2 * Copyright (c) 2011-2012 ARM Limited
3 * Copyright (c) 2013 Advanced Micro Devices, Inc.
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder. You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
15 * Copyright (c) 2006 The Regents of The University of Michigan
16 * All rights reserved.
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
44 #ifndef __CPU_THREAD_CONTEXT_HH__
45 #define __CPU_THREAD_CONTEXT_HH__
50 #include "arch/registers.hh"
51 #include "arch/types.hh"
52 #include "base/types.hh"
53 #include "config/the_isa.hh"
55 // @todo: Figure out a more architecture independent way to obtain the ITB and
65 class EndQuiesceEvent;
66 class SETranslatingPortProxy;
67 class FSTranslatingPortProxy;
78 * ThreadContext is the external interface to all thread state for
79 * anything outside of the CPU. It provides all accessor methods to
80 * state that might be needed by external objects, ranging from
81 * register values to things such as kernel stats. It is an abstract
82 * base class; the CPU can create its own ThreadContext by either
83 * deriving from it, or using the templated ProxyThreadContext.
85 * The ThreadContext is slightly different than the ExecContext. The
86 * ThreadContext provides access to an individual thread's state; an
87 * ExecContext provides ISA access to the CPU (meaning it is
88 * implicitly multithreaded on SMT systems). Additionally the
89 * ThreadState is an abstract class that exactly defines the
90 * interface; the ExecContext is a more implicit interface that must
91 * be implemented so that the ISA can access whatever state it needs.
96 typedef TheISA::MachInst MachInst;
97 typedef TheISA::IntReg IntReg;
98 typedef TheISA::FloatReg FloatReg;
99 typedef TheISA::FloatRegBits FloatRegBits;
100 typedef TheISA::CCReg CCReg;
101 typedef TheISA::MiscReg MiscReg;
106 /// Running. Instructions should be executed only when
107 /// the context is in this state.
110 /// Temporarily inactive. Entered while waiting for
111 /// synchronization, etc.
114 /// Permanently shut down. Entered when target executes
115 /// m5exit pseudo-instruction. When all contexts enter
116 /// this state, the simulation will terminate.
120 virtual ~ThreadContext() { };
122 virtual BaseCPU *getCpuPtr() = 0;
124 virtual int cpuId() const = 0;
126 virtual uint32_t socketId() const = 0;
128 virtual int threadId() const = 0;
130 virtual void setThreadId(int id) = 0;
132 virtual int contextId() const = 0;
134 virtual void setContextId(int id) = 0;
136 virtual TheISA::TLB *getITBPtr() = 0;
138 virtual TheISA::TLB *getDTBPtr() = 0;
140 virtual CheckerCPU *getCheckerCpuPtr() = 0;
142 virtual TheISA::Decoder *getDecoderPtr() = 0;
144 virtual System *getSystemPtr() = 0;
146 virtual TheISA::Kernel::Statistics *getKernelStats() = 0;
148 virtual PortProxy &getPhysProxy() = 0;
150 virtual FSTranslatingPortProxy &getVirtProxy() = 0;
153 * Initialise the physical and virtual port proxies and tie them to
154 * the data port of the CPU.
156 * tc ThreadContext for the virtual-to-physical translation
158 virtual void initMemProxies(ThreadContext *tc) = 0;
160 virtual SETranslatingPortProxy &getMemProxy() = 0;
162 virtual Process *getProcessPtr() = 0;
164 virtual Status status() const = 0;
166 virtual void setStatus(Status new_status) = 0;
168 /// Set the status to Active.
169 virtual void activate() = 0;
171 /// Set the status to Suspended.
172 virtual void suspend() = 0;
174 /// Set the status to Halted.
175 virtual void halt() = 0;
177 virtual void dumpFuncProfile() = 0;
179 virtual void takeOverFrom(ThreadContext *old_context) = 0;
181 virtual void regStats(const std::string &name) = 0;
183 virtual EndQuiesceEvent *getQuiesceEvent() = 0;
185 // Not necessarily the best location for these...
