X86: Implement the sysret instruction in long mode.
[gem5.git] / src / cpu / thread_context.hh
1 /*
2 * Copyright (c) 2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 */
30
31 #ifndef __CPU_THREAD_CONTEXT_HH__
32 #define __CPU_THREAD_CONTEXT_HH__
33
34 #include "arch/regfile.hh"
35 #include "arch/types.hh"
36 #include "config/full_system.hh"
37 #include "mem/request.hh"
38 #include "sim/faults.hh"
39 #include "sim/host.hh"
40 #include "sim/serialize.hh"
41 #include "sim/syscallreturn.hh"
42 #include "sim/byteswap.hh"
43
44 // @todo: Figure out a more architecture independent way to obtain the ITB and
45 // DTB pointers.
46 namespace TheISA
47 {
48 class DTB;
49 class ITB;
50 }
51 class BaseCPU;
52 class EndQuiesceEvent;
53 class Event;
54 class TranslatingPort;
55 class FunctionalPort;
56 class VirtualPort;
57 class Process;
58 class System;
59 namespace TheISA {
60 namespace Kernel {
61 class Statistics;
62 };
63 };
64
65 /**
66 * ThreadContext is the external interface to all thread state for
67 * anything outside of the CPU. It provides all accessor methods to
68 * state that might be needed by external objects, ranging from
69 * register values to things such as kernel stats. It is an abstract
70 * base class; the CPU can create its own ThreadContext by either
71 * deriving from it, or using the templated ProxyThreadContext.
72 *
73 * The ThreadContext is slightly different than the ExecContext. The
74 * ThreadContext provides access to an individual thread's state; an
75 * ExecContext provides ISA access to the CPU (meaning it is
76 * implicitly multithreaded on SMT systems). Additionally the
77 * ThreadState is an abstract class that exactly defines the
78 * interface; the ExecContext is a more implicit interface that must
79 * be implemented so that the ISA can access whatever state it needs.
80 */
81 class ThreadContext
82 {
83 protected:
84 typedef TheISA::RegFile RegFile;
85 typedef TheISA::MachInst MachInst;
86 typedef TheISA::IntReg IntReg;
87 typedef TheISA::FloatReg FloatReg;
88 typedef TheISA::FloatRegBits FloatRegBits;
89 typedef TheISA::MiscRegFile MiscRegFile;
90 typedef TheISA::MiscReg MiscReg;
91 public:
92 enum Status
93 {
94 /// Initialized but not running yet. All CPUs start in
95 /// this state, but most transition to Active on cycle 1.
96 /// In MP or SMT systems, non-primary contexts will stay
97 /// in this state until a thread is assigned to them.
98 Unallocated,
99
100 /// Running. Instructions should be executed only when
101 /// the context is in this state.
102 Active,
103
104 /// Temporarily inactive. Entered while waiting for
105 /// synchronization, etc.
106 Suspended,
107
108 /// Permanently shut down. Entered when target executes
109 /// m5exit pseudo-instruction. When all contexts enter
110 /// this state, the simulation will terminate.
111 Halted
112 };
113
114 virtual ~ThreadContext() { };
115
116 virtual BaseCPU *getCpuPtr() = 0;
117
118 virtual int cpuId() = 0;
119
120 virtual int threadId() = 0;
121
122 virtual void setThreadId(int id) = 0;
123
124 virtual int contextId() = 0;
125
126 virtual void setContextId(int id) = 0;
127
128 virtual TheISA::ITB *getITBPtr() = 0;
129
130 virtual TheISA::DTB *getDTBPtr() = 0;
131
132 virtual System *getSystemPtr() = 0;
133
134 #if FULL_SYSTEM
135 virtual TheISA::Kernel::Statistics *getKernelStats() = 0;
136
137 virtual FunctionalPort *getPhysPort() = 0;
138
139 virtual VirtualPort *getVirtPort() = 0;
140
141 virtual void connectMemPorts(ThreadContext *tc) = 0;
142 #else
143 virtual TranslatingPort *getMemPort() = 0;
144
145 virtual Process *getProcessPtr() = 0;
146 #endif
147
148 virtual Status status() const = 0;
149
150 virtual void setStatus(Status new_status) = 0;
151
152 /// Set the status to Active. Optional delay indicates number of
153 /// cycles to wait before beginning execution.
154 virtual void activate(int delay = 1) = 0;
155
156 /// Set the status to Suspended.
157 virtual void suspend(int delay = 0) = 0;
158
159 /// Set the status to Unallocated.
160 virtual void deallocate(int delay = 0) = 0;
161
162 /// Set the status to Halted.
163 virtual void halt(int delay = 0) = 0;
164
165 #if FULL_SYSTEM
166 virtual void dumpFuncProfile() = 0;
167 #endif
168
169 virtual void takeOverFrom(ThreadContext *old_context) = 0;
170
171 virtual void regStats(const std::string &name) = 0;
172
173 virtual void serialize(std::ostream &os) = 0;
174 virtual void unserialize(Checkpoint *cp, const std::string &section) = 0;
175
176 #if FULL_SYSTEM
177 virtual EndQuiesceEvent *getQuiesceEvent() = 0;
178
179 // Not necessarily the best location for these...
180 // Having an extra function just to read these is obnoxious
181 virtual Tick readLastActivate() = 0;
182 virtual Tick readLastSuspend() = 0;
183
184 virtual void profileClear() = 0;
185 virtual void profileSample() = 0;
186 #endif
187
188 // Also somewhat obnoxious. Really only used for the TLB fault.
189 // However, may be quite useful in SPARC.
190 virtual TheISA::MachInst getInst() = 0;
191
192 virtual void copyArchRegs(ThreadContext *tc) = 0;
193
194 virtual void clearArchRegs() = 0;
195
196 //
197 // New accessors for new decoder.
198 //
199 virtual uint64_t readIntReg(int reg_idx) = 0;
200
201 virtual FloatReg readFloatReg(int reg_idx, int width) = 0;
202
203 virtual FloatReg readFloatReg(int reg_idx) = 0;
204
205 virtual FloatRegBits readFloatRegBits(int reg_idx, int width) = 0;
206
207 virtual FloatRegBits readFloatRegBits(int reg_idx) = 0;
208
209 virtual void setIntReg(int reg_idx, uint64_t val) = 0;
210
211 virtual void setFloatReg(int reg_idx, FloatReg val, int width) = 0;
212
213 virtual void setFloatReg(int reg_idx, FloatReg val) = 0;
214
215 virtual void setFloatRegBits(int reg_idx, FloatRegBits val) = 0;
216
217 virtual void setFloatRegBits(int reg_idx, FloatRegBits val, int width) = 0;
218
219 virtual uint64_t readPC() = 0;
220
221 virtual void setPC(uint64_t val) = 0;
222
223 virtual uint64_t readNextPC() = 0;
224
225 virtual void setNextPC(uint64_t val) = 0;
226
227 virtual uint64_t readNextNPC() = 0;
228
229 virtual void setNextNPC(uint64_t val) = 0;
230
231 virtual uint64_t readMicroPC() = 0;
232
233 virtual void setMicroPC(uint64_t val) = 0;
234
235 virtual uint64_t readNextMicroPC() = 0;
236
237 virtual void setNextMicroPC(uint64_t val) = 0;
238
239 virtual MiscReg readMiscRegNoEffect(int misc_reg) = 0;
240
241 virtual MiscReg readMiscReg(int misc_reg) = 0;
242
243 virtual void setMiscRegNoEffect(int misc_reg, const MiscReg &val) = 0;
244
245 virtual void setMiscReg(int misc_reg, const MiscReg &val) = 0;
246
247 virtual uint64_t readRegOtherThread(int misc_reg, unsigned tid) { return 0; }
248
249 virtual void setRegOtherThread(int misc_reg, const MiscReg &val, unsigned tid) { };
250
251 // Also not necessarily the best location for these two. Hopefully will go
252 // away once we decide upon where st cond failures goes.
253 virtual unsigned readStCondFailures() = 0;
254
255 virtual void setStCondFailures(unsigned sc_failures) = 0;
256
257 // Only really makes sense for old CPU model. Still could be useful though.
258 virtual bool misspeculating() = 0;
259
260 #if !FULL_SYSTEM
261 virtual IntReg getSyscallArg(int i) = 0;
262
263 // used to shift args for indirect syscall
264 virtual void setSyscallArg(int i, IntReg val) = 0;
265
266 virtual void setSyscallReturn(SyscallReturn return_value) = 0;
267
268 // Same with st cond failures.
269 virtual Counter readFuncExeInst() = 0;
270
271 virtual void syscall(int64_t callnum) = 0;
272
273 // This function exits the thread context in the CPU and returns
274 // 1 if the CPU has no more active threads (meaning it's OK to exit);
275 // Used in syscall-emulation mode when a thread calls the exit syscall.
276 virtual int exit() { return 1; };
277 #endif
278
279 /** function to compare two thread contexts (for debugging) */
280 static void compare(ThreadContext *one, ThreadContext *two);
281 };
282
283 /**
284 * ProxyThreadContext class that provides a way to implement a
285 * ThreadContext without having to derive from it. ThreadContext is an
286 * abstract class, so anything that derives from it and uses its
287 * interface will pay the overhead of virtual function calls. This
288 * class is created to enable a user-defined Thread object to be used
289 * wherever ThreadContexts are used, without paying the overhead of
290 * virtual function calls when it is used by itself. See
291 * simple_thread.hh for an example of this.
292 */
293 template <class TC>
294 class ProxyThreadContext : public ThreadContext
295 {
296 public:
297 ProxyThreadContext(TC *actual_tc)
298 { actualTC = actual_tc; }
299
300 private:
301 TC *actualTC;
302
303 public:
304
305 BaseCPU *getCpuPtr() { return actualTC->getCpuPtr(); }
306
307 int cpuId() { return actualTC->cpuId(); }
308
309 int threadId() { return actualTC->threadId(); }
310
311 void setThreadId(int id) { return actualTC->setThreadId(id); }
312
313 int contextId() { return actualTC->contextId(); }
314
315 void setContextId(int id) { actualTC->setContextId(id); }
316
317 TheISA::ITB *getITBPtr() { return actualTC->getITBPtr(); }
318
319 TheISA::DTB *getDTBPtr() { return actualTC->getDTBPtr(); }
320
321 System *getSystemPtr() { return actualTC->getSystemPtr(); }
322
323 #if FULL_SYSTEM
324 TheISA::Kernel::Statistics *getKernelStats()
325 { return actualTC->getKernelStats(); }
326
327 FunctionalPort *getPhysPort() { return actualTC->getPhysPort(); }
328
329 VirtualPort *getVirtPort() { return actualTC->getVirtPort(); }
330
331 void connectMemPorts(ThreadContext *tc) { actualTC->connectMemPorts(tc); }
332 #else
333 TranslatingPort *getMemPort() { return actualTC->getMemPort(); }
334
335 Process *getProcessPtr() { return actualTC->getProcessPtr(); }
336 #endif
337
338 Status status() const { return actualTC->status(); }
339
340 void setStatus(Status new_status) { actualTC->setStatus(new_status); }
341
342 /// Set the status to Active. Optional delay indicates number of
343 /// cycles to wait before beginning execution.
344 void activate(int delay = 1) { actualTC->activate(delay); }
345
346 /// Set the status to Suspended.
347 void suspend(int delay = 0) { actualTC->suspend(); }
348
349 /// Set the status to Unallocated.
350 void deallocate(int delay = 0) { actualTC->deallocate(); }
351
352 /// Set the status to Halted.
353 void halt(int delay = 0) { actualTC->halt(); }
354
355 #if FULL_SYSTEM
356 void dumpFuncProfile() { actualTC->dumpFuncProfile(); }
357 #endif
358
359 void takeOverFrom(ThreadContext *oldContext)
360 { actualTC->takeOverFrom(oldContext); }
361
362 void regStats(const std::string &name) { actualTC->regStats(name); }
363
364 void serialize(std::ostream &os) { actualTC->serialize(os); }
365 void unserialize(Checkpoint *cp, const std::string &section)
366 { actualTC->unserialize(cp, section); }
367
368 #if FULL_SYSTEM
369 EndQuiesceEvent *getQuiesceEvent() { return actualTC->getQuiesceEvent(); }
370
371 Tick readLastActivate() { return actualTC->readLastActivate(); }
372 Tick readLastSuspend() { return actualTC->readLastSuspend(); }
373
374 void profileClear() { return actualTC->profileClear(); }
375 void profileSample() { return actualTC->profileSample(); }
376 #endif
377 // @todo: Do I need this?
