Add in files from merge-bare-iron, get them compiling in FS and SE mode
[gem5.git] / src / cpu / static_inst.hh
1 /*
2 * Copyright (c) 2003-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31 #ifndef __CPU_STATIC_INST_HH__
32 #define __CPU_STATIC_INST_HH__
33
34 #include <bitset>
35 #include <string>
36
37 #include "arch/isa_traits.hh"
38 #include "arch/utility.hh"
39 #include "sim/faults.hh"
40 #include "base/bitfield.hh"
41 #include "base/hashmap.hh"
42 #include "base/misc.hh"
43 #include "base/refcnt.hh"
44 #include "cpu/op_class.hh"
45 #include "cpu/o3/dyn_inst.hh"
46 #include "sim/faults.hh"
47 #include "sim/host.hh"
48
49 // forward declarations
50 struct AlphaSimpleImpl;
51 struct OzoneImpl;
52 struct SimpleImpl;
53 class ThreadContext;
54 class DynInst;
55 class Packet;
56
57 template <class Impl>
58 class OzoneDynInst;
59
60 class CheckerCPU;
61 class FastCPU;
62 class AtomicSimpleCPU;
63 class TimingSimpleCPU;
64 class InorderCPU;
65 class SymbolTable;
66 class AddrDecodePage;
67
68 namespace Trace {
69 class InstRecord;
70 }
71
72 typedef uint32_t MicroPC;
73
74 /**
75 * Base, ISA-independent static instruction class.
76 *
77 * The main component of this class is the vector of flags and the
78 * associated methods for reading them. Any object that can rely
79 * solely on these flags can process instructions without being
80 * recompiled for multiple ISAs.
81 */
82 class StaticInstBase : public RefCounted
83 {
84 protected:
85
86 /// Set of boolean static instruction properties.
87 ///
88 /// Notes:
89 /// - The IsInteger and IsFloating flags are based on the class of
90 /// registers accessed by the instruction. Although most
91 /// instructions will have exactly one of these two flags set, it
92 /// is possible for an instruction to have neither (e.g., direct
93 /// unconditional branches, memory barriers) or both (e.g., an
94 /// FP/int conversion).
95 /// - If IsMemRef is set, then exactly one of IsLoad or IsStore
96 /// will be set.
97 /// - If IsControl is set, then exactly one of IsDirectControl or
98 /// IsIndirect Control will be set, and exactly one of
99 /// IsCondControl or IsUncondControl will be set.
100 /// - IsSerializing, IsMemBarrier, and IsWriteBarrier are
101 /// implemented as flags since in the current model there's no
102 /// other way for instructions to inject behavior into the
103 /// pipeline outside of fetch. Once we go to an exec-in-exec CPU
104 /// model we should be able to get rid of these flags and
105 /// implement this behavior via the execute() methods.
106 ///
107 enum Flags {
108 IsNop, ///< Is a no-op (no effect at all).
109
110 IsInteger, ///< References integer regs.
111 IsFloating, ///< References FP regs.
112
113 IsMemRef, ///< References memory (load, store, or prefetch).
114 IsLoad, ///< Reads from memory (load or prefetch).
115 IsStore, ///< Writes to memory.
116 IsStoreConditional, ///< Store conditional instruction.
117 IsIndexed, ///< Accesses memory with an indexed address computation
118 IsInstPrefetch, ///< Instruction-cache prefetch.
119 IsDataPrefetch, ///< Data-cache prefetch.
120 IsCopy, ///< Fast Cache block copy
121
122 IsControl, ///< Control transfer instruction.
123 IsDirectControl, ///< PC relative control transfer.
124 IsIndirectControl, ///< Register indirect control transfer.
125 IsCondControl, ///< Conditional control transfer.
126 IsUncondControl, ///< Unconditional control transfer.
127 IsCall, ///< Subroutine call.
128 IsReturn, ///< Subroutine return.
129
130 IsCondDelaySlot,///< Conditional Delay-Slot Instruction
131
132 IsThreadSync, ///< Thread synchronization operation.
133
134 IsSerializing, ///< Serializes pipeline: won't execute until all
135 /// older instructions have committed.
136 IsSerializeBefore,
137 IsSerializeAfter,
138 IsMemBarrier, ///< Is a memory barrier
139 IsWriteBarrier, ///< Is a write barrier
140 IsERET, /// <- Causes the IFU to stall (MIPS ISA)
141
142 IsNonSpeculative, ///< Should not be executed speculatively
143 IsQuiesce, ///< Is a quiesce instruction
144
145 IsIprAccess, ///< Accesses IPRs
146 IsUnverifiable, ///< Can't be verified by a checker
147
148 IsSyscall, ///< Causes a system call to be emulated in syscall
149 /// emulation mode.
150
151 //Flags for microcode
152 IsMacroop, ///< Is a macroop containing microops
153 IsMicroop, ///< Is a microop
154 IsDelayedCommit, ///< This microop doesn't commit right away
155 IsLastMicroop, ///< This microop ends a microop sequence
156 IsFirstMicroop, ///< This microop begins a microop sequence
157 //This flag doesn't do anything yet
158 IsMicroBranch, ///< This microop branches within the microcode for a macroop
159 IsDspOp,
160
161 NumFlags
162 };
163
164 /// Flag values for this instruction.
165 std::bitset<NumFlags> flags;
166
167 /// See opClass().
168 OpClass _opClass;
169
170 /// See numSrcRegs().
171 int8_t _numSrcRegs;
172
173 /// See numDestRegs().
174 int8_t _numDestRegs;
175
176 /// The following are used to track physical register usage
177 /// for machines with separate int & FP reg files.
178 //@{
179 int8_t _numFPDestRegs;
180 int8_t _numIntDestRegs;
181 //@}
182
183 /// Constructor.
184 /// It's important to initialize everything here to a sane
185 /// default, since the decoder generally only overrides
186 /// the fields that are meaningful for the particular
187 /// instruction.
188 StaticInstBase(OpClass __opClass)
189 : _opClass(__opClass), _numSrcRegs(0), _numDestRegs(0),
190 _numFPDestRegs(0), _numIntDestRegs(0)
191 {
192 }
193
194 public:
195
196 /// @name Register information.
197 /// The sum of numFPDestRegs() and numIntDestRegs() equals
198 /// numDestRegs(). The former two functions are used to track
199 /// physical register usage for machines with separate int & FP
200 /// reg files.
201 //@{
202 /// Number of source registers.
203 int8_t numSrcRegs() const { return _numSrcRegs; }
204 /// Number of destination registers.
205 int8_t numDestRegs() const { return _numDestRegs; }
206 /// Number of floating-point destination regs.
207 int8_t numFPDestRegs() const { return _numFPDestRegs; }
208 /// Number of integer destination regs.
209 int8_t numIntDestRegs() const { return _numIntDestRegs; }
210 //@}
211
212 /// @name Flag accessors.
213 /// These functions are used to access the values of the various
214 /// instruction property flags. See StaticInstBase::Flags for descriptions
215 /// of the individual flags.
216 //@{
217
218 bool isNop() const { return flags[IsNop]; }
219
220 bool isMemRef() const { return flags[IsMemRef]; }
221 bool isLoad() const { return flags[IsLoad]; }
222 bool isStore() const { return flags[IsStore]; }
223 bool isStoreConditional() const { return flags[IsStoreConditional]; }
224 bool isInstPrefetch() const { return flags[IsInstPrefetch]; }
225 bool isDataPrefetch() const { return flags[IsDataPrefetch]; }
226 bool isCopy() const { return flags[IsCopy];}
227
228 bool isInteger() const { return flags[IsInteger]; }
229 bool isFloating() const { return flags[IsFloating]; }
230
231 bool isControl() const { return flags[IsControl]; }
232 bool isCall() const { return flags[IsCall]; }
233 bool isReturn() const { return flags[IsReturn]; }
234 bool isDirectCtrl() const { return flags[IsDirectControl]; }
235 bool isIndirectCtrl() const { return flags[IsIndirectControl]; }
236 bool isCondCtrl() const { return flags[IsCondControl]; }
237 bool isUncondCtrl() const { return flags[IsUncondControl]; }
238 bool isCondDelaySlot() const { return flags[IsCondDelaySlot]; }
239
240 bool isThreadSync() const { return flags[IsThreadSync]; }
241 bool isSerializing() const { return flags[IsSerializing] ||
242 flags[IsSerializeBefore] ||
243 flags[IsSerializeAfter]; }
244 bool isSerializeBefore() const { return flags[IsSerializeBefore]; }
245 bool isSerializeAfter() const { return flags[IsSerializeAfter]; }
246 bool isMemBarrier() const { return flags[IsMemBarrier]; }
247 bool isWriteBarrier() const { return flags[IsWriteBarrier]; }
248 bool isNonSpeculative() const { return flags[IsNonSpeculative]; }
249 bool isQuiesce() const { return flags[IsQuiesce]; }
250 bool isIprAccess() const { return flags[IsIprAccess]; }
251 bool isUnverifiable() const { return flags[IsUnverifiable]; }
252 bool isSyscall() const { return flags[IsSyscall]; }
253 bool isMacroop() const { return flags[IsMacroop]; }
254 bool isMicroop() const { return flags[IsMicroop]; }
255 bool isDelayedCommit() const { return flags[IsDelayedCommit]; }
256 bool isLastMicroop() const { return flags[IsLastMicroop]; }
257 bool isFirstMicroop() const { return flags[IsFirstMicroop]; }
258 //This flag doesn't do anything yet
259 bool isMicroBranch() const { return flags[IsMicroBranch]; }
260 //@}
261
262 /// Operation class. Used to select appropriate function unit in issue.
263 OpClass opClass() const { return _opClass; }
264 };
265
266
267 // forward declaration
268 class StaticInstPtr;
269
270 /**
271 * Generic yet ISA-dependent static instruction class.
272 *
273 * This class builds on StaticInstBase, defining fields and interfaces
274 * that are generic across all ISAs but that differ in details
275 * according to the specific ISA being used.
276 */
277 class StaticInst : public StaticInstBase
278 {
279 public:
280
281 /// Binary machine instruction type.
282 typedef TheISA::MachInst MachInst;
283 /// Binary extended machine instruction type.
284 typedef TheISA::ExtMachInst ExtMachInst;
285 /// Logical register index type.
286 typedef TheISA::RegIndex RegIndex;
287
288 enum {
289 MaxInstSrcRegs = TheISA::MaxInstSrcRegs, //< Max source regs
290 MaxInstDestRegs = TheISA::MaxInstDestRegs, //< Max dest regs
291 };
292
293
294 /// Return logical index (architectural reg num) of i'th destination reg.
295 /// Only the entries from 0 through numDestRegs()-1 are valid.
296 RegIndex destRegIdx(int i) const { return _destRegIdx[i]; }
297
298 /// Return logical index (architectural reg num) of i'th source reg.
299 /// Only the entries from 0 through numSrcRegs()-1 are valid.
300 RegIndex srcRegIdx(int i) const { return _srcRegIdx[i]; }
301
302 /// Pointer to a statically allocated "null" instruction object.
303 /// Used to give eaCompInst() and memAccInst() something to return
304 /// when called on non-memory instructions.
305 static StaticInstPtr nullStaticInstPtr;
306
307 /**
308 * Memory references only: returns "fake" instruction representing
309 * the effective address part of the memory operation. Used to
310 * obtain the dependence info (numSrcRegs and srcRegIdx[]) for
311 * just the EA computation.
312 */
313 virtual const
314 StaticInstPtr &eaCompInst() const { return nullStaticInstPtr; }
315
316 /**
317 * Memory references only: returns "fake" instruction representing
318 * the memory access part of the memory operation. Used to
319 * obtain the dependence info (numSrcRegs and srcRegIdx[]) for
320 * just the memory access (not the EA computation).
321 */
322 virtual const
323 StaticInstPtr &memAccInst() const { return nullStaticInstPtr; }
324
325 /// The binary machine instruction.
326 const ExtMachInst machInst;
327
328 protected:
329
330 /// See destRegIdx().
331 RegIndex _destRegIdx[MaxInstDestRegs];
332 /// See srcRegIdx().
333 RegIndex _srcRegIdx[MaxInstSrcRegs];
334
335 /**
336 * Base mnemonic (e.g., "add"). Used by generateDisassembly()
337 * methods. Also useful to readily identify instructions from
338 * within the debugger when #cachedDisassembly has not been
339 * initialized.
340 */
341 const char *mnemonic;
342
343 /**
344 * String representation of disassembly (lazily evaluated via
345 * disassemble()).
346 */
347 mutable std::string *cachedDisassembly;
348
349 /**
350 * Internal function to generate disassembly string.
351 */
352 virtual std::string
353 generateDisassembly(Addr pc, const SymbolTable *symtab) const = 0;
354
355 /// Constructor.
356 StaticInst(const char *_mnemonic, ExtMachInst _machInst, OpClass __opClass)
357 : StaticInstBase(__opClass),
358 machInst(_machInst), mnemonic(_mnemonic), cachedDisassembly(0)
359 { }
360
361 public:
362
363 virtual ~StaticInst()
364 {
365 if (cachedDisassembly)
366 delete cachedDisassembly;
367 }
368
369 /**
370 * The execute() signatures are auto-generated by scons based on the
371 * set of CPU models we are compiling in today.
372 */
373 #include "cpu/static_inst_exec_sigs.hh"
374
375 /**
376 * Return the microop that goes with a particular micropc. This should
377 * only be defined/used in macroops which will contain microops
378 */
379 virtual StaticInstPtr fetchMicroop(MicroPC micropc);
380
381 /**
382 * Return the target address for a PC-relative branch.
383 * Invalid if not a PC-relative branch (i.e. isDirectCtrl()
384 * should be true).
385 */
386 virtual Addr branchTarget(Addr branchPC) const
387 {
388 panic("StaticInst::branchTarget() called on instruction "
389 "that is not a PC-relative branch.");
390 M5_DUMMY_RETURN
391 }
392
393 /**
394 * Return the target address for an indirect branch (jump). The
395 * register value is read from the supplied thread context, so
396 * the result is valid only if the thread context is about to
397 * execute the branch in question. Invalid if not an indirect
398 * branch (i.e. isIndirectCtrl() should be true).
399 */
400 virtual Addr branchTarget(ThreadContext *tc) const
401 {
402 panic("StaticInst::branchTarget() called on instruction "
403 "that is not an indirect branch.");
404 M5_DUMMY_RETURN
405 }
406
407 /**
408 * Return true if the instruction is a control transfer, and if so,
409 * return the target address as well.
410 */
411 bool hasBranchTarget(Addr pc, ThreadContext *tc, Addr &tgt) const;
412
413 /**
414 * Return string representation of disassembled instruction.
415 * The default version of this function will call the internal
416 * virtual generateDisassembly() function to get the string,
417 * then cache it in #cachedDisassembly. If the disassembly
418 * should not be cached, this function should be overridden directly.
419 */
420 virtual const std::string &disassemble(Addr pc,
421 const SymbolTable *symtab = 0) const
422 {
423 if (!cachedDisassembly)
424 cachedDisassembly =
425 new std::string(generateDisassembly(pc, symtab));
426
427 return *cachedDisassembly;
428 }
429
430 /// Decoded instruction cache type.
431 /// For now we're using a generic hash_map; this seems to work
432 /// pretty well.
433 typedef m5::hash_map<ExtMachInst, StaticInstPtr> DecodeCache;
434
435 /// A cache of decoded instruction objects.
436 static DecodeCache decodeCache;
437
438 /**
439 * Dump some basic stats on the decode cache hash map.
440 * Only gets called if DECODE_CACHE_HASH_STATS is defined.
441 */
442 static void dumpDecodeCacheStats();
443
444 /// Decode a machine instruction.
445 /// @param mach_inst The binary instruction to decode.
446 /// @retval A pointer to the corresponding StaticInst object.
447 //This is defined as inlined below.
448 static StaticInstPtr decode(ExtMachInst mach_inst, Addr addr);
449
450 /// Return name of machine instruction
451 std::string getName() { return mnemonic; }
452
453 /// Decoded instruction cache type, for address decoding.
454 /// A generic hash_map is used.
455 typedef m5::hash_map<Addr, AddrDecodePage *> AddrDecodeCache;
456
457 /// A cache of decoded instruction objects from addresses.
458 static AddrDecodeCache addrDecodeCache;
459
460 struct cacheElement {
461 Addr page_addr;
462 AddrDecodePage *decodePage;
463
464 cacheElement()
465 :decodePage(NULL) { }
466 } ;
467
468 /// An array of recently decoded instructions.
469 // might not use an array if there is only two elements
470 static struct cacheElement recentDecodes[2];
471
472 /// Updates the recently decoded instructions entries
473 /// @param page_addr The page address recently used.
474 /// @param decodePage Pointer to decoding page containing the decoded
475 /// instruction.
476 static inline void
477 updateCache(Addr page_addr, AddrDecodePage *decodePage)
478 {
479 recentDecodes[1].page_addr = recentDecodes[0].page_addr;
480 recentDecodes[1].decodePage = recentDecodes[0].decodePage;
481 recentDecodes[0].page_addr = page_addr;
482 recentDecodes[0].decodePage = decodePage;
483 }
484
485 /// Searches the decoded instruction cache for instruction decoding.
486 /// If it is not found, then we decode the instruction.
487 /// Otherwise, we get the instruction from the cache and move it into
488 /// the address-to-instruction decoding page.
489 /// @param mach_inst The binary instruction to decode.
490 /// @param addr The address that contained the binary instruction.
491 /// @param decodePage Pointer to decoding page containing the instruction.
492 /// @retval A pointer to the corresponding StaticInst object.
493 //This is defined as inlined below.
494 static StaticInstPtr searchCache(ExtMachInst mach_inst, Addr addr,
495 AddrDecodePage * decodePage);
496 };
497
498 typedef RefCountingPtr<StaticInstBase> StaticInstBasePtr;
499
500 /// Reference-counted pointer to a StaticInst object.
501 /// This type should be used instead of "StaticInst *" so that
502 /// StaticInst objects can be properly reference-counted.
503 class StaticInstPtr : public RefCountingPtr<StaticInst>
504 {
505 public:
506 /// Constructor.
507 StaticInstPtr()
508 : RefCountingPtr<StaticInst>()
509 {
510 }
511
512 /// Conversion from "StaticInst *".
513 StaticInstPtr(StaticInst *p)
514 : RefCountingPtr<StaticInst>(p)
515 {
516 }
517
518 /// Copy constructor.
519 StaticInstPtr(const StaticInstPtr &r)
520 : RefCountingPtr<StaticInst>(r)
521 {
522 }
523
524 /// Construct directly from machine instruction.
525 /// Calls StaticInst::decode().
526 explicit StaticInstPtr(TheISA::ExtMachInst mach_inst, Addr addr)
527 : RefCountingPtr<StaticInst>(StaticInst::decode(mach_inst, addr))
528 {
529 }
530
531 /// Convert to pointer to StaticInstBase class.
532 operator const StaticInstBasePtr()
533 {
534 return this->get();
535 }
536 };
537
538 /// A page of a list of decoded instructions from an address.
539 class AddrDecodePage
540 {
541 typedef TheISA::ExtMachInst ExtMachInst;
542 protected:
543 StaticInstPtr instructions[TheISA::PageBytes];
544 bool valid[TheISA::PageBytes];
545 Addr lowerMask;
546
547 public:
548 /// Constructor
549 AddrDecodePage() {
550 lowerMask = TheISA::PageBytes - 1;
551 memset(valid, 0, TheISA::PageBytes);
552 }
553
554 /// Checks if the instruction is already decoded and the machine
555 /// instruction in the cache matches the current machine instruction
556 /// related to the address
557 /// @param mach_inst The binary instruction to check
558 /// @param addr The address containing the instruction
559 inline bool decoded(ExtMachInst mach_inst, Addr addr)
560 {
561 return (valid[addr & lowerMask] &&
562 (instructions[addr & lowerMask]->machInst == mach_inst));
563 }
564
565 /// Returns the instruction object. decoded should be called first
566 /// to check if the instruction is valid.
567 /// @param addr The address of the instruction.
568 /// @retval A pointer to the corresponding StaticInst object.
569 inline StaticInstPtr getInst(Addr addr)
570 { return instructions[addr & lowerMask]; }
571
572 /// Inserts a pointer to a StaticInst object into the list of decoded
573 /// instructions on the page.
574 /// @param addr The address of the instruction.
575 /// @param si A pointer to the corresponding StaticInst object.
576 inline void insert(Addr addr, StaticInstPtr &si)
577 {
578 instructions[addr & lowerMask] = si;
579 valid[addr & lowerMask] = true;
580 }
581
582 };
583
584
585 inline StaticInstPtr
586 StaticInst::decode(StaticInst::ExtMachInst mach_inst, Addr addr)
587 {
588 #ifdef DECODE_CACHE_HASH_STATS
589 // Simple stats on decode hash_map. Turns out the default
590 // hash function is as good as anything I could come up with.
591 const int dump_every_n = 10000000;
592 static int decodes_til_dump = dump_every_n;
593
594 if (--decodes_til_dump == 0) {
595 dumpDecodeCacheStats();
596 decodes_til_dump = dump_every_n;
597 }
598 #endif
599
600 Addr page_addr = addr & ~(TheISA::PageBytes - 1);
601
602 // checks recently decoded addresses
603 if (recentDecodes[0].decodePage &&
604 page_addr == recentDecodes[0].page_addr) {
605 if (recentDecodes[0].decodePage->decoded(mach_inst, addr))
606 return recentDecodes[0].decodePage->getInst(addr);
607
608 return searchCache(mach_inst, addr, recentDecodes[0].decodePage);
609 }
610
611 if (recentDecodes[1].decodePage &&
612 page_addr == recentDecodes[1].page_addr) {
613 if (recentDecodes[1].decodePage->decoded(mach_inst, addr))
614 return recentDecodes[1].decodePage->getInst(addr);
615
616 return searchCache(mach_inst, addr, recentDecodes[1].decodePage);
617 }
618
619 // searches the page containing the address to decode
620 AddrDecodeCache::iterator iter = addrDecodeCache.find(page_addr);
621 if (iter != addrDecodeCache.end()) {
622 updateCache(page_addr, iter->second);
623 if (iter->second->decoded(mach_inst, addr))
624 return iter->second->getInst(addr);
625
626 return searchCache(mach_inst, addr, iter->second);
627 }
628
629 // creates a new object for a page of decoded instructions
630 AddrDecodePage * decodePage = new AddrDecodePage;
631 addrDecodeCache[page_addr] = decodePage;
632 updateCache(page_addr, decodePage);
633 return searchCache(mach_inst, addr, decodePage);
634 }
635
636 inline StaticInstPtr
637 StaticInst::searchCache(ExtMachInst mach_inst, Addr addr,
638 AddrDecodePage * decodePage)
639 {
640 DecodeCache::iterator iter = decodeCache.find(mach_inst);
641 if (iter != decodeCache.end()) {
642 decodePage->insert(addr, iter->second);
643 return iter->second;
644 }
645
646 StaticInstPtr si = TheISA::decodeInst(mach_inst);
647 decodePage->insert(addr, si);
648 decodeCache[mach_inst] = si;
649 return si;
650 }
651
652 #endif // __CPU_STATIC_INST_HH__