more steps toward O3 SMT
[gem5.git] / src / cpu / static_inst.hh
1 /*
2 * Copyright (c) 2003-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31 #ifndef __CPU_STATIC_INST_HH__
32 #define __CPU_STATIC_INST_HH__
33
34 #include <bitset>
35 #include <string>
36
37 #include "base/bitfield.hh"
38 #include "base/hashmap.hh"
39 #include "base/misc.hh"
40 #include "base/refcnt.hh"
41 #include "cpu/op_class.hh"
42 #include "sim/host.hh"
43 #include "arch/isa_traits.hh"
44
45 // forward declarations
46 struct AlphaSimpleImpl;
47 struct OzoneImpl;
48 struct SimpleImpl;
49 class ThreadContext;
50 class DynInst;
51 class Packet;
52
53 template <class Impl>
54 class AlphaDynInst;
55
56 //class O3DynInst;
57
58 template <class Impl>
59 class OzoneDynInst;
60
61 class CheckerCPU;
62 class FastCPU;
63 class AtomicSimpleCPU;
64 class TimingSimpleCPU;
65 class InorderCPU;
66 class SymbolTable;
67
68 namespace Trace {
69 class InstRecord;
70 }
71
72 /**
73 * Base, ISA-independent static instruction class.
74 *
75 * The main component of this class is the vector of flags and the
76 * associated methods for reading them. Any object that can rely
77 * solely on these flags can process instructions without being
78 * recompiled for multiple ISAs.
79 */
80 class StaticInstBase : public RefCounted
81 {
82 protected:
83
84 /// Set of boolean static instruction properties.
85 ///
86 /// Notes:
87 /// - The IsInteger and IsFloating flags are based on the class of
88 /// registers accessed by the instruction. Although most
89 /// instructions will have exactly one of these two flags set, it
90 /// is possible for an instruction to have neither (e.g., direct
91 /// unconditional branches, memory barriers) or both (e.g., an
92 /// FP/int conversion).
93 /// - If IsMemRef is set, then exactly one of IsLoad or IsStore
94 /// will be set.
95 /// - If IsControl is set, then exactly one of IsDirectControl or
96 /// IsIndirect Control will be set, and exactly one of
97 /// IsCondControl or IsUncondControl will be set.
98 /// - IsSerializing, IsMemBarrier, and IsWriteBarrier are
99 /// implemented as flags since in the current model there's no
100 /// other way for instructions to inject behavior into the
101 /// pipeline outside of fetch. Once we go to an exec-in-exec CPU
102 /// model we should be able to get rid of these flags and
103 /// implement this behavior via the execute() methods.
104 ///
105 enum Flags {
106 IsNop, ///< Is a no-op (no effect at all).
107
108 IsInteger, ///< References integer regs.
109 IsFloating, ///< References FP regs.
110
111 IsMemRef, ///< References memory (load, store, or prefetch).
112 IsLoad, ///< Reads from memory (load or prefetch).
113 IsStore, ///< Writes to memory.
114 IsStoreConditional, ///< Store conditional instruction.
115 IsInstPrefetch, ///< Instruction-cache prefetch.
116 IsDataPrefetch, ///< Data-cache prefetch.
117 IsCopy, ///< Fast Cache block copy
118
119 IsControl, ///< Control transfer instruction.
120 IsDirectControl, ///< PC relative control transfer.
121 IsIndirectControl, ///< Register indirect control transfer.
122 IsCondControl, ///< Conditional control transfer.
123 IsUncondControl, ///< Unconditional control transfer.
124 IsCall, ///< Subroutine call.
125 IsReturn, ///< Subroutine return.
126
127 IsCondDelaySlot,///< Conditional Delay-Slot Instruction
128
129 IsThreadSync, ///< Thread synchronization operation.
130
131 IsSerializing, ///< Serializes pipeline: won't execute until all
132 /// older instructions have committed.
133 IsSerializeBefore,
134 IsSerializeAfter,
135 IsMemBarrier, ///< Is a memory barrier
136 IsWriteBarrier, ///< Is a write barrier
137
138 IsNonSpeculative, ///< Should not be executed speculatively
139 IsQuiesce, ///< Is a quiesce instruction
140
141 IsIprAccess, ///< Accesses IPRs
142 IsUnverifiable, ///< Can't be verified by a checker
143
144 NumFlags
145 };
146
147 /// Flag values for this instruction.
