377
378 /**
379 * Return the target address for a PC-relative branch.
380 * Invalid if not a PC-relative branch (i.e. isDirectCtrl()
381 * should be true).
382 */
383 virtual Addr branchTarget(Addr branchPC) const
384 {
385 panic("StaticInst::branchTarget() called on instruction "
386 "that is not a PC-relative branch.");
387 M5_DUMMY_RETURN
388 }
389
390 /**
391 * Return the target address for an indirect branch (jump). The
392 * register value is read from the supplied thread context, so
393 * the result is valid only if the thread context is about to
394 * execute the branch in question. Invalid if not an indirect
395 * branch (i.e. isIndirectCtrl() should be true).
396 */
397 virtual Addr branchTarget(ThreadContext *tc) const
398 {
399 panic("StaticInst::branchTarget() called on instruction "
400 "that is not an indirect branch.");
401 }
402 M5_DUMMY_RETURN
403
404 /**
405 * Return true if the instruction is a control transfer, and if so,
406 * return the target address as well.
407 */
408 bool hasBranchTarget(Addr pc, ThreadContext *tc, Addr &tgt) const;
409
410 /**
411 * Return string representation of disassembled instruction.
412 * The default version of this function will call the internal
413 * virtual generateDisassembly() function to get the string,
414 * then cache it in #cachedDisassembly. If the disassembly
415 * should not be cached, this function should be overridden directly.
416 */
417 virtual const std::string &disassemble(Addr pc,
418 const SymbolTable *symtab = 0) const
419 {
420 if (!cachedDisassembly)
421 cachedDisassembly =
422 new std::string(generateDisassembly(pc, symtab));
423
424 return *cachedDisassembly;
425 }
426
427 /// Decoded instruction cache type.
428 /// For now we're using a generic hash_map; this seems to work
429 /// pretty well.
430 typedef m5::hash_map<ExtMachInst, StaticInstPtr> DecodeCache;
431
432 /// A cache of decoded instruction objects.
433 static DecodeCache decodeCache;
434
435 /**
436 * Dump some basic stats on the decode cache hash map.
437 * Only gets called if DECODE_CACHE_HASH_STATS is defined.
438 */
439 static void dumpDecodeCacheStats();
440
441 /// Decode a machine instruction.
442 /// @param mach_inst The binary instruction to decode.
443 /// @retval A pointer to the corresponding StaticInst object.
444 //This is defined as inlined below.
445 static StaticInstPtr decode(ExtMachInst mach_inst, Addr addr);
446
447 /// Return name of machine instruction
448 std::string getName() { return mnemonic; }
449
450 /// Decoded instruction cache type, for address decoding.
451 /// A generic hash_map is used.
452 typedef m5::hash_map<Addr, AddrDecodePage *> AddrDecodeCache;
453
454 /// A cache of decoded instruction objects from addresses.
455 static AddrDecodeCache addrDecodeCache;
456
457 struct cacheElement {
458 Addr page_addr;
459 AddrDecodePage *decodePage;
460
461 cacheElement()
462 :decodePage(NULL) { }
463 } ;
464
465 /// An array of recently decoded instructions.
466 // might not use an array if there is only two elements
467 static struct cacheElement recentDecodes[2];
468
469 /// Updates the recently decoded instructions entries
470 /// @param page_addr The page address recently used.
471 /// @param decodePage Pointer to decoding page containing the decoded
472 /// instruction.
473 static inline void
474 updateCache(Addr page_addr, AddrDecodePage *decodePage)
475 {
476 recentDecodes[1].page_addr = recentDecodes[0].page_addr;
477 recentDecodes[1].decodePage = recentDecodes[0].decodePage;
478 recentDecodes[0].page_addr = page_addr;
479 recentDecodes[0].decodePage = decodePage;
480 }
481
482 /// Searches the decoded instruction cache for instruction decoding.
483 /// If it is not found, then we decode the instruction.
484 /// Otherwise, we get the instruction from the cache and move it into
485 /// the address-to-instruction decoding page.
486 /// @param mach_inst The binary instruction to decode.
487 /// @param addr The address that contained the binary instruction.
488 /// @param decodePage Pointer to decoding page containing the instruction.
489 /// @retval A pointer to the corresponding StaticInst object.
490 //This is defined as inlined below.
491 static StaticInstPtr searchCache(ExtMachInst mach_inst, Addr addr,
492 AddrDecodePage * decodePage);
493 };
494
495 typedef RefCountingPtr<StaticInstBase> StaticInstBasePtr;
496
497 /// Reference-counted pointer to a StaticInst object.
498 /// This type should be used instead of "StaticInst *" so that
499 /// StaticInst objects can be properly reference-counted.
500 class StaticInstPtr : public RefCountingPtr<StaticInst>
501 {
502 public:
503 /// Constructor.
504 StaticInstPtr()
505 : RefCountingPtr<StaticInst>()
506 {
507 }
508
509 /// Conversion from "StaticInst *".
510 StaticInstPtr(StaticInst *p)
511 : RefCountingPtr<StaticInst>(p)
512 {
513 }
514
515 /// Copy constructor.