186 // Having an extra function just to read these is obnoxious
187 virtual Tick readLastActivate() = 0;
188 virtual Tick readLastSuspend() = 0;
190 virtual void profileClear() = 0;
191 virtual void profileSample() = 0;
193 virtual void copyArchRegs(ThreadContext *tc) = 0;
195 virtual void clearArchRegs() = 0;
198 // New accessors for new decoder.
200 virtual uint64_t readIntReg(int reg_idx) = 0;
202 virtual FloatReg readFloatReg(int reg_idx) = 0;
204 virtual FloatRegBits readFloatRegBits(int reg_idx) = 0;
206 virtual CCReg readCCReg(int reg_idx) = 0;
208 virtual void setIntReg(int reg_idx, uint64_t val) = 0;
210 virtual void setFloatReg(int reg_idx, FloatReg val) = 0;
212 virtual void setFloatRegBits(int reg_idx, FloatRegBits val) = 0;
214 virtual void setCCReg(int reg_idx, CCReg val) = 0;
216 virtual TheISA::PCState pcState() = 0;
218 virtual void pcState(const TheISA::PCState &val) = 0;
220 virtual void pcStateNoRecord(const TheISA::PCState &val) = 0;
222 virtual Addr instAddr() = 0;
224 virtual Addr nextInstAddr() = 0;
226 virtual MicroPC microPC() = 0;
228 virtual MiscReg readMiscRegNoEffect(int misc_reg) const = 0;
230 virtual MiscReg readMiscReg(int misc_reg) = 0;
232 virtual void setMiscRegNoEffect(int misc_reg, const MiscReg &val) = 0;
234 virtual void setMiscReg(int misc_reg, const MiscReg &val) = 0;
236 virtual int flattenIntIndex(int reg) = 0;
237 virtual int flattenFloatIndex(int reg) = 0;
238 virtual int flattenCCIndex(int reg) = 0;
239 virtual int flattenMiscIndex(int reg) = 0;
242 readRegOtherThread(int misc_reg, ThreadID tid)
248 setRegOtherThread(int misc_reg, const MiscReg &val, ThreadID tid)
252 // Also not necessarily the best location for these two. Hopefully will go
253 // away once we decide upon where st cond failures goes.
254 virtual unsigned readStCondFailures() = 0;
256 virtual void setStCondFailures(unsigned sc_failures) = 0;
258 // Same with st cond failures.
259 virtual Counter readFuncExeInst() = 0;
261 virtual void syscall(int64_t callnum) = 0;
263 // This function exits the thread context in the CPU and returns
264 // 1 if the CPU has no more active threads (meaning it's OK to exit);
265 // Used in syscall-emulation mode when a thread calls the exit syscall.
266 virtual int exit() { return 1; };
268 /** function to compare two thread contexts (for debugging) */
269 static void compare(ThreadContext *one, ThreadContext *two);
273 * Flat register interfaces
275 * Some architectures have different registers visible in
276 * different modes. Such architectures "flatten" a register (see
277 * flattenIntIndex() and flattenFloatIndex()) to map it into the
278 * gem5 register file. This interface provides a flat interface to
279 * the underlying register file, which allows for example
280 * serialization code to access all registers.
283 virtual uint64_t readIntRegFlat(int idx) = 0;
284 virtual void setIntRegFlat(int idx, uint64_t val) = 0;
286 virtual FloatReg readFloatRegFlat(int idx) = 0;
287 virtual void setFloatRegFlat(int idx, FloatReg val) = 0;
289 virtual FloatRegBits readFloatRegBitsFlat(int idx) = 0;
290 virtual void setFloatRegBitsFlat(int idx, FloatRegBits val) = 0;
292 virtual CCReg readCCRegFlat(int idx) = 0;
293 virtual void setCCRegFlat(int idx, CCReg val) = 0;
299 * ProxyThreadContext class that provides a way to implement a
300 * ThreadContext without having to derive from it. ThreadContext is an
301 * abstract class, so anything that derives from it and uses its
302 * interface will pay the overhead of virtual function calls. This
303 * class is created to enable a user-defined Thread object to be used
304 * wherever ThreadContexts are used, without paying the overhead of
305 * virtual function calls when it is used by itself. See
306 * simple_thread.hh for an example of this.
