ISA,CPU,etc: Create an ISA defined PC type that abstracts out ISA behaviors.
[gem5.git] / src / cpu / static_inst.hh
1 /*
2 * Copyright (c) 2003-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31 #ifndef __CPU_STATIC_INST_HH__
32 #define __CPU_STATIC_INST_HH__
33
34 #include <bitset>
35 #include <string>
36
37 #include "arch/isa_traits.hh"
38 #include "arch/types.hh"
39 #include "arch/registers.hh"
40 #include "config/the_isa.hh"
41 #include "base/hashmap.hh"
42 #include "base/misc.hh"
43 #include "base/refcnt.hh"
44 #include "base/types.hh"
45 #include "cpu/op_class.hh"
46 #include "sim/fault.hh"
47
48 // forward declarations
49 struct AlphaSimpleImpl;
50 struct OzoneImpl;
51 struct SimpleImpl;
52 class ThreadContext;
53 class DynInst;
54 class Packet;
55
56 class O3CPUImpl;
57 template <class Impl> class BaseO3DynInst;
58 typedef BaseO3DynInst<O3CPUImpl> O3DynInst;
59 template <class Impl> class OzoneDynInst;
60 class InOrderDynInst;
61
62 class CheckerCPU;
63 class FastCPU;
64 class AtomicSimpleCPU;
65 class TimingSimpleCPU;
66 class InorderCPU;
67 class SymbolTable;
68 class AddrDecodePage;
69
70 namespace Trace {
71 class InstRecord;
72 }
73
74 /**
75 * Base, ISA-independent static instruction class.
76 *
77 * The main component of this class is the vector of flags and the
78 * associated methods for reading them. Any object that can rely
79 * solely on these flags can process instructions without being
80 * recompiled for multiple ISAs.
81 */
82 class StaticInstBase : public RefCounted
83 {
84 public:
85
86 /// Set of boolean static instruction properties.
87 ///
88 /// Notes:
89 /// - The IsInteger and IsFloating flags are based on the class of
90 /// registers accessed by the instruction. Although most
91 /// instructions will have exactly one of these two flags set, it
92 /// is possible for an instruction to have neither (e.g., direct
93 /// unconditional branches, memory barriers) or both (e.g., an
94 /// FP/int conversion).
95 /// - If IsMemRef is set, then exactly one of IsLoad or IsStore
96 /// will be set.
97 /// - If IsControl is set, then exactly one of IsDirectControl or
98 /// IsIndirect Control will be set, and exactly one of
99 /// IsCondControl or IsUncondControl will be set.
100 /// - IsSerializing, IsMemBarrier, and IsWriteBarrier are
101 /// implemented as flags since in the current model there's no
102 /// other way for instructions to inject behavior into the
103 /// pipeline outside of fetch. Once we go to an exec-in-exec CPU
104 /// model we should be able to get rid of these flags and
105 /// implement this behavior via the execute() methods.
106 ///
107 enum Flags {
108 IsNop, ///< Is a no-op (no effect at all).
109
110 IsInteger, ///< References integer regs.
111 IsFloating, ///< References FP regs.
112
113 IsMemRef, ///< References memory (load, store, or prefetch).
114 IsLoad, ///< Reads from memory (load or prefetch).
115 IsStore, ///< Writes to memory.
116 IsStoreConditional, ///< Store conditional instruction.
117 IsIndexed, ///< Accesses memory with an indexed address computation
118 IsInstPrefetch, ///< Instruction-cache prefetch.
119 IsDataPrefetch, ///< Data-cache prefetch.
120 IsCopy, ///< Fast Cache block copy
121
122 IsControl, ///< Control transfer instruction.
123 IsDirectControl, ///< PC relative control transfer.
124 IsIndirectControl, ///< Register indirect control transfer.
125 IsCondControl, ///< Conditional control transfer.
126 IsUncondControl, ///< Unconditional control transfer.
127 IsCall, ///< Subroutine call.
128 IsReturn, ///< Subroutine return.
129
130 IsCondDelaySlot,///< Conditional Delay-Slot Instruction
131
132 IsThreadSync, ///< Thread synchronization operation.
133
134 IsSerializing, ///< Serializes pipeline: won't execute until all
135 /// older instructions have committed.
