includes: sort all includes
[gem5.git] / src / cpu / static_inst.hh
1 /*
2 * Copyright (c) 2003-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31 #ifndef __CPU_STATIC_INST_HH__
32 #define __CPU_STATIC_INST_HH__
33
34 #include <bitset>
35 #include <string>
36
37 #include "arch/isa_traits.hh"
38 #include "arch/registers.hh"
39 #include "arch/types.hh"
40 #include "base/hashmap.hh"
41 #include "base/misc.hh"
42 #include "base/refcnt.hh"
43 #include "base/types.hh"
44 #include "config/the_isa.hh"
45 #include "cpu/op_class.hh"
46 #include "sim/fault_fwd.hh"
47
48 // forward declarations
49 struct AlphaSimpleImpl;
50 struct OzoneImpl;
51 struct SimpleImpl;
52 class ThreadContext;
53 class DynInst;
54 class Packet;
55
56 class O3CPUImpl;
57 template <class Impl> class BaseO3DynInst;
58 typedef BaseO3DynInst<O3CPUImpl> O3DynInst;
59 template <class Impl> class OzoneDynInst;
60 class InOrderDynInst;
61
62 class CheckerCPU;
63 class FastCPU;
64 class AtomicSimpleCPU;
65 class TimingSimpleCPU;
66 class InorderCPU;
67 class SymbolTable;
68 class AddrDecodePage;
69
70 namespace Trace {
71 class InstRecord;
72 }
73
74 /**
75 * Base, ISA-independent static instruction class.
76 *
77 * The main component of this class is the vector of flags and the
78 * associated methods for reading them. Any object that can rely
79 * solely on these flags can process instructions without being
80 * recompiled for multiple ISAs.
81 */
82 class StaticInstBase : public RefCounted
83 {
84 public:
85
86 /// Set of boolean static instruction properties.
87 ///
88 /// Notes:
89 /// - The IsInteger and IsFloating flags are based on the class of
90 /// registers accessed by the instruction. Although most
91 /// instructions will have exactly one of these two flags set, it
92 /// is possible for an instruction to have neither (e.g., direct
93 /// unconditional branches, memory barriers) or both (e.g., an
94 /// FP/int conversion).
95 /// - If IsMemRef is set, then exactly one of IsLoad or IsStore
96 /// will be set.
97 /// - If IsControl is set, then exactly one of IsDirectControl or
98 /// IsIndirect Control will be set, and exactly one of
99 /// IsCondControl or IsUncondControl will be set.
100 /// - IsSerializing, IsMemBarrier, and IsWriteBarrier are
101 /// implemented as flags since in the current model there's no
102 /// other way for instructions to inject behavior into the
103 /// pipeline outside of fetch. Once we go to an exec-in-exec CPU
104 /// model we should be able to get rid of these flags and
105 /// implement this behavior via the execute() methods.
106 ///
107 enum Flags {
108 IsNop, ///< Is a no-op (no effect at all).
109
110 IsInteger, ///< References integer regs.
111 IsFloating, ///< References FP regs.
112
113 IsMemRef, ///< References memory (load, store, or prefetch).
114 IsLoad, ///< Reads from memory (load or prefetch).
115 IsStore, ///< Writes to memory.
116 IsStoreConditional, ///< Store conditional instruction.
117 IsIndexed, ///< Accesses memory with an indexed address computation
118 IsInstPrefetch, ///< Instruction-cache prefetch.
119 IsDataPrefetch, ///< Data-cache prefetch.
120
121 IsControl, ///< Control transfer instruction.
122 IsDirectControl, ///< PC relative control transfer.
123 IsIndirectControl, ///< Register indirect control transfer.
124 IsCondControl, ///< Conditional control transfer.
125 IsUncondControl, ///< Unconditional control transfer.
126 IsCall, ///< Subroutine call.
127 IsReturn, ///< Subroutine return.
128
129 IsCondDelaySlot,///< Conditional Delay-Slot Instruction
130
131 IsThreadSync, ///< Thread synchronization operation.
132
133 IsSerializing, ///< Serializes pipeline: won't execute until all
134 /// older instructions have committed.