309 class ProxyThreadContext : public ThreadContext
312 ProxyThreadContext(TC *actual_tc)
313 { actualTC = actual_tc; }
320 BaseCPU *getCpuPtr() { return actualTC->getCpuPtr(); }
322 int cpuId() const { return actualTC->cpuId(); }
324 uint32_t socketId() const { return actualTC->socketId(); }
326 int threadId() const { return actualTC->threadId(); }
328 void setThreadId(int id) { actualTC->setThreadId(id); }
330 int contextId() const { return actualTC->contextId(); }
332 void setContextId(int id) { actualTC->setContextId(id); }
334 TheISA::TLB *getITBPtr() { return actualTC->getITBPtr(); }
336 TheISA::TLB *getDTBPtr() { return actualTC->getDTBPtr(); }
338 CheckerCPU *getCheckerCpuPtr() { return actualTC->getCheckerCpuPtr(); }
340 TheISA::Decoder *getDecoderPtr() { return actualTC->getDecoderPtr(); }
342 System *getSystemPtr() { return actualTC->getSystemPtr(); }
344 TheISA::Kernel::Statistics *getKernelStats()
345 { return actualTC->getKernelStats(); }
347 PortProxy &getPhysProxy() { return actualTC->getPhysProxy(); }
349 FSTranslatingPortProxy &getVirtProxy() { return actualTC->getVirtProxy(); }
351 void initMemProxies(ThreadContext *tc) { actualTC->initMemProxies(tc); }
353 SETranslatingPortProxy &getMemProxy() { return actualTC->getMemProxy(); }
355 Process *getProcessPtr() { return actualTC->getProcessPtr(); }
357 Status status() const { return actualTC->status(); }
359 void setStatus(Status new_status) { actualTC->setStatus(new_status); }
361 /// Set the status to Active.
362 void activate() { actualTC->activate(); }
364 /// Set the status to Suspended.
365 void suspend() { actualTC->suspend(); }
367 /// Set the status to Halted.
368 void halt() { actualTC->halt(); }
370 void dumpFuncProfile() { actualTC->dumpFuncProfile(); }
372 void takeOverFrom(ThreadContext *oldContext)
373 { actualTC->takeOverFrom(oldContext); }
375 void regStats(const std::string &name) { actualTC->regStats(name); }
377 EndQuiesceEvent *getQuiesceEvent() { return actualTC->getQuiesceEvent(); }
379 Tick readLastActivate() { return actualTC->readLastActivate(); }
380 Tick readLastSuspend() { return actualTC->readLastSuspend(); }
382 void profileClear() { return actualTC->profileClear(); }
383 void profileSample() { return actualTC->profileSample(); }
385 // @todo: Do I need this?
386 void copyArchRegs(ThreadContext *tc) { actualTC->copyArchRegs(tc); }
388 void clearArchRegs() { actualTC->clearArchRegs(); }
391 // New accessors for new decoder.
