Merge zizzer.eecs.umich.edu:/bk/newmem
[gem5.git] / src / cpu / static_inst.hh
1 /*
2 * Copyright (c) 2003-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31 #ifndef __CPU_STATIC_INST_HH__
32 #define __CPU_STATIC_INST_HH__
33
34 #include <bitset>
35 #include <string>
36
37 #include "arch/isa_traits.hh"
38 #include "arch/utility.hh"
39 #include "sim/faults.hh"
40 #include "base/bitfield.hh"
41 #include "base/hashmap.hh"
42 #include "base/misc.hh"
43 #include "base/refcnt.hh"
44 #include "cpu/op_class.hh"
45 #include "cpu/o3/dyn_inst.hh"
46 #include "sim/faults.hh"
47 #include "sim/host.hh"
48
49 // forward declarations
50 struct AlphaSimpleImpl;
51 struct OzoneImpl;
52 struct SimpleImpl;
53 class ThreadContext;
54 class DynInst;
55 class Packet;
56
57 template <class Impl>
58 class OzoneDynInst;
59
60 class CheckerCPU;
61 class FastCPU;
62 class AtomicSimpleCPU;
63 class TimingSimpleCPU;
64 class InorderCPU;
65 class SymbolTable;
66
67 namespace Trace {
68 class InstRecord;
69 }
70
71 typedef uint32_t MicroPC;
72
73 /**
74 * Base, ISA-independent static instruction class.
75 *
76 * The main component of this class is the vector of flags and the
77 * associated methods for reading them. Any object that can rely
78 * solely on these flags can process instructions without being
79 * recompiled for multiple ISAs.
80 */
81 class StaticInstBase : public RefCounted
82 {
83 protected:
84
85 /// Set of boolean static instruction properties.
86 ///
87 /// Notes:
88 /// - The IsInteger and IsFloating flags are based on the class of
89 /// registers accessed by the instruction. Although most
90 /// instructions will have exactly one of these two flags set, it
91 /// is possible for an instruction to have neither (e.g., direct
92 /// unconditional branches, memory barriers) or both (e.g., an
93 /// FP/int conversion).
94 /// - If IsMemRef is set, then exactly one of IsLoad or IsStore
95 /// will be set.
96 /// - If IsControl is set, then exactly one of IsDirectControl or
97 /// IsIndirect Control will be set, and exactly one of
98 /// IsCondControl or IsUncondControl will be set.
99 /// - IsSerializing, IsMemBarrier, and IsWriteBarrier are
100 /// implemented as flags since in the current model there's no
101 /// other way for instructions to inject behavior into the
102 /// pipeline outside of fetch. Once we go to an exec-in-exec CPU
103 /// model we should be able to get rid of these flags and
104 /// implement this behavior via the execute() methods.
105 ///
106 enum Flags {
107 IsNop, ///< Is a no-op (no effect at all).
108
109 IsInteger, ///< References integer regs.
110 IsFloating, ///< References FP regs.
111
112 IsMemRef, ///< References memory (load, store, or prefetch).
113 IsLoad, ///< Reads from memory (load or prefetch).
114 IsStore, ///< Writes to memory.
115 IsStoreConditional, ///< Store conditional instruction.
116 IsInstPrefetch, ///< Instruction-cache prefetch.
117 IsDataPrefetch, ///< Data-cache prefetch.
118 IsCopy, ///< Fast Cache block copy
119
120 IsControl, ///< Control transfer instruction.
121 IsDirectControl, ///< PC relative control transfer.
122 IsIndirectControl, ///< Register indirect control transfer.
123 IsCondControl, ///< Conditional control transfer.
124 IsUncondControl, ///< Unconditional control transfer.
125 IsCall, ///< Subroutine call.
126 IsReturn, ///< Subroutine return.
127
128 IsCondDelaySlot,///< Conditional Delay-Slot Instruction
129
130 IsThreadSync, ///< Thread synchronization operation.
131
132 IsSerializing, ///< Serializes pipeline: won't execute until all
133 /// older instructions have committed.
134 IsSerializeBefore,
135 IsSerializeAfter,
136 IsMemBarrier, ///< Is a memory barrier
137 IsWriteBarrier, ///< Is a write barrier
138
139 IsNonSpeculative, ///< Should not be executed speculatively
140 IsQuiesce, ///< Is a quiesce instruction
141
142 IsIprAccess, ///< Accesses IPRs
143 IsUnverifiable, ///< Can't be verified by a checker
144
145 //Flags for microcode
146 IsMacroOp, ///< Is a macroop containing microops
147 IsMicroOp, ///< Is a microop
148 IsDelayedCommit, ///< This microop doesn't commit right away
149 IsLastMicroOp, ///< This microop ends a microop sequence
150 IsFirstMicroOp, ///< This microop begins a microop sequence
151 //This flag doesn't do anything yet
152 IsMicroBranch, ///< This microop branches within the microcode for a macroop
153
154 NumFlags
155 };
156
157 /// Flag values for this instruction.