136 IsSerializeBefore,
137 IsSerializeAfter,
138 IsMemBarrier, ///< Is a memory barrier
139 IsWriteBarrier, ///< Is a write barrier
140 IsReadBarrier, ///< Is a read barrier
141 IsERET, /// <- Causes the IFU to stall (MIPS ISA)
142
143 IsNonSpeculative, ///< Should not be executed speculatively
144 IsQuiesce, ///< Is a quiesce instruction
145
146 IsIprAccess, ///< Accesses IPRs
147 IsUnverifiable, ///< Can't be verified by a checker
148
149 IsSyscall, ///< Causes a system call to be emulated in syscall
150 /// emulation mode.
151
152 //Flags for microcode
153 IsMacroop, ///< Is a macroop containing microops
154 IsMicroop, ///< Is a microop
155 IsDelayedCommit, ///< This microop doesn't commit right away
156 IsLastMicroop, ///< This microop ends a microop sequence
157 IsFirstMicroop, ///< This microop begins a microop sequence
158 //This flag doesn't do anything yet
159 IsMicroBranch, ///< This microop branches within the microcode for a macroop
160 IsDspOp,
161
162 NumFlags
163 };
164
165 protected:
166
167 /// Flag values for this instruction.
168 std::bitset<NumFlags> flags;
169
170 /// See opClass().
171 OpClass _opClass;
172
173 /// See numSrcRegs().
174 int8_t _numSrcRegs;
175
176 /// See numDestRegs().
177 int8_t _numDestRegs;
178
179 /// The following are used to track physical register usage
180 /// for machines with separate int & FP reg files.
181 //@{
182 int8_t _numFPDestRegs;
183 int8_t _numIntDestRegs;
184 //@}
185
186 /// Constructor.
187 /// It's important to initialize everything here to a sane
188 /// default, since the decoder generally only overrides
189 /// the fields that are meaningful for the particular
190 /// instruction.
191 StaticInstBase(OpClass __opClass)
192 : _opClass(__opClass), _numSrcRegs(0), _numDestRegs(0),
193 _numFPDestRegs(0), _numIntDestRegs(0)
194 {
195 }
196
197 public:
198
199 /// @name Register information.
200 /// The sum of numFPDestRegs() and numIntDestRegs() equals
201 /// numDestRegs(). The former two functions are used to track
202 /// physical register usage for machines with separate int & FP
203 /// reg files.
204 //@{
205 /// Number of source registers.
206 int8_t numSrcRegs() const { return _numSrcRegs; }
207 /// Number of destination registers.
208 int8_t numDestRegs() const { return _numDestRegs; }
209 /// Number of floating-point destination regs.
210 int8_t numFPDestRegs() const { return _numFPDestRegs; }
211 /// Number of integer destination regs.
212 int8_t numIntDestRegs() const { return _numIntDestRegs; }
213 //@}
214
215 /// @name Flag accessors.
216 /// These functions are used to access the values of the various
217 /// instruction property flags. See StaticInstBase::Flags for descriptions
218 /// of the individual flags.
219 //@{
220
221 bool isNop() const { return flags[IsNop]; }
222
223 bool isMemRef() const { return flags[IsMemRef]; }
224 bool isLoad() const { return flags[IsLoad]; }
225 bool isStore() const { return flags[IsStore]; }
226 bool isStoreConditional() const { return flags[IsStoreConditional]; }
227 bool isInstPrefetch() const { return flags[IsInstPrefetch]; }
228 bool isDataPrefetch() const { return flags[IsDataPrefetch]; }
229 bool isCopy() const { return flags[IsCopy];}
230
231 bool isInteger() const { return flags[IsInteger]; }
232 bool isFloating() const { return flags[IsFloating]; }
233
234 bool isControl() const { return flags[IsControl]; }
235 bool isCall() const { return flags[IsCall]; }
236 bool isReturn() const { return flags[IsReturn]; }
237 bool isDirectCtrl() const { return flags[IsDirectControl]; }
238 bool isIndirectCtrl() const { return flags[IsIndirectControl]; }
239 bool isCondCtrl() const { return flags[IsCondControl]; }
240 bool isUncondCtrl() const { return flags[IsUncondControl]; }
241 bool isCondDelaySlot() const { return flags[IsCondDelaySlot]; }
242
243 bool isThreadSync() const { return flags[IsThreadSync]; }
244 bool isSerializing() const { return flags[IsSerializing] ||
245 flags[IsSerializeBefore] ||
246 flags[IsSerializeAfter]; }
247 bool isSerializeBefore() const { return flags[IsSerializeBefore]; }
248 bool isSerializeAfter() const { return flags[IsSerializeAfter]; }
249 bool isMemBarrier() const { return flags[IsMemBarrier]; }
250 bool isWriteBarrier() const { return flags[IsWriteBarrier]; }
251 bool isNonSpeculative() const { return flags[IsNonSpeculative]; }
252 bool isQuiesce() const { return flags[IsQuiesce]; }
253 bool isIprAccess() const { return flags[IsIprAccess]; }
254 bool isUnverifiable() const { return flags[IsUnverifiable]; }
255 bool isSyscall() const { return flags[IsSyscall]; }
256 bool isMacroop() const { return flags[IsMacroop]; }
257 bool isMicroop() const { return flags[IsMicroop]; }
258 bool isDelayedCommit() const { return flags[IsDelayedCommit]; }
259 bool isLastMicroop() const { return flags[IsLastMicroop]; }
260 bool isFirstMicroop() const { return flags[IsFirstMicroop]; }
261 //This flag doesn't do anything yet
262 bool isMicroBranch() const { return flags[IsMicroBranch]; }
263 //@}
264
265 void setLastMicroop() { flags[IsLastMicroop] = true; }
266 /// Operation class. Used to select appropriate function unit in issue.
267 OpClass opClass() const { return _opClass; }
268 };
269
270
271 // forward declaration
272 class StaticInstPtr;
273
274 /**
275 * Generic yet ISA-dependent static instruction class.
276 *
277 * This class builds on StaticInstBase, defining fields and interfaces
278 * that are generic across all ISAs but that differ in details
279 * according to the specific ISA being used.
280 */
281 class StaticInst : public StaticInstBase
282 {
283 public:
284
285 /// Binary machine instruction type.
286 typedef TheISA::MachInst MachInst;
287 /// Binary extended machine instruction type.
288 typedef TheISA::ExtMachInst ExtMachInst;
289 /// Logical register index type.
290 typedef TheISA::RegIndex RegIndex;
291
292 enum {
293 MaxInstSrcRegs = TheISA::MaxInstSrcRegs, //< Max source regs
294 MaxInstDestRegs = TheISA::MaxInstDestRegs, //< Max dest regs
295 };
296
297
298 /// Return logical index (architectural reg num) of i'th destination reg.
299 /// Only the entries from 0 through numDestRegs()-1 are valid.
300 RegIndex destRegIdx(int i) const { return _destRegIdx[i]; }
301
302 /// Return logical index (architectural reg num) of i'th source reg.
303 /// Only the entries from 0 through numSrcRegs()-1 are valid.
304 RegIndex srcRegIdx(int i) const { return _srcRegIdx[i]; }
305
306 /// Pointer to a statically allocated "null" instruction object.
307 /// Used to give eaCompInst() and memAccInst() something to return
308 /// when called on non-memory instructions.
309 static StaticInstPtr nullStaticInstPtr;
310
311 /**
312 * Memory references only: returns "fake" instruction representing
313 * the effective address part of the memory operation. Used to
314 * obtain the dependence info (numSrcRegs and srcRegIdx[]) for
315 * just the EA computation.
