dev, arm: Refactor and clean up the generic timer model
[gem5.git] / src / dev / arm / generic_timer.cc
1 /*
2 * Copyright (c) 2013, 2015 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Giacomo Gabrielli
38 * Andreas Sandberg
39 */
40
41 #include "dev/arm/generic_timer.hh"
42
43 #include "arch/arm/system.hh"
44 #include "debug/Timer.hh"
45 #include "dev/arm/base_gic.hh"
46 #include "params/GenericTimer.hh"
47
48 SystemCounter::SystemCounter()
49 : _freq(0), _period(0), _resetTick(0), _regCntkctl(0)
50 {
51 setFreq(0x01800000);
52 }
53
54 void
55 SystemCounter::setFreq(uint32_t freq)
56 {
57 if (_freq != 0) {
58 // Altering the frequency after boot shouldn't be done in practice.
59 warn_once("The frequency of the system counter has already been set");
60 }
61 _freq = freq;
62 _period = (1.0 / freq) * SimClock::Frequency;
63 _resetTick = curTick();
64 }
65
66 void
67 SystemCounter::serialize(std::ostream &os) const
68 {
69 SERIALIZE_SCALAR(_regCntkctl);
70 SERIALIZE_SCALAR(_freq);
71 SERIALIZE_SCALAR(_period);
72 SERIALIZE_SCALAR(_resetTick);
73 }
74
75 void
76 SystemCounter::unserialize(Checkpoint *cp,
77 const std::string &section)
78 {
79 // We didn't handle CNTKCTL in this class before, assume it's zero
80 // if it isn't present.
81 if (!UNSERIALIZE_OPT_SCALAR(_regCntkctl))
82 _regCntkctl = 0;
83 UNSERIALIZE_SCALAR(_freq);
84 UNSERIALIZE_SCALAR(_period);
85 UNSERIALIZE_SCALAR(_resetTick);
86 }
87
88
89
90 ArchTimer::ArchTimer(const std::string &name,
91 SimObject &parent,
92 SystemCounter &sysctr,
93 const Interrupt &interrupt)
94 : _name(name), _parent(parent), _systemCounter(sysctr),
95 _interrupt(interrupt),
96 _control(0), _counterLimit(0),
97 _counterLimitReachedEvent(this)
98 {
99 }
100
101 void
102 ArchTimer::counterLimitReached()
103 {
104 _control.istatus = 1;
105
106 if (!_control.enable)
107 return;
108
109 DPRINTF(Timer, "Counter limit reached\n");
110 if (!_control.imask) {
111 DPRINTF(Timer, "Causing interrupt\n");
112 _interrupt.send();
113 }
114 }
115
116 void
117 ArchTimer::updateCounter()
118 {
119 if (_counterLimitReachedEvent.scheduled())
120 _parent.deschedule(_counterLimitReachedEvent);
121 if (value() >= _counterLimit) {
122 counterLimitReached();
123 } else {
124 const auto period(_systemCounter.period());
125 _control.istatus = 0;
126 _parent.schedule(_counterLimitReachedEvent,
127 curTick() + (_counterLimit - value()) * period);
128 }
129 }
130
131 void
132 ArchTimer::setCompareValue(uint64_t val)
133 {
134 _counterLimit = val;
135 updateCounter();
136 }
137
138 void
139 ArchTimer::setTimerValue(uint32_t val)
140 {
141 setCompareValue(value() + sext<32>(val));
142 }
143
144 void
145 ArchTimer::setControl(uint32_t val)
146 {
147 ArchTimerCtrl new_ctl = val;
148 if ((new_ctl.enable && !new_ctl.imask) &&
149 !(_control.enable && !_control.imask)) {
150 // Re-evalute the timer condition
151 if (_counterLimit >= value()) {
152 _control.istatus = 1;
153
154 DPRINTF(Timer, "Causing interrupt in control\n");
155 //_interrupt.send();
156 }
157 }
158 _control.enable = new_ctl.enable;
159 _control.imask = new_ctl.imask;
160 }
161
162 uint64_t
163 ArchTimer::value() const
164 {
165 return _systemCounter.value();
166 }
167
168 void
169 ArchTimer::serialize(std::ostream &os) const
170 {
171 paramOut(os, "control_serial", _control);
172 SERIALIZE_SCALAR(_counterLimit);
173