158 std::bitset<NumFlags> flags;
159
160 /// See opClass().
161 OpClass _opClass;
162
163 /// See numSrcRegs().
164 int8_t _numSrcRegs;
165
166 /// See numDestRegs().
167 int8_t _numDestRegs;
168
169 /// The following are used to track physical register usage
170 /// for machines with separate int & FP reg files.
171 //@{
172 int8_t _numFPDestRegs;
173 int8_t _numIntDestRegs;
174 //@}
175
176 /// Constructor.
177 /// It's important to initialize everything here to a sane
178 /// default, since the decoder generally only overrides
179 /// the fields that are meaningful for the particular
180 /// instruction.
181 StaticInstBase(OpClass __opClass)
182 : _opClass(__opClass), _numSrcRegs(0), _numDestRegs(0),
183 _numFPDestRegs(0), _numIntDestRegs(0)
184 {
185 }
186
187 public:
188
189 /// @name Register information.
190 /// The sum of numFPDestRegs() and numIntDestRegs() equals
191 /// numDestRegs(). The former two functions are used to track
192 /// physical register usage for machines with separate int & FP
193 /// reg files.
194 //@{
195 /// Number of source registers.
196 int8_t numSrcRegs() const { return _numSrcRegs; }
197 /// Number of destination registers.
198 int8_t numDestRegs() const { return _numDestRegs; }
199 /// Number of floating-point destination regs.
200 int8_t numFPDestRegs() const { return _numFPDestRegs; }
201 /// Number of integer destination regs.
202 int8_t numIntDestRegs() const { return _numIntDestRegs; }
203 //@}
204
205 /// @name Flag accessors.
206 /// These functions are used to access the values of the various
207 /// instruction property flags. See StaticInstBase::Flags for descriptions
208 /// of the individual flags.
209 //@{
210
211 bool isNop() const { return flags[IsNop]; }
212
213 bool isMemRef() const { return flags[IsMemRef]; }
214 bool isLoad() const { return flags[IsLoad]; }
215 bool isStore() const { return flags[IsStore]; }
216 bool isStoreConditional() const { return flags[IsStoreConditional]; }
217 bool isInstPrefetch() const { return flags[IsInstPrefetch]; }
218 bool isDataPrefetch() const { return flags[IsDataPrefetch]; }
219 bool isCopy() const { return flags[IsCopy];}
220
221 bool isInteger() const { return flags[IsInteger]; }
222 bool isFloating() const { return flags[IsFloating]; }
223
224 bool isControl() const { return flags[IsControl]; }
225 bool isCall() const { return flags[IsCall]; }
226 bool isReturn() const { return flags[IsReturn]; }
227 bool isDirectCtrl() const { return flags[IsDirectControl]; }
228 bool isIndirectCtrl() const { return flags[IsIndirectControl]; }
229 bool isCondCtrl() const { return flags[IsCondControl]; }
230 bool isUncondCtrl() const { return flags[IsUncondControl]; }
231 bool isCondDelaySlot() const { return flags[IsCondDelaySlot]; }
232
233 bool isThreadSync() const { return flags[IsThreadSync]; }
234 bool isSerializing() const { return flags[IsSerializing] ||
235 flags[IsSerializeBefore] ||
236 flags[IsSerializeAfter]; }
237 bool isSerializeBefore() const { return flags[IsSerializeBefore]; }
238 bool isSerializeAfter() const { return flags[IsSerializeAfter]; }
239 bool isMemBarrier() const { return flags[IsMemBarrier]; }
240 bool isWriteBarrier() const { return flags[IsWriteBarrier]; }
241 bool isNonSpeculative() const { return flags[IsNonSpeculative]; }
242 bool isQuiesce() const { return flags[IsQuiesce]; }
243 bool isIprAccess() const { return flags[IsIprAccess]; }
244 bool isUnverifiable() const { return flags[IsUnverifiable]; }
245 bool isMacroOp() const { return flags[IsMacroOp]; }
246 bool isMicroOp() const { return flags[IsMicroOp]; }
247 bool isDelayedCommit() const { return flags[IsDelayedCommit]; }
248 bool isLastMicroOp() const { return flags[IsLastMicroOp]; }
249 bool isFirstMicroOp() const { return flags[IsFirstMicroOp]; }
250 //This flag doesn't do anything yet
251 bool isMicroBranch() const { return flags[IsMicroBranch]; }
252 //@}
253
254 /// Operation class. Used to select appropriate function unit in issue.