316 */
317 virtual const
318 StaticInstPtr &eaCompInst() const { return nullStaticInstPtr; }
319
320 /**
321 * Memory references only: returns "fake" instruction representing
322 * the memory access part of the memory operation. Used to
323 * obtain the dependence info (numSrcRegs and srcRegIdx[]) for
324 * just the memory access (not the EA computation).
325 */
326 virtual const
327 StaticInstPtr &memAccInst() const { return nullStaticInstPtr; }
328
329 /// The binary machine instruction.
330 const ExtMachInst machInst;
331
332 protected:
333
334 /// See destRegIdx().
335 RegIndex _destRegIdx[MaxInstDestRegs];
336 /// See srcRegIdx().
337 RegIndex _srcRegIdx[MaxInstSrcRegs];
338
339 /**
340 * Base mnemonic (e.g., "add"). Used by generateDisassembly()
341 * methods. Also useful to readily identify instructions from
342 * within the debugger when #cachedDisassembly has not been
343 * initialized.
344 */
345 const char *mnemonic;
346
347 /**
348 * String representation of disassembly (lazily evaluated via
349 * disassemble()).
350 */
351 mutable std::string *cachedDisassembly;
352
353 /**
354 * Internal function to generate disassembly string.
355 */
356 virtual std::string
357 generateDisassembly(Addr pc, const SymbolTable *symtab) const = 0;
358
359 /// Constructor.
360 StaticInst(const char *_mnemonic, ExtMachInst _machInst, OpClass __opClass)
361 : StaticInstBase(__opClass),
362 machInst(_machInst), mnemonic(_mnemonic), cachedDisassembly(0)
363 { }
364
365 public:
366 virtual ~StaticInst();
367
368 /**
369 * The execute() signatures are auto-generated by scons based on the
370 * set of CPU models we are compiling in today.
371 */
372 #include "cpu/static_inst_exec_sigs.hh"
373
374 virtual void advancePC(TheISA::PCState &pcState) const = 0;
375
376 /**
377 * Return the microop that goes with a particular micropc. This should
378 * only be defined/used in macroops which will contain microops
379 */
380 virtual StaticInstPtr fetchMicroop(MicroPC upc) const;
381
382 /**
383 * Return the target address for a PC-relative branch.
384 * Invalid if not a PC-relative branch (i.e. isDirectCtrl()
385 * should be true).
386 */
387 virtual TheISA::PCState branchTarget(const TheISA::PCState &pc) const;
388
389 /**
390 * Return the target address for an indirect branch (jump). The
391 * register value is read from the supplied thread context, so
392 * the result is valid only if the thread context is about to
393 * execute the branch in question. Invalid if not an indirect
394 * branch (i.e. isIndirectCtrl() should be true).
395 */
396 virtual TheISA::PCState branchTarget(ThreadContext *tc) const;
397
398 /**
399 * Return true if the instruction is a control transfer, and if so,
400 * return the target address as well.
401 */
402 bool hasBranchTarget(const TheISA::PCState &pc, ThreadContext *tc,
403 TheISA::PCState &tgt) const;
404
405 /**
406 * Return string representation of disassembled instruction.
407 * The default version of this function will call the internal
408 * virtual generateDisassembly() function to get the string,
409 * then cache it in #cachedDisassembly. If the disassembly
410 * should not be cached, this function should be overridden directly.
411 */
412 virtual const std::string &disassemble(Addr pc,
413 const SymbolTable *symtab = 0) const;
414
415 /// Decoded instruction cache type.
416 /// For now we're using a generic hash_map; this seems to work
417 /// pretty well.
418 typedef m5::hash_map<ExtMachInst, StaticInstPtr> DecodeCache;
419
420 /// A cache of decoded instruction objects.
421 static DecodeCache decodeCache;
422
423 /**
424 * Dump some basic stats on the decode cache hash map.
425 * Only gets called if DECODE_CACHE_HASH_STATS is defined.