148 std::bitset<NumFlags> flags;
149
150 /// See opClass().
151 OpClass _opClass;
152
153 /// See numSrcRegs().
154 int8_t _numSrcRegs;
155
156 /// See numDestRegs().
157 int8_t _numDestRegs;
158
159 /// The following are used to track physical register usage
160 /// for machines with separate int & FP reg files.
161 //@{
162 int8_t _numFPDestRegs;
163 int8_t _numIntDestRegs;
164 //@}
165
166 /// Constructor.
167 /// It's important to initialize everything here to a sane
168 /// default, since the decoder generally only overrides
169 /// the fields that are meaningful for the particular
170 /// instruction.
171 StaticInstBase(OpClass __opClass)
172 : _opClass(__opClass), _numSrcRegs(0), _numDestRegs(0),
173 _numFPDestRegs(0), _numIntDestRegs(0)
174 {
175 }
176
177 public:
178
179 /// @name Register information.
180 /// The sum of numFPDestRegs() and numIntDestRegs() equals
181 /// numDestRegs(). The former two functions are used to track
182 /// physical register usage for machines with separate int & FP
183 /// reg files.
184 //@{
185 /// Number of source registers.
186 int8_t numSrcRegs() const { return _numSrcRegs; }
187 /// Number of destination registers.
188 int8_t numDestRegs() const { return _numDestRegs; }
189 /// Number of floating-point destination regs.
190 int8_t numFPDestRegs() const { return _numFPDestRegs; }
191 /// Number of integer destination regs.
192 int8_t numIntDestRegs() const { return _numIntDestRegs; }
193 //@}
194
195 /// @name Flag accessors.
196 /// These functions are used to access the values of the various
197 /// instruction property flags. See StaticInstBase::Flags for descriptions
198 /// of the individual flags.
199 //@{
200
201 bool isNop() const { return flags[IsNop]; }
202
203 bool isMemRef() const { return flags[IsMemRef]; }
204 bool isLoad() const { return flags[IsLoad]; }
205 bool isStore() const { return flags[IsStore]; }
206 bool isStoreConditional() const { return flags[IsStoreConditional]; }
207 bool isInstPrefetch() const { return flags[IsInstPrefetch]; }
208 bool isDataPrefetch() const { return flags[IsDataPrefetch]; }
209 bool isCopy() const { return flags[IsCopy];}
210
211 bool isInteger() const { return flags[IsInteger]; }
212 bool isFloating() const { return flags[IsFloating]; }
213
214 bool isControl() const { return flags[IsControl]; }
215 bool isCall() const { return flags[IsCall]; }
216 bool isReturn() const { return flags[IsReturn]; }
217 bool isDirectCtrl() const { return flags[IsDirectControl]; }
218 bool isIndirectCtrl() const { return flags[IsIndirectControl]; }
219 bool isCondCtrl() const { return flags[IsCondControl]; }
220 bool isUncondCtrl() const { return flags[IsUncondControl]; }
221
222 bool isThreadSync() const { return flags[IsThreadSync]; }
223 bool isSerializing() const { return flags[IsSerializing] ||
224 flags[IsSerializeBefore] ||
225 flags[IsSerializeAfter]; }
226 bool isSerializeBefore() const { return flags[IsSerializeBefore]; }
227 bool isSerializeAfter() const { return flags[IsSerializeAfter]; }
228 bool isMemBarrier() const { return flags[IsMemBarrier]; }
229 bool isWriteBarrier() const { return flags[IsWriteBarrier]; }
230 bool isNonSpeculative() const { return flags[IsNonSpeculative]; }
231 bool isQuiesce() const { return flags[IsQuiesce]; }
232 bool isIprAccess() const { return flags[IsIprAccess]; }
233 bool isUnverifiable() const { return flags[IsUnverifiable]; }
234 //@}
235
236 /// Operation class. Used to select appropriate function unit in issue.
237 OpClass opClass() const { return _opClass; }
238 };
239
240
241 // forward declaration
242 class StaticInstPtr;
243
244 /**
245 * Generic yet ISA-dependent static instruction class.