393 uint64_t readIntReg(int reg_idx)
394 { return actualTC->readIntReg(reg_idx); }
396 FloatReg readFloatReg(int reg_idx)
397 { return actualTC->readFloatReg(reg_idx); }
399 FloatRegBits readFloatRegBits(int reg_idx)
400 { return actualTC->readFloatRegBits(reg_idx); }
402 CCReg readCCReg(int reg_idx)
403 { return actualTC->readCCReg(reg_idx); }
405 void setIntReg(int reg_idx, uint64_t val)
406 { actualTC->setIntReg(reg_idx, val); }
408 void setFloatReg(int reg_idx, FloatReg val)
409 { actualTC->setFloatReg(reg_idx, val); }
411 void setFloatRegBits(int reg_idx, FloatRegBits val)
412 { actualTC->setFloatRegBits(reg_idx, val); }
414 void setCCReg(int reg_idx, CCReg val)
415 { actualTC->setCCReg(reg_idx, val); }
417 TheISA::PCState pcState() { return actualTC->pcState(); }
419 void pcState(const TheISA::PCState &val) { actualTC->pcState(val); }
421 void pcStateNoRecord(const TheISA::PCState &val) { actualTC->pcState(val); }
423 Addr instAddr() { return actualTC->instAddr(); }
424 Addr nextInstAddr() { return actualTC->nextInstAddr(); }
425 MicroPC microPC() { return actualTC->microPC(); }
427 bool readPredicate() { return actualTC->readPredicate(); }
429 void setPredicate(bool val)
430 { actualTC->setPredicate(val); }
432 MiscReg readMiscRegNoEffect(int misc_reg) const
433 { return actualTC->readMiscRegNoEffect(misc_reg); }
435 MiscReg readMiscReg(int misc_reg)
436 { return actualTC->readMiscReg(misc_reg); }
438 void setMiscRegNoEffect(int misc_reg, const MiscReg &val)
439 { return actualTC->setMiscRegNoEffect(misc_reg, val); }
441 void setMiscReg(int misc_reg, const MiscReg &val)
442 { return actualTC->setMiscReg(misc_reg, val); }
444 int flattenIntIndex(int reg)
445 { return actualTC->flattenIntIndex(reg); }
447 int flattenFloatIndex(int reg)
448 { return actualTC->flattenFloatIndex(reg); }
450 int flattenCCIndex(int reg)
451 { return actualTC->flattenCCIndex(reg); }
453 int flattenMiscIndex(int reg)
454 { return actualTC->flattenMiscIndex(reg); }
456 unsigned readStCondFailures()
457 { return actualTC->readStCondFailures(); }
459 void setStCondFailures(unsigned sc_failures)
460 { actualTC->setStCondFailures(sc_failures); }
462 void syscall(int64_t callnum)
463 { actualTC->syscall(callnum); }
465 Counter readFuncExeInst() { return actualTC->readFuncExeInst(); }
467 uint64_t readIntRegFlat(int idx)
468 { return actualTC->readIntRegFlat(idx); }
470 void setIntRegFlat(int idx, uint64_t val)
471 { actualTC->setIntRegFlat(idx, val); }
473 FloatReg readFloatRegFlat(int idx)
474 { return actualTC->readFloatRegFlat(idx); }
476 void setFloatRegFlat(int idx, FloatReg val)
477 { actualTC->setFloatRegFlat(idx, val); }
479 FloatRegBits readFloatRegBitsFlat(int idx)
480 { return actualTC->readFloatRegBitsFlat(idx); }
482 void setFloatRegBitsFlat(int idx, FloatRegBits val)
483 { actualTC->setFloatRegBitsFlat(idx, val); }
485 CCReg readCCRegFlat(int idx)
486 { return actualTC->readCCRegFlat(idx); }
488 void setCCRegFlat(int idx, CCReg val)
489 { actualTC->setCCRegFlat(idx, val); }
494 * Thread context serialization helpers
496 * These helper functions provide a way to the data in a
497 * ThreadContext. They are provided as separate helper function since
498 * implementing them as members of the ThreadContext interface would
499 * be confusing when the ThreadContext is exported via a proxy.
502 void serialize(ThreadContext &tc, std::ostream &os);
503 void unserialize(ThreadContext &tc, Checkpoint *cp, const std::string §ion);
509 * Copy state between thread contexts in preparation for CPU handover.
511 * @note This method modifies the old thread contexts as well as the
512 * new thread context. The old thread context will have its quiesce
513 * event descheduled if it is scheduled and its status set to halted.
515 * @param new_tc Destination ThreadContext.
516 * @param old_tc Source ThreadContext.
518 void takeOverFrom(ThreadContext &new_tc, ThreadContext &old_tc);