135 IsSerializeBefore,
136 IsSerializeAfter,
137 IsMemBarrier, ///< Is a memory barrier
138 IsWriteBarrier, ///< Is a write barrier
139 IsReadBarrier, ///< Is a read barrier
140 IsERET, /// <- Causes the IFU to stall (MIPS ISA)
141
142 IsNonSpeculative, ///< Should not be executed speculatively
143 IsQuiesce, ///< Is a quiesce instruction
144
145 IsIprAccess, ///< Accesses IPRs
146 IsUnverifiable, ///< Can't be verified by a checker
147
148 IsSyscall, ///< Causes a system call to be emulated in syscall
149 /// emulation mode.
150
151 //Flags for microcode
152 IsMacroop, ///< Is a macroop containing microops
153 IsMicroop, ///< Is a microop
154 IsDelayedCommit, ///< This microop doesn't commit right away
155 IsLastMicroop, ///< This microop ends a microop sequence
156 IsFirstMicroop, ///< This microop begins a microop sequence
157 //This flag doesn't do anything yet
158 IsMicroBranch, ///< This microop branches within the microcode for a macroop
159 IsDspOp,
160 IsSquashAfter, ///< Squash all uncommitted state after executed
161 NumFlags
162 };
163
164 protected:
165
166 /// Flag values for this instruction.
167 std::bitset<NumFlags> flags;
168
169 /// See opClass().
170 OpClass _opClass;
171
172 /// See numSrcRegs().
173 int8_t _numSrcRegs;
174
175 /// See numDestRegs().
176 int8_t _numDestRegs;
177
178 /// The following are used to track physical register usage
179 /// for machines with separate int & FP reg files.
180 //@{
181 int8_t _numFPDestRegs;
182 int8_t _numIntDestRegs;
183 //@}
184
185 /// Constructor.
186 /// It's important to initialize everything here to a sane
187 /// default, since the decoder generally only overrides
188 /// the fields that are meaningful for the particular
189 /// instruction.
190 StaticInstBase(OpClass __opClass)
191 : _opClass(__opClass), _numSrcRegs(0), _numDestRegs(0),
192 _numFPDestRegs(0), _numIntDestRegs(0)
193 {
194 }
195
196 public:
197
198 /// @name Register information.
199 /// The sum of numFPDestRegs() and numIntDestRegs() equals
200 /// numDestRegs(). The former two functions are used to track
201 /// physical register usage for machines with separate int & FP
202 /// reg files.
203 //@{
204 /// Number of source registers.
205 int8_t numSrcRegs() const { return _numSrcRegs; }
206 /// Number of destination registers.
207 int8_t numDestRegs() const { return _numDestRegs; }
208 /// Number of floating-point destination regs.
209 int8_t numFPDestRegs() const { return _numFPDestRegs; }
210 /// Number of integer destination regs.
211 int8_t numIntDestRegs() const { return _numIntDestRegs; }
212 //@}
213
214 /// @name Flag accessors.
215 /// These functions are used to access the values of the various
216 /// instruction property flags. See StaticInstBase::Flags for descriptions
217 /// of the individual flags.
218 //@{
219
220 bool isNop() const { return flags[IsNop]; }
221
222 bool isMemRef() const { return flags[IsMemRef]; }
223 bool isLoad() const { return flags[IsLoad]; }
224 bool isStore() const { return flags[IsStore]; }
225 bool isStoreConditional() const { return flags[IsStoreConditional]; }
226 bool isInstPrefetch() const { return flags[IsInstPrefetch]; }
227 bool isDataPrefetch() const { return flags[IsDataPrefetch]; }
228 bool isPrefetch() const { return isInstPrefetch() ||
229 isDataPrefetch(); }
230
231 bool isInteger() const { return flags[IsInteger]; }
232 bool isFloating() const { return flags[IsFloating]; }
233
234 bool isControl() const { return flags[IsControl]; }
235 bool isCall() const { return flags[IsCall]; }
236 bool isReturn() const { return flags[IsReturn]; }
237 bool isDirectCtrl() const { return flags[IsDirectControl]; }
238 bool isIndirectCtrl() const { return flags[IsIndirectControl]; }
239 bool isCondCtrl() const { return flags[IsCondControl]; }
240 bool isUncondCtrl() const { return flags[IsUncondControl]; }
241 bool isCondDelaySlot() const { return flags[IsCondDelaySlot]; }
242
243 bool isThreadSync() const { return flags[IsThreadSync]; }
244 bool isSerializing() const { return flags[IsSerializing] ||
245 flags[IsSerializeBefore] ||
246 flags[IsSerializeAfter]; }
247 bool isSerializeBefore() const { return flags[IsSerializeBefore]; }
248 bool isSerializeAfter() const { return flags[IsSerializeAfter]; }
249 bool isSquashAfter() const { return flags[IsSquashAfter]; }
250 bool isMemBarrier() const { return flags[IsMemBarrier]; }
251 bool isWriteBarrier() const { return flags[IsWriteBarrier]; }
252 bool isNonSpeculative() const { return flags[IsNonSpeculative]; }
253 bool isQuiesce() const { return flags[IsQuiesce]; }
254 bool isIprAccess() const { return flags[IsIprAccess]; }
255 bool isUnverifiable() const { return flags[IsUnverifiable]; }
256 bool isSyscall() const { return flags[IsSyscall]; }
257 bool isMacroop() const { return flags[IsMacroop]; }
258 bool isMicroop() const { return flags[IsMicroop]; }
259 bool isDelayedCommit() const { return flags[IsDelayedCommit]; }
260 bool isLastMicroop() const { return flags[IsLastMicroop]; }
261 bool isFirstMicroop() const { return flags[IsFirstMicroop]; }
262 //This flag doesn't do anything yet
263 bool isMicroBranch() const { return flags[IsMicroBranch]; }
264 //@}
265
266 void setLastMicroop() { flags[IsLastMicroop] = true; }
267 void setDelayedCommit() { flags[IsDelayedCommit] = true; }
268 void setFlag(Flags f) { flags[f] = true; }
269
270 /// Operation class. Used to select appropriate function unit in issue.
271 OpClass opClass() const { return _opClass; }
272 };
273
274
275 // forward declaration
276 class StaticInstPtr;
277
278 /**
279 * Generic yet ISA-dependent static instruction class.
280 *
281 * This class builds on StaticInstBase, defining fields and interfaces
282 * that are generic across all ISAs but that differ in details
283 * according to the specific ISA being used.
284 */
285 class StaticInst : public StaticInstBase
286 {
287 public:
288
289 /// Binary machine instruction type.
290 typedef TheISA::MachInst MachInst;
291 /// Binary extended machine instruction type.
292 typedef TheISA::ExtMachInst ExtMachInst;
293 /// Logical register index type.
294 typedef TheISA::RegIndex RegIndex;
295
296 enum {
297 MaxInstSrcRegs = TheISA::MaxInstSrcRegs, //< Max source regs
298 MaxInstDestRegs = TheISA::MaxInstDestRegs, //< Max dest regs
299 };
300
301
302 /// Return logical index (architectural reg num) of i'th destination reg.
303 /// Only the entries from 0 through numDestRegs()-1 are valid.
304 RegIndex destRegIdx(int i) const { return _destRegIdx[i]; }
305
306 /// Return logical index (architectural reg num) of i'th source reg.
307 /// Only the entries from 0 through numSrcRegs()-1 are valid.
308 RegIndex srcRegIdx(int i) const { return _srcRegIdx[i]; }
309
310 /// Pointer to a statically allocated "null" instruction object.
311 /// Used to give eaCompInst() and memAccInst() something to return
312 /// when called on non-memory instructions.
313 static StaticInstPtr nullStaticInstPtr;
314
315 /**
316 * Memory references only: returns "fake" instruction representing
317 * the effective address part of the memory operation. Used to
318 * obtain the dependence info (numSrcRegs and srcRegIdx[]) for
319 * just the EA computation.