255 OpClass opClass() const { return _opClass; }
256 };
257
258
259 // forward declaration
260 class StaticInstPtr;
261
262 /**
263 * Generic yet ISA-dependent static instruction class.
264 *
265 * This class builds on StaticInstBase, defining fields and interfaces
266 * that are generic across all ISAs but that differ in details
267 * according to the specific ISA being used.
268 */
269 class StaticInst : public StaticInstBase
270 {
271 public:
272
273 /// Binary machine instruction type.
274 typedef TheISA::MachInst MachInst;
275 /// Binary extended machine instruction type.
276 typedef TheISA::ExtMachInst ExtMachInst;
277 /// Logical register index type.
278 typedef TheISA::RegIndex RegIndex;
279
280 enum {
281 MaxInstSrcRegs = TheISA::MaxInstSrcRegs, //< Max source regs
282 MaxInstDestRegs = TheISA::MaxInstDestRegs, //< Max dest regs
283 };
284
285
286 /// Return logical index (architectural reg num) of i'th destination reg.
287 /// Only the entries from 0 through numDestRegs()-1 are valid.
288 RegIndex destRegIdx(int i) const { return _destRegIdx[i]; }
289
290 /// Return logical index (architectural reg num) of i'th source reg.
291 /// Only the entries from 0 through numSrcRegs()-1 are valid.
292 RegIndex srcRegIdx(int i) const { return _srcRegIdx[i]; }
293
294 /// Pointer to a statically allocated "null" instruction object.
295 /// Used to give eaCompInst() and memAccInst() something to return
296 /// when called on non-memory instructions.
297 static StaticInstPtr nullStaticInstPtr;
298
299 /**
300 * Memory references only: returns "fake" instruction representing
301 * the effective address part of the memory operation. Used to
302 * obtain the dependence info (numSrcRegs and srcRegIdx[]) for
303 * just the EA computation.
304 */
305 virtual const
306 StaticInstPtr &eaCompInst() const { return nullStaticInstPtr; }
307
308 /**
309 * Memory references only: returns "fake" instruction representing
310 * the memory access part of the memory operation. Used to
311 * obtain the dependence info (numSrcRegs and srcRegIdx[]) for
312 * just the memory access (not the EA computation).
313 */
314 virtual const
315 StaticInstPtr &memAccInst() const { return nullStaticInstPtr; }
316
317 /// The binary machine instruction.
318 const ExtMachInst machInst;
319
320 protected:
321
322 /// See destRegIdx().
323 RegIndex _destRegIdx[MaxInstDestRegs];
324 /// See srcRegIdx().
325 RegIndex _srcRegIdx[MaxInstSrcRegs];
326
327 /**
328 * Base mnemonic (e.g., "add"). Used by generateDisassembly()
329 * methods. Also useful to readily identify instructions from
330 * within the debugger when #cachedDisassembly has not been
331 * initialized.
332 */
333 const char *mnemonic;
334
335 /**
336 * String representation of disassembly (lazily evaluated via
337 * disassemble()).
338 */
339 mutable std::string *cachedDisassembly;
340
341 /**
342 * Internal function to generate disassembly string.
343 */
344 virtual std::string
345 generateDisassembly(Addr pc, const SymbolTable *symtab) const = 0;
346
347 /// Constructor.
348 StaticInst(const char *_mnemonic, ExtMachInst _machInst, OpClass __opClass)
349 : StaticInstBase(__opClass),
350 machInst(_machInst), mnemonic(_mnemonic), cachedDisassembly(0)
351 {
352 }
353
354 public:
355
356 virtual ~StaticInst()
357 {
358 if (cachedDisassembly)
359 delete cachedDisassembly;
360 }
361
362 /**
363 * The execute() signatures are auto-generated by scons based on the
364 * set of CPU models we are compiling in today.
365 */
366 #include "cpu/static_inst_exec_sigs.hh"
367
368 /**
369 * Return the microop that goes with a particular micropc. This should
370 * only be defined/used in macroops which will contain microops
371 */
372 virtual StaticInstPtr fetchMicroOp(MicroPC micropc);
373
374 /**
375 * Return the target address for a PC-relative branch.
376 * Invalid if not a PC-relative branch (i.e. isDirectCtrl()
377 * should be true).
378 */
379 virtual Addr branchTarget(Addr branchPC) const
380 {
381 panic("StaticInst::branchTarget() called on instruction "
382 "that is not a PC-relative branch.");
383 M5_DUMMY_RETURN
384 }
385
386 /**
387 * Return the target address for an indirect branch (jump). The
388 * register value is read from the supplied thread context, so
389 * the result is valid only if the thread context is about to
390 * execute the branch in question. Invalid if not an indirect
391 * branch (i.e. isIndirectCtrl() should be true).
392 */
393 virtual Addr branchTarget(ThreadContext *tc) const
394 {
395 panic("StaticInst::branchTarget() called on instruction "
396 "that is not an indirect branch.");
397 }
398 M5_DUMMY_RETURN
399
400 /**
401 * Return true if the instruction is a control transfer, and if so,
402 * return the target address as well.
403 */
404 bool hasBranchTarget(Addr pc, ThreadContext *tc, Addr &tgt) const;
405
406 /**
407 * Return string representation of disassembled instruction.
408 * The default version of this function will call the internal
409 * virtual generateDisassembly() function to get the string,
410 * then cache it in #cachedDisassembly. If the disassembly
411 * should not be cached, this function should be overridden directly.
412 */
413 virtual const std::string &disassemble(Addr pc,
414 const SymbolTable *symtab = 0) const
415 {
416 if (!cachedDisassembly)
417 cachedDisassembly =
418 new std::string(generateDisassembly(pc, symtab));
419
420 return *cachedDisassembly;
421 }
422
423 /// Decoded instruction cache type.
424 /// For now we're using a generic hash_map; this seems to work
425 /// pretty well.
426 typedef m5::hash_map<ExtMachInst, StaticInstPtr> DecodeCache;
427
428 /// A cache of decoded instruction objects.
429 static DecodeCache decodeCache;
430
431 /**
432 * Dump some basic stats on the decode cache hash map.
433 * Only gets called if DECODE_CACHE_HASH_STATS is defined.
434 */
435 static void dumpDecodeCacheStats();
436
437 /// Decode a machine instruction.
438 /// @param mach_inst The binary instruction to decode.
439 /// @retval A pointer to the corresponding StaticInst object.
440 //This is defined as inline below.
441 static StaticInstPtr decode(ExtMachInst mach_inst);
442
443 /// Return name of machine instruction
444 std::string getName() { return mnemonic; }
445 };
446
447 typedef RefCountingPtr<StaticInstBase> StaticInstBasePtr;
448
449 /// Reference-counted pointer to a StaticInst object.
450 /// This type should be used instead of "StaticInst *" so that
451 /// StaticInst objects can be properly reference-counted.
452 class StaticInstPtr : public RefCountingPtr<StaticInst>
453 {
454 public:
455 /// Constructor.
456 StaticInstPtr()
457 : RefCountingPtr<StaticInst>()
458 {
459 }
460
461 /// Conversion from "StaticInst *".
462 StaticInstPtr(StaticInst *p)
463 : RefCountingPtr<StaticInst>(p)
464 {
465 }
466
467 /// Copy constructor.
468 StaticInstPtr(const StaticInstPtr &r)
469 : RefCountingPtr<StaticInst>(r)
470 {
471 }
472
473 /// Construct directly from machine instruction.
474 /// Calls StaticInst::decode().
475 explicit StaticInstPtr(TheISA::ExtMachInst mach_inst)
476 : RefCountingPtr<StaticInst>(StaticInst::decode(mach_inst))
477 {
478 }
479
480 /// Convert to pointer to StaticInstBase class.
481 operator const StaticInstBasePtr()
482 {
483 return this->get();
484 }
485 };
486
487 inline StaticInstPtr
488 StaticInst::decode(StaticInst::ExtMachInst mach_inst)
489 {
490 #ifdef DECODE_CACHE_HASH_STATS
491 // Simple stats on decode hash_map. Turns out the default
492 // hash function is as good as anything I could come up with.
493 const int dump_every_n = 10000000;
494 static int decodes_til_dump = dump_every_n;
495
496 if (--decodes_til_dump == 0) {
497 dumpDecodeCacheStats();
498 decodes_til_dump = dump_every_n;
499 }
500 #endif
501
502 DecodeCache::iterator iter = decodeCache.find(mach_inst);
503 if (iter != decodeCache.end()) {
504 return iter->second;
505 }
506
507 StaticInstPtr si = TheISA::decodeInst(mach_inst);
508 decodeCache[mach_inst] = si;
509 return si;
510 }
511
512 #endif // __CPU_STATIC_INST_HH__