246 *
247 * This class builds on StaticInstBase, defining fields and interfaces
248 * that are generic across all ISAs but that differ in details
249 * according to the specific ISA being used.
250 */
251 class StaticInst : public StaticInstBase
252 {
253 public:
254
255 /// Binary machine instruction type.
256 typedef TheISA::MachInst MachInst;
257 /// Binary extended machine instruction type.
258 typedef TheISA::ExtMachInst ExtMachInst;
259 /// Logical register index type.
260 typedef TheISA::RegIndex RegIndex;
261
262 enum {
263 MaxInstSrcRegs = TheISA::MaxInstSrcRegs, //< Max source regs
264 MaxInstDestRegs = TheISA::MaxInstDestRegs, //< Max dest regs
265 };
266
267
268 /// Return logical index (architectural reg num) of i'th destination reg.
269 /// Only the entries from 0 through numDestRegs()-1 are valid.
270 RegIndex destRegIdx(int i) const { return _destRegIdx[i]; }
271
272 /// Return logical index (architectural reg num) of i'th source reg.
273 /// Only the entries from 0 through numSrcRegs()-1 are valid.
274 RegIndex srcRegIdx(int i) const { return _srcRegIdx[i]; }
275
276 /// Pointer to a statically allocated "null" instruction object.
277 /// Used to give eaCompInst() and memAccInst() something to return
278 /// when called on non-memory instructions.
279 static StaticInstPtr nullStaticInstPtr;
280
281 /**
282 * Memory references only: returns "fake" instruction representing
283 * the effective address part of the memory operation. Used to
284 * obtain the dependence info (numSrcRegs and srcRegIdx[]) for
285 * just the EA computation.
286 */
287 virtual const
288 StaticInstPtr &eaCompInst() const { return nullStaticInstPtr; }
289
290 /**
291 * Memory references only: returns "fake" instruction representing
292 * the memory access part of the memory operation. Used to
293 * obtain the dependence info (numSrcRegs and srcRegIdx[]) for
294 * just the memory access (not the EA computation).
295 */
296 virtual const
297 StaticInstPtr &memAccInst() const { return nullStaticInstPtr; }
298
299 /// The binary machine instruction.
300 const ExtMachInst machInst;
301
302 protected:
303
304 /// See destRegIdx().
305 RegIndex _destRegIdx[MaxInstDestRegs];
306 /// See srcRegIdx().
307 RegIndex _srcRegIdx[MaxInstSrcRegs];
308
309 /**
310 * Base mnemonic (e.g., "add"). Used by generateDisassembly()
311 * methods. Also useful to readily identify instructions from
312 * within the debugger when #cachedDisassembly has not been
313 * initialized.
314 */
315 const char *mnemonic;
316
317 /**
318 * String representation of disassembly (lazily evaluated via
319 * disassemble()).
320 */
321 mutable std::string *cachedDisassembly;
322
323 /**
324 * Internal function to generate disassembly string.
325 */
326 virtual std::string
327 generateDisassembly(Addr pc, const SymbolTable *symtab) const = 0;
328
329 /// Constructor.
330 StaticInst(const char *_mnemonic, ExtMachInst _machInst, OpClass __opClass)
331 : StaticInstBase(__opClass),
332 machInst(_machInst), mnemonic(_mnemonic), cachedDisassembly(0)
333 {
334 }
335
336 public:
337
338 virtual ~StaticInst()
339 {
340 if (cachedDisassembly)
341 delete cachedDisassembly;
342 }
343
344 /**
345 * The execute() signatures are auto-generated by scons based on the
346 * set of CPU models we are compiling in today.
347 */
348 #include "cpu/static_inst_exec_sigs.hh"
349
350 /**
351 * Return the target address for a PC-relative branch.
352 * Invalid if not a PC-relative branch (i.e. isDirectCtrl()
353 * should be true).
354 */
355 virtual Addr branchTarget(Addr branchPC) const
356 {
357 panic("StaticInst::branchTarget() called on instruction "
358 "that is not a PC-relative branch.");
359 }
360
361 /**
362 * Return the target address for an indirect branch (jump). The
363 * register value is read from the supplied thread context, so
364 * the result is valid only if the thread context is about to
365 * execute the branch in question. Invalid if not an indirect
366 * branch (i.e. isIndirectCtrl() should be true).