378 MachInst getInst() { return actualTC->getInst(); }
379
380 // @todo: Do I need this?
381 void copyArchRegs(ThreadContext *tc) { actualTC->copyArchRegs(tc); }
382
383 void clearArchRegs() { actualTC->clearArchRegs(); }
384
385 //
386 // New accessors for new decoder.
387 //
388 uint64_t readIntReg(int reg_idx)
389 { return actualTC->readIntReg(reg_idx); }
390
391 FloatReg readFloatReg(int reg_idx, int width)
392 { return actualTC->readFloatReg(reg_idx, width); }
393
394 FloatReg readFloatReg(int reg_idx)
395 { return actualTC->readFloatReg(reg_idx); }
396
397 FloatRegBits readFloatRegBits(int reg_idx, int width)
398 { return actualTC->readFloatRegBits(reg_idx, width); }
399
400 FloatRegBits readFloatRegBits(int reg_idx)
401 { return actualTC->readFloatRegBits(reg_idx); }
402
403 void setIntReg(int reg_idx, uint64_t val)
404 { actualTC->setIntReg(reg_idx, val); }
405
406 void setFloatReg(int reg_idx, FloatReg val, int width)
407 { actualTC->setFloatReg(reg_idx, val, width); }
408
409 void setFloatReg(int reg_idx, FloatReg val)
410 { actualTC->setFloatReg(reg_idx, val); }
411
412 void setFloatRegBits(int reg_idx, FloatRegBits val, int width)
413 { actualTC->setFloatRegBits(reg_idx, val, width); }
414
415 void setFloatRegBits(int reg_idx, FloatRegBits val)
416 { actualTC->setFloatRegBits(reg_idx, val); }
417
418 uint64_t readPC() { return actualTC->readPC(); }
419
420 void setPC(uint64_t val) { actualTC->setPC(val); }
421
422 uint64_t readNextPC() { return actualTC->readNextPC(); }
423
424 void setNextPC(uint64_t val) { actualTC->setNextPC(val); }
425
426 uint64_t readNextNPC() { return actualTC->readNextNPC(); }
427
428 void setNextNPC(uint64_t val) { actualTC->setNextNPC(val); }
429
430 uint64_t readMicroPC() { return actualTC->readMicroPC(); }
431
432 void setMicroPC(uint64_t val) { actualTC->setMicroPC(val); }
433
434 uint64_t readNextMicroPC() { return actualTC->readMicroPC(); }
435
436 void setNextMicroPC(uint64_t val) { actualTC->setNextMicroPC(val); }
437
438 MiscReg readMiscRegNoEffect(int misc_reg)
439 { return actualTC->readMiscRegNoEffect(misc_reg); }
440
441 MiscReg readMiscReg(int misc_reg)
442 { return actualTC->readMiscReg(misc_reg); }
443
444 void setMiscRegNoEffect(int misc_reg, const MiscReg &val)
445 { return actualTC->setMiscRegNoEffect(misc_reg, val); }
446
447 void setMiscReg(int misc_reg, const MiscReg &val)
448 { return actualTC->setMiscReg(misc_reg, val); }
449
450 unsigned readStCondFailures()
451 { return actualTC->readStCondFailures(); }
452
453 void setStCondFailures(unsigned sc_failures)
454 { actualTC->setStCondFailures(sc_failures); }
455
456 // @todo: Fix this!
457 bool misspeculating() { return actualTC->misspeculating(); }
458
459 #if !FULL_SYSTEM
460 IntReg getSyscallArg(int i) { return actualTC->getSyscallArg(i); }
461
462 // used to shift args for indirect syscall
463 void setSyscallArg(int i, IntReg val)
464 { actualTC->setSyscallArg(i, val); }
465
466 void setSyscallReturn(SyscallReturn return_value)
467 { actualTC->setSyscallReturn(return_value); }
468
469 void syscall(int64_t callnum)
470 { actualTC->syscall(callnum); }
471
472 Counter readFuncExeInst() { return actualTC->readFuncExeInst(); }
473 #endif
474 };
475
476 #endif