174 const bool event_scheduled(_counterLimitReachedEvent.scheduled());
175 SERIALIZE_SCALAR(event_scheduled);
176 if (event_scheduled) {
177 const Tick event_time(_counterLimitReachedEvent.when());
178 SERIALIZE_SCALAR(event_time);
179 }
180 }
181
182 void
183 ArchTimer::unserialize(Checkpoint *cp,
184 const std::string &section)
185 {
186 paramIn(cp, section, "control_serial", _control);
187 bool event_scheduled;
188 UNSERIALIZE_SCALAR(event_scheduled);
189 if (event_scheduled) {
190 Tick event_time;
191 UNSERIALIZE_SCALAR(event_time);
192 _parent.schedule(_counterLimitReachedEvent, event_time);
193 }
194 }
195
196 void
197 ArchTimer::Interrupt::send()
198 {
199 if (_ppi) {
200 _gic.sendPPInt(_irq, _cpu);
201 } else {
202 _gic.sendInt(_irq);
203 }
204 }
205
206
207 void
208 ArchTimer::Interrupt::clear()
209 {
210 if (_ppi) {
211 _gic.clearPPInt(_irq, _cpu);
212 } else {
213 _gic.clearInt(_irq);
214 }
215 }
216
217
218 GenericTimer::GenericTimer(GenericTimerParams *p)
219 : SimObject(p),
220 gic(p->gic),
221 irqPhys(p->int_phys)
222 {
223 dynamic_cast<ArmSystem &>(*p->system).setGenericTimer(this);
224 }
225
226 void
227 GenericTimer::serialize(std::ostream &os)
228 {
229 paramOut(os, "cpu_count", timers.size());
230
231 nameOut(os, csprintf("%s.sys_counter", name()));
232 systemCounter.serialize(os);
233
234 for (int i = 0; i < timers.size(); ++i) {
235 CoreTimers &core(getTimers(i));
236
237 nameOut(os, core.phys.name());
238 core.phys.serialize(os);
239 }
240 }
241
242 void
243 GenericTimer::unserialize(Checkpoint *cp, const std::string &section)
244 {
245 systemCounter.unserialize(cp, csprintf("%s.sys_counter", section));
246
247 // Try to unserialize the CPU count. Old versions of the timer
248 // model assumed a 8 CPUs, so we fall back to that if the field
249 // isn't present.
250 static const unsigned OLD_CPU_MAX = 8;
251 unsigned cpu_count;
252 if (!UNSERIALIZE_OPT_SCALAR(cpu_count)) {
253 warn("Checkpoint does not contain CPU count, assuming %i CPUs\n",
254 OLD_CPU_MAX);
255 cpu_count = OLD_CPU_MAX;
256 }
257
258 for (int i = 0; i < cpu_count; ++i) {
259 CoreTimers &core(getTimers(i));
260 // This should really be phys_timerN, but we are stuck with
261 // arch_timer for backwards compatibility.
262 core.phys.unserialize(cp, csprintf("%s.arch_timer%d", section, i));
263 }
264 }
265
266
267 GenericTimer::CoreTimers &
268 GenericTimer::getTimers(int cpu_id)
269 {
270 if (cpu_id >= timers.size())
271 createTimers(cpu_id + 1);
272
273 return *timers[cpu_id];
274 }
275
276 void
277 GenericTimer::createTimers(unsigned cpus)
278 {
279 assert(timers.size() < cpus);
280
281 const unsigned old_cpu_count(timers.size());
282 timers.resize(cpus);
283 for (unsigned i = old_cpu_count; i < cpus; ++i) {
284 timers[i].reset(
285 new CoreTimers(*this, i, irqPhys));
286 }
287 }
288
289
290 void
291 GenericTimer::setMiscReg(int reg, unsigned cpu, MiscReg val)
292 {
293 CoreTimers &core(getTimers(cpu));
294
295 switch (reg) {
296 case MISCREG_CNTFRQ:
297 case MISCREG_CNTFRQ_EL0:
298 systemCounter.setFreq(val);
299 return;
300
301 case MISCREG_CNTKCTL:
302 case MISCREG_CNTKCTL_EL1:
303 systemCounter.setKernelControl(val);
304 return;
305
306 // Physical timer
307 case MISCREG_CNTP_CVAL:
308 case MISCREG_CNTP_CVAL_NS:
309 case MISCREG_CNTP_CVAL_EL0:
310 core.phys.setCompareValue(val);
311 return;
312
313 case MISCREG_CNTP_TVAL:
314 case MISCREG_CNTP_TVAL_NS:
315 case MISCREG_CNTP_TVAL_EL0:
316 core.phys.setTimerValue(val);
317 return;
318
319 case MISCREG_CNTP_CTL:
320 case MISCREG_CNTP_CTL_NS:
321 case MISCREG_CNTP_CTL_EL0:
322 core.phys.setControl(val);
323 return;
324
325 // Count registers
326 case MISCREG_CNTPCT:
327 case MISCREG_CNTPCT_EL0:
328 case MISCREG_CNTVCT:
329 case MISCREG_CNTVCT_EL0:
330 warn("Ignoring write to read only count register: %s\n",
331 miscRegName[reg]);
332 return;
333
334 // Virtual timer
335 case MISCREG_CNTVOFF:
336 case MISCREG_CNTVOFF_EL2:
337 case MISCREG_CNTV_CVAL:
338 case MISCREG_CNTV_CVAL_EL0:
339 case MISCREG_CNTV_TVAL:
340 case MISCREG_CNTV_TVAL_EL0:
341 case MISCREG_CNTV_CTL:
342 case MISCREG_CNTV_CTL_EL0:
343 /* FALLTHROUGH */
344
345 // PL1 phys. timer, secure
346 case MISCREG_CNTP_CTL_S:
347 case MISCREG_CNTPS_CVAL_EL1:
348 case MISCREG_CNTPS_TVAL_EL1:
349 case MISCREG_CNTPS_CTL_EL1:
350 /* FALLTHROUGH */
351
352 // PL2 phys. timer, non-secure
353 case MISCREG_CNTHCTL:
354 case MISCREG_CNTHCTL_EL2:
355 case MISCREG_CNTHP_CVAL:
356 case MISCREG_CNTHP_CVAL_EL2:
357 case MISCREG_CNTHP_TVAL:
358 case MISCREG_CNTHP_TVAL_EL2:
359 case MISCREG_CNTHP_CTL:
360 case MISCREG_CNTHP_CTL_EL2:
361 warn("Writing to unimplemented register: %s\n",
362 miscRegName[reg]);
363 return;
364
365 default:
366 warn("Writing to unknown register: %s\n", miscRegName[reg]);
367 return;
368 }
369 }
370
371
372 MiscReg
373 GenericTimer::readMiscReg(int reg, unsigned cpu)
374 {
375 CoreTimers &core(getTimers(cpu));
376
377 switch (reg) {
378 case MISCREG_CNTFRQ:
379 case MISCREG_CNTFRQ_EL0:
380 return systemCounter.freq();
381
382 case MISCREG_CNTKCTL:
383 case MISCREG_CNTKCTL_EL1:
384 return systemCounter.getKernelControl();
385
386 // Physical timer
387 case MISCREG_CNTP_CVAL:
388 case MISCREG_CNTP_CVAL_EL0:
389 return core.phys.compareValue();
390
391 case MISCREG_CNTP_TVAL:
392 case MISCREG_CNTP_TVAL_EL0:
393 return core.phys.timerValue();
394
395 case MISCREG_CNTP_CTL:
396 case MISCREG_CNTP_CTL_EL0:
397 case MISCREG_CNTP_CTL_NS:
398 return core.phys.control();
399
400 case MISCREG_CNTPCT:
401 case MISCREG_CNTPCT_EL0:
402 return core.phys.value();
403
404
405 // Virtual timer
406 case MISCREG_CNTVCT:
407 case MISCREG_CNTVCT_EL0:
408 warn_once("Virtual timer not implemented, "
409 "returning physical timer value\n");
410 return core.phys.value();
411
412 case MISCREG_CNTVOFF:
413 case MISCREG_CNTVOFF_EL2:
414 case MISCREG_CNTV_CVAL:
415 case MISCREG_CNTV_CVAL_EL0:
416 case MISCREG_CNTV_TVAL:
417 case MISCREG_CNTV_TVAL_EL0:
418 case MISCREG_CNTV_CTL:
419 case MISCREG_CNTV_CTL_EL0:
420 /* FALLTHROUGH */
421
422 // PL1 phys. timer, secure
423 case MISCREG_CNTP_CTL_S:
424 case MISCREG_CNTPS_CVAL_EL1:
425 case MISCREG_CNTPS_TVAL_EL1:
426 case MISCREG_CNTPS_CTL_EL1:
427 /* FALLTHROUGH */
428
429 // PL2 phys. timer, non-secure
430 case MISCREG_CNTHCTL:
431 case MISCREG_CNTHCTL_EL2:
432 case MISCREG_CNTHP_CVAL:
433 case MISCREG_CNTHP_CVAL_EL2:
434 case MISCREG_CNTHP_TVAL:
435 case MISCREG_CNTHP_TVAL_EL2:
436 case MISCREG_CNTHP_CTL:
437 case MISCREG_CNTHP_CTL_EL2:
438 warn("Reading from unimplemented register: %s\n",
439 miscRegName[reg]);
440 return 0;
441
442
443 default:
444 warn("Reading from unknown register: %s\n", miscRegName[reg]);
445 return 0;
446 }
447 }
448
449
450 GenericTimer *
451 GenericTimerParams::create()
452 {
453 return new GenericTimer(this);
454 }