320 */
321 virtual const
322 StaticInstPtr &eaCompInst() const { return nullStaticInstPtr; }
323
324 /**
325 * Memory references only: returns "fake" instruction representing
326 * the memory access part of the memory operation. Used to
327 * obtain the dependence info (numSrcRegs and srcRegIdx[]) for
328 * just the memory access (not the EA computation).
329 */
330 virtual const
331 StaticInstPtr &memAccInst() const { return nullStaticInstPtr; }
332
333 /// The binary machine instruction.
334 const ExtMachInst machInst;
335
336 protected:
337
338 /// See destRegIdx().
339 RegIndex _destRegIdx[MaxInstDestRegs];
340 /// See srcRegIdx().
341 RegIndex _srcRegIdx[MaxInstSrcRegs];
342
343 /**
344 * Base mnemonic (e.g., "add"). Used by generateDisassembly()
345 * methods. Also useful to readily identify instructions from
346 * within the debugger when #cachedDisassembly has not been
347 * initialized.
348 */
349 const char *mnemonic;
350
351 /**
352 * String representation of disassembly (lazily evaluated via
353 * disassemble()).
354 */
355 mutable std::string *cachedDisassembly;
356
357 /**
358 * Internal function to generate disassembly string.
359 */
360 virtual std::string
361 generateDisassembly(Addr pc, const SymbolTable *symtab) const = 0;
362
363 /// Constructor.
364 StaticInst(const char *_mnemonic, ExtMachInst _machInst, OpClass __opClass)
365 : StaticInstBase(__opClass),
366 machInst(_machInst), mnemonic(_mnemonic), cachedDisassembly(0)
367 { }
368
369 public:
370 virtual ~StaticInst();
371
372 /**
373 * The execute() signatures are auto-generated by scons based on the
374 * set of CPU models we are compiling in today.
375 */
376 #include "cpu/static_inst_exec_sigs.hh"
377
378 virtual void advancePC(TheISA::PCState &pcState) const = 0;
379
380 /**
381 * Return the microop that goes with a particular micropc. This should
382 * only be defined/used in macroops which will contain microops
383 */
384 virtual StaticInstPtr fetchMicroop(MicroPC upc) const;
385
386 /**
387 * Return the target address for a PC-relative branch.
388 * Invalid if not a PC-relative branch (i.e. isDirectCtrl()
389 * should be true).
390 */
391 virtual TheISA::PCState branchTarget(const TheISA::PCState &pc) const;
392
393 /**
394 * Return the target address for an indirect branch (jump). The
395 * register value is read from the supplied thread context, so
396 * the result is valid only if the thread context is about to
397 * execute the branch in question. Invalid if not an indirect
398 * branch (i.e. isIndirectCtrl() should be true).
399 */
400 virtual TheISA::PCState branchTarget(ThreadContext *tc) const;
401
402 /**
403 * Return true if the instruction is a control transfer, and if so,
404 * return the target address as well.
405 */
406 bool hasBranchTarget(const TheISA::PCState &pc, ThreadContext *tc,
407 TheISA::PCState &tgt) const;
408
409 /**
410 * Return string representation of disassembled instruction.
411 * The default version of this function will call the internal
412 * virtual generateDisassembly() function to get the string,
413 * then cache it in #cachedDisassembly. If the disassembly
414 * should not be cached, this function should be overridden directly.
415 */
416 virtual const std::string &disassemble(Addr pc,
417 const SymbolTable *symtab = 0) const;
418
419 /// Decoded instruction cache type.
420 /// For now we're using a generic hash_map; this seems to work
421 /// pretty well.
422 typedef m5::hash_map<ExtMachInst, StaticInstPtr> DecodeCache;
423
424 /// A cache of decoded instruction objects.
425 static DecodeCache decodeCache;
426
427 /**
428 * Dump some basic stats on the decode cache hash map.