426 */
427 static void dumpDecodeCacheStats();
428
429 /// Decode a machine instruction.
430 /// @param mach_inst The binary instruction to decode.
431 /// @retval A pointer to the corresponding StaticInst object.
432 //This is defined as inlined below.
433 static StaticInstPtr decode(ExtMachInst mach_inst, Addr addr);
434
435 /// Return name of machine instruction
436 std::string getName() { return mnemonic; }
437
438 /// Decoded instruction cache type, for address decoding.
439 /// A generic hash_map is used.
440 typedef m5::hash_map<Addr, AddrDecodePage *> AddrDecodeCache;
441
442 /// A cache of decoded instruction objects from addresses.
443 static AddrDecodeCache addrDecodeCache;
444
445 struct cacheElement
446 {
447 Addr page_addr;
448 AddrDecodePage *decodePage;
449
450 cacheElement() : decodePage(NULL) { }
451 };
452
453 /// An array of recently decoded instructions.
454 // might not use an array if there is only two elements
455 static struct cacheElement recentDecodes[2];
456
457 /// Updates the recently decoded instructions entries
458 /// @param page_addr The page address recently used.
459 /// @param decodePage Pointer to decoding page containing the decoded
460 /// instruction.
461 static inline void
462 updateCache(Addr page_addr, AddrDecodePage *decodePage)
463 {
464 recentDecodes[1].page_addr = recentDecodes[0].page_addr;
465 recentDecodes[1].decodePage = recentDecodes[0].decodePage;
466 recentDecodes[0].page_addr = page_addr;
467 recentDecodes[0].decodePage = decodePage;
468 }
469
470 /// Searches the decoded instruction cache for instruction decoding.
471 /// If it is not found, then we decode the instruction.
472 /// Otherwise, we get the instruction from the cache and move it into
473 /// the address-to-instruction decoding page.
474 /// @param mach_inst The binary instruction to decode.
475 /// @param addr The address that contained the binary instruction.
476 /// @param decodePage Pointer to decoding page containing the instruction.
477 /// @retval A pointer to the corresponding StaticInst object.
478 //This is defined as inlined below.
479 static StaticInstPtr searchCache(ExtMachInst mach_inst, Addr addr,
480 AddrDecodePage *decodePage);
481 };
482
483 typedef RefCountingPtr<StaticInstBase> StaticInstBasePtr;
484
485 /// Reference-counted pointer to a StaticInst object.
486 /// This type should be used instead of "StaticInst *" so that
487 /// StaticInst objects can be properly reference-counted.
488 class StaticInstPtr : public RefCountingPtr<StaticInst>
489 {
490 public:
491 /// Constructor.
492 StaticInstPtr()
493 : RefCountingPtr<StaticInst>()
494 {
495 }
496
497 /// Conversion from "StaticInst *".
498 StaticInstPtr(StaticInst *p)
499 : RefCountingPtr<StaticInst>(p)
500 {
501 }
502
503 /// Copy constructor.
504 StaticInstPtr(const StaticInstPtr &r)
505 : RefCountingPtr<StaticInst>(r)
506 {
507 }
508
509 /// Construct directly from machine instruction.
510 /// Calls StaticInst::decode().
511 explicit StaticInstPtr(TheISA::ExtMachInst mach_inst, Addr addr)
512 : RefCountingPtr<StaticInst>(StaticInst::decode(mach_inst, addr))
513 {
514 }
515
516 /// Convert to pointer to StaticInstBase class.
517 operator const StaticInstBasePtr()
518 {
519 return this->get();
520 }
521 };
522
523 /// A page of a list of decoded instructions from an address.