516 StaticInstPtr(const StaticInstPtr &r)
517 : RefCountingPtr<StaticInst>(r)
518 {
519 }
520
521 /// Construct directly from machine instruction.
522 /// Calls StaticInst::decode().
523 explicit StaticInstPtr(TheISA::ExtMachInst mach_inst, Addr addr)
524 : RefCountingPtr<StaticInst>(StaticInst::decode(mach_inst, addr))
525 {
526 }
527
528 /// Convert to pointer to StaticInstBase class.
529 operator const StaticInstBasePtr()
530 {
531 return this->get();
532 }
533 };
534
535 /// A page of a list of decoded instructions from an address.
536 class AddrDecodePage
537 {
538 typedef TheISA::ExtMachInst ExtMachInst;
539 protected:
540 StaticInstPtr instructions[TheISA::PageBytes];
541 bool valid[TheISA::PageBytes];
542 Addr lowerMask;
543
544 public:
545 /// Constructor
546 AddrDecodePage() {
547 lowerMask = TheISA::PageBytes - 1;
548 memset(valid, 0, TheISA::PageBytes);
549 }
550
551 /// Checks if the instruction is already decoded and the machine
552 /// instruction in the cache matches the current machine instruction
553 /// related to the address
554 /// @param mach_inst The binary instruction to check
555 /// @param addr The address containing the instruction
556 inline bool decoded(ExtMachInst mach_inst, Addr addr)
557 {
558 return (valid[addr & lowerMask] &&
559 (instructions[addr & lowerMask]->machInst == mach_inst));
560 }
561
562 /// Returns the instruction object. decoded should be called first
563 /// to check if the instruction is valid.
564 /// @param addr The address of the instruction.
565 /// @retval A pointer to the corresponding StaticInst object.
566 inline StaticInstPtr getInst(Addr addr)
567 { return instructions[addr & lowerMask]; }
568
569 /// Inserts a pointer to a StaticInst object into the list of decoded
570 /// instructions on the page.
571 /// @param addr The address of the instruction.
572 /// @param si A pointer to the corresponding StaticInst object.
573 inline void insert(Addr addr, StaticInstPtr &si)
574 {
575 instructions[addr & lowerMask] = si;
576 valid[addr & lowerMask] = true;
577 }
578
579 };
580
581
582 inline StaticInstPtr
583 StaticInst::decode(StaticInst::ExtMachInst mach_inst, Addr addr)
584 {
585 #ifdef DECODE_CACHE_HASH_STATS
586 // Simple stats on decode hash_map. Turns out the default
587 // hash function is as good as anything I could come up with.
588 const int dump_every_n = 10000000;
589 static int decodes_til_dump = dump_every_n;
590
591 if (--decodes_til_dump == 0) {
592 dumpDecodeCacheStats();
593 decodes_til_dump = dump_every_n;
594 }
595 #endif
596
597 Addr page_addr = addr & ~(TheISA::PageBytes - 1);
598
599 // checks recently decoded addresses
600 if (recentDecodes[0].decodePage &&
601 page_addr == recentDecodes[0].page_addr) {
602 if (recentDecodes[0].decodePage->decoded(mach_inst, addr))
603 return recentDecodes[0].decodePage->getInst(addr);
604
605 return searchCache(mach_inst, addr, recentDecodes[0].decodePage);
606 }
607
608 if (recentDecodes[1].decodePage &&
609 page_addr == recentDecodes[1].page_addr) {
610 if (recentDecodes[1].decodePage->decoded(mach_inst, addr))
611 return recentDecodes[1].decodePage->getInst(addr);
612
613 return searchCache(mach_inst, addr, recentDecodes[1].decodePage);
614 }
615
616 // searches the page containing the address to decode
617 AddrDecodeCache::iterator iter = addrDecodeCache.find(page_addr);
618 if (iter != addrDecodeCache.end()) {
619 updateCache(page_addr, iter->second);
620 if (iter->second->decoded(mach_inst, addr))
621 return iter->second->getInst(addr);
622
623 return searchCache(mach_inst, addr, iter->second);
624 }
625
626 // creates a new object for a page of decoded instructions
627 AddrDecodePage * decodePage = new AddrDecodePage;
628 addrDecodeCache[page_addr] = decodePage;
629 updateCache(page_addr, decodePage);
630 return searchCache(mach_inst, addr, decodePage);
631 }
632
633 inline StaticInstPtr
634 StaticInst::searchCache(ExtMachInst mach_inst, Addr addr,
635 AddrDecodePage * decodePage)
636 {
637 DecodeCache::iterator iter = decodeCache.find(mach_inst);
638 if (iter != decodeCache.end()) {
639 decodePage->insert(addr, iter->second);
640 return iter->second;
641 }
642
643 StaticInstPtr si = TheISA::decodeInst(mach_inst);
644 decodePage->insert(addr, si);
645 decodeCache[mach_inst] = si;
646 return si;
647 }
648
649 #endif // __CPU_STATIC_INST_HH__