429 * Only gets called if DECODE_CACHE_HASH_STATS is defined.
430 */
431 static void dumpDecodeCacheStats();
432
433 /// Decode a machine instruction.
434 /// @param mach_inst The binary instruction to decode.
435 /// @retval A pointer to the corresponding StaticInst object.
436 //This is defined as inlined below.
437 static StaticInstPtr decode(ExtMachInst mach_inst, Addr addr);
438
439 /// Return name of machine instruction
440 std::string getName() { return mnemonic; }
441
442 /// Decoded instruction cache type, for address decoding.
443 /// A generic hash_map is used.
444 typedef m5::hash_map<Addr, AddrDecodePage *> AddrDecodeCache;
445
446 /// A cache of decoded instruction objects from addresses.
447 static AddrDecodeCache addrDecodeCache;
448
449 struct cacheElement
450 {
451 Addr page_addr;
452 AddrDecodePage *decodePage;
453
454 cacheElement() : decodePage(NULL) { }
455 };
456
457 /// An array of recently decoded instructions.
458 // might not use an array if there is only two elements
459 static struct cacheElement recentDecodes[2];
460
461 /// Updates the recently decoded instructions entries
462 /// @param page_addr The page address recently used.
463 /// @param decodePage Pointer to decoding page containing the decoded
464 /// instruction.
465 static inline void
466 updateCache(Addr page_addr, AddrDecodePage *decodePage)
467 {
468 recentDecodes[1].page_addr = recentDecodes[0].page_addr;
469 recentDecodes[1].decodePage = recentDecodes[0].decodePage;
470 recentDecodes[0].page_addr = page_addr;
471 recentDecodes[0].decodePage = decodePage;
472 }
473
474 /// Searches the decoded instruction cache for instruction decoding.
475 /// If it is not found, then we decode the instruction.
476 /// Otherwise, we get the instruction from the cache and move it into
477 /// the address-to-instruction decoding page.
478 /// @param mach_inst The binary instruction to decode.
479 /// @param addr The address that contained the binary instruction.
480 /// @param decodePage Pointer to decoding page containing the instruction.
481 /// @retval A pointer to the corresponding StaticInst object.
482 //This is defined as inlined below.
483 static StaticInstPtr searchCache(ExtMachInst mach_inst, Addr addr,
484 AddrDecodePage *decodePage);
485 };
486
487 typedef RefCountingPtr<StaticInstBase> StaticInstBasePtr;
488
489 /// Reference-counted pointer to a StaticInst object.
490 /// This type should be used instead of "StaticInst *" so that
491 /// StaticInst objects can be properly reference-counted.
492 class StaticInstPtr : public RefCountingPtr<StaticInst>
493 {
494 public:
495 /// Constructor.
496 StaticInstPtr()
497 : RefCountingPtr<StaticInst>()
498 {
499 }
500
501 /// Conversion from "StaticInst *".
502 StaticInstPtr(StaticInst *p)
503 : RefCountingPtr<StaticInst>(p)
504 {
505 }
506
507 /// Copy constructor.
508 StaticInstPtr(const StaticInstPtr &r)
509 : RefCountingPtr<StaticInst>(r)
510 {
511 }
512
513 /// Construct directly from machine instruction.
514 /// Calls StaticInst::decode().
515 explicit StaticInstPtr(TheISA::ExtMachInst mach_inst, Addr addr)
516 : RefCountingPtr<StaticInst>(StaticInst::decode(mach_inst, addr))
517 {
518 }
519
520 /// Convert to pointer to StaticInstBase class.
521 operator const StaticInstBasePtr()
522 {
523 return this->get();
524 }
525 };
526
527 /// A page of a list of decoded instructions from an address.
528 class AddrDecodePage
529 {
530 typedef TheISA::ExtMachInst ExtMachInst;
531 protected:
532 StaticInstPtr instructions[TheISA::PageBytes];
533 bool valid[TheISA::PageBytes];
534 Addr lowerMask;
535
536 public:
537 /// Constructor
538 AddrDecodePage()
539 {
540 lowerMask = TheISA::PageBytes - 1;
541 memset(valid, 0, TheISA::PageBytes);
542 }
543
544 /// Checks if the instruction is already decoded and the machine
545 /// instruction in the cache matches the current machine instruction
546 /// related to the address
547 /// @param mach_inst The binary instruction to check
548 /// @param addr The address containing the instruction
549 bool
550 decoded(ExtMachInst mach_inst, Addr addr)
551 {
552 return (valid[addr & lowerMask] &&
553 (instructions[addr & lowerMask]->machInst == mach_inst));
554 }
555
556 /// Returns the instruction object. decoded should be called first
557 /// to check if the instruction is valid.
558 /// @param addr The address of the instruction.
559 /// @retval A pointer to the corresponding StaticInst object.
560 StaticInstPtr
561 getInst(Addr addr)
562 {
563 return instructions[addr & lowerMask];
564 }
565
566 /// Inserts a pointer to a StaticInst object into the list of decoded
567 /// instructions on the page.
568 /// @param addr The address of the instruction.
569 /// @param si A pointer to the corresponding StaticInst object.
570 void
571 insert(Addr addr, StaticInstPtr &si)
572 {
573 instructions[addr & lowerMask] = si;
574 valid[addr & lowerMask] = true;
575 }
576 };
577
578
579 inline StaticInstPtr
580 StaticInst::decode(StaticInst::ExtMachInst mach_inst, Addr addr)
581 {
582 #ifdef DECODE_CACHE_HASH_STATS
583 // Simple stats on decode hash_map. Turns out the default
584 // hash function is as good as anything I could come up with.
585 const int dump_every_n = 10000000;
586 static int decodes_til_dump = dump_every_n;
587
588 if (--decodes_til_dump == 0) {
589 dumpDecodeCacheStats();
590 decodes_til_dump = dump_every_n;
591 }
592 #endif
593
594 Addr page_addr = addr & ~(TheISA::PageBytes - 1);
595
596 // checks recently decoded addresses
597 if (recentDecodes[0].decodePage &&
598 page_addr == recentDecodes[0].page_addr) {
599 if (recentDecodes[0].decodePage->decoded(mach_inst, addr))
600 return recentDecodes[0].decodePage->getInst(addr);
601
602 return searchCache(mach_inst, addr, recentDecodes[0].decodePage);
603 }
604
605 if (recentDecodes[1].decodePage &&
606 page_addr == recentDecodes[1].page_addr) {
607 if (recentDecodes[1].decodePage->decoded(mach_inst, addr))
608 return recentDecodes[1].decodePage->getInst(addr);
609
610 return searchCache(mach_inst, addr, recentDecodes[1].decodePage);
611 }
612
613 // searches the page containing the address to decode
614 AddrDecodeCache::iterator iter = addrDecodeCache.find(page_addr);
615 if (iter != addrDecodeCache.end()) {
616 updateCache(page_addr, iter->second);
617 if (iter->second->decoded(mach_inst, addr))
618 return iter->second->getInst(addr);
619
620 return searchCache(mach_inst, addr, iter->second);
621 }
622
623 // creates a new object for a page of decoded instructions
624 AddrDecodePage *decodePage = new AddrDecodePage;
625 addrDecodeCache[page_addr] = decodePage;
626 updateCache(page_addr, decodePage);
627 return searchCache(mach_inst, addr, decodePage);
628 }
629
630 inline StaticInstPtr
631 StaticInst::searchCache(ExtMachInst mach_inst, Addr addr,
632 AddrDecodePage *decodePage)
633 {
634 DecodeCache::iterator iter = decodeCache.find(mach_inst);
635 if (iter != decodeCache.end()) {
636 decodePage->insert(addr, iter->second);
637 return iter->second;
638 }
639
640 StaticInstPtr si = TheISA::decodeInst(mach_inst);
641 decodePage->insert(addr, si);
642 decodeCache[mach_inst] = si;
643 return si;
644 }
645
646 #endif // __CPU_STATIC_INST_HH__