524 class AddrDecodePage
525 {
526 typedef TheISA::ExtMachInst ExtMachInst;
527 protected:
528 StaticInstPtr instructions[TheISA::PageBytes];
529 bool valid[TheISA::PageBytes];
530 Addr lowerMask;
531
532 public:
533 /// Constructor
534 AddrDecodePage()
535 {
536 lowerMask = TheISA::PageBytes - 1;
537 memset(valid, 0, TheISA::PageBytes);
538 }
539
540 /// Checks if the instruction is already decoded and the machine
541 /// instruction in the cache matches the current machine instruction
542 /// related to the address
543 /// @param mach_inst The binary instruction to check
544 /// @param addr The address containing the instruction
545 bool
546 decoded(ExtMachInst mach_inst, Addr addr)
547 {
548 return (valid[addr & lowerMask] &&
549 (instructions[addr & lowerMask]->machInst == mach_inst));
550 }
551
552 /// Returns the instruction object. decoded should be called first
553 /// to check if the instruction is valid.
554 /// @param addr The address of the instruction.
555 /// @retval A pointer to the corresponding StaticInst object.
556 StaticInstPtr
557 getInst(Addr addr)
558 {
559 return instructions[addr & lowerMask];
560 }
561
562 /// Inserts a pointer to a StaticInst object into the list of decoded
563 /// instructions on the page.
564 /// @param addr The address of the instruction.
565 /// @param si A pointer to the corresponding StaticInst object.
566 void
567 insert(Addr addr, StaticInstPtr &si)
568 {
569 instructions[addr & lowerMask] = si;
570 valid[addr & lowerMask] = true;
571 }
572 };
573
574
575 inline StaticInstPtr
576 StaticInst::decode(StaticInst::ExtMachInst mach_inst, Addr addr)
577 {
578 #ifdef DECODE_CACHE_HASH_STATS
579 // Simple stats on decode hash_map. Turns out the default
580 // hash function is as good as anything I could come up with.
581 const int dump_every_n = 10000000;
582 static int decodes_til_dump = dump_every_n;
583
584 if (--decodes_til_dump == 0) {
585 dumpDecodeCacheStats();
586 decodes_til_dump = dump_every_n;
587 }
588 #endif
589
590 Addr page_addr = addr & ~(TheISA::PageBytes - 1);
591
592 // checks recently decoded addresses
593 if (recentDecodes[0].decodePage &&
594 page_addr == recentDecodes[0].page_addr) {
595 if (recentDecodes[0].decodePage->decoded(mach_inst, addr))
596 return recentDecodes[0].decodePage->getInst(addr);
597
598 return searchCache(mach_inst, addr, recentDecodes[0].decodePage);
599 }
600
601 if (recentDecodes[1].decodePage &&
602 page_addr == recentDecodes[1].page_addr) {
603 if (recentDecodes[1].decodePage->decoded(mach_inst, addr))
604 return recentDecodes[1].decodePage->getInst(addr);
605
606 return searchCache(mach_inst, addr, recentDecodes[1].decodePage);
607 }
608
609 // searches the page containing the address to decode
610 AddrDecodeCache::iterator iter = addrDecodeCache.find(page_addr);
611 if (iter != addrDecodeCache.end()) {
612 updateCache(page_addr, iter->second);
613 if (iter->second->decoded(mach_inst, addr))
614 return iter->second->getInst(addr);
615
616 return searchCache(mach_inst, addr, iter->second);
617 }
618
619 // creates a new object for a page of decoded instructions
620 AddrDecodePage *decodePage = new AddrDecodePage;
621 addrDecodeCache[page_addr] = decodePage;
622 updateCache(page_addr, decodePage);
623 return searchCache(mach_inst, addr, decodePage);
624 }
625
626 inline StaticInstPtr
627 StaticInst::searchCache(ExtMachInst mach_inst, Addr addr,
628 AddrDecodePage *decodePage)
629 {
630 DecodeCache::iterator iter = decodeCache.find(mach_inst);
631 if (iter != decodeCache.end()) {
632 decodePage->insert(addr, iter->second);
633 return iter->second;
634 }
635
636 StaticInstPtr si = TheISA::decodeInst(mach_inst);
637 decodePage->insert(addr, si);
638 decodeCache[mach_inst] = si;
639 return si;
640 }
641
642 #endif // __CPU_STATIC_INST_HH__