367 */
368 virtual Addr branchTarget(ThreadContext *tc) const
369 {
370 panic("StaticInst::branchTarget() called on instruction "
371 "that is not an indirect branch.");
372 }
373
374 /**
375 * Return true if the instruction is a control transfer, and if so,
376 * return the target address as well.
377 */
378 bool hasBranchTarget(Addr pc, ThreadContext *tc, Addr &tgt) const;
379
380 /**
381 * Return string representation of disassembled instruction.
382 * The default version of this function will call the internal
383 * virtual generateDisassembly() function to get the string,
384 * then cache it in #cachedDisassembly. If the disassembly
385 * should not be cached, this function should be overridden directly.
386 */
387 virtual const std::string &disassemble(Addr pc,
388 const SymbolTable *symtab = 0) const
389 {
390 if (!cachedDisassembly)
391 cachedDisassembly =
392 new std::string(generateDisassembly(pc, symtab));
393
394 return *cachedDisassembly;
395 }
396
397 /// Decoded instruction cache type.
398 /// For now we're using a generic hash_map; this seems to work
399 /// pretty well.
400 typedef m5::hash_map<ExtMachInst, StaticInstPtr> DecodeCache;
401
402 /// A cache of decoded instruction objects.
403 static DecodeCache decodeCache;
404
405 /**
406 * Dump some basic stats on the decode cache hash map.
407 * Only gets called if DECODE_CACHE_HASH_STATS is defined.
408 */
409 static void dumpDecodeCacheStats();
410
411 /// Decode a machine instruction.
412 /// @param mach_inst The binary instruction to decode.
413 /// @retval A pointer to the corresponding StaticInst object.
414 //This is defined as inline below.
415 static StaticInstPtr decode(ExtMachInst mach_inst);
416
417 /// Return opcode of machine instruction
418 uint32_t getOpcode() { return bits(machInst, 31, 26);}
419
420 /// Return name of machine instruction
421 std::string getName() { return mnemonic; }
422 };
423
424 typedef RefCountingPtr<StaticInstBase> StaticInstBasePtr;
425
426 /// Reference-counted pointer to a StaticInst object.
427 /// This type should be used instead of "StaticInst *" so that
428 /// StaticInst objects can be properly reference-counted.
429 class StaticInstPtr : public RefCountingPtr<StaticInst>
430 {
431 public:
432 /// Constructor.
433 StaticInstPtr()
434 : RefCountingPtr<StaticInst>()
435 {
436 }
437
438 /// Conversion from "StaticInst *".
439 StaticInstPtr(StaticInst *p)
440 : RefCountingPtr<StaticInst>(p)
441 {
442 }
443
444 /// Copy constructor.
445 StaticInstPtr(const StaticInstPtr &r)
446 : RefCountingPtr<StaticInst>(r)
447 {
448 }
449
450 /// Construct directly from machine instruction.
451 /// Calls StaticInst::decode().
452 StaticInstPtr(TheISA::ExtMachInst mach_inst)
453 : RefCountingPtr<StaticInst>(StaticInst::decode(mach_inst))
454 {
455 }
456
457 /// Convert to pointer to StaticInstBase class.
458 operator const StaticInstBasePtr()
459 {
460 return this->get();
461 }
462 };
463
464 inline StaticInstPtr
465 StaticInst::decode(StaticInst::ExtMachInst mach_inst)
466 {
467 #ifdef DECODE_CACHE_HASH_STATS
468 // Simple stats on decode hash_map. Turns out the default
469 // hash function is as good as anything I could come up with.
470 const int dump_every_n = 10000000;
471 static int decodes_til_dump = dump_every_n;
472
473 if (--decodes_til_dump == 0) {
474 dumpDecodeCacheStats();
475 decodes_til_dump = dump_every_n;
476 }
477 #endif
478
479 DecodeCache::iterator iter = decodeCache.find(mach_inst);
480 if (iter != decodeCache.end()) {
481 return iter->second;
482 }
483
484 StaticInstPtr si = TheISA::decodeInst(mach_inst);
485 decodeCache[mach_inst] = si;
486 return si;
487 }
488
489 #endif // __CPU_STATIC_INST_HH__