dev-arm: Reduce boilerplate when read/writing to Pio devices
[gem5.git] / src / dev / arm / ufs_device.cc
1 /*
2 * Copyright (c) 2013-2015 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /** @file
39 * This is a simulation model for a UFS interface
40 * The UFS interface consists of a host controller and (at least) one device.
41 * The device can contain multiple logic units.
42 * To make this interface as usefull as possible for future development, the
43 * decision has been made to split the UFS functionality from the SCSI
44 * functionality. The class UFS SCSIDevice can therefor be used as a starting
45 * point for creating a more generic SCSI device. This has as a consequence
46 * that the UFSHostDevice class contains functionality from both the host
47 * controller and the device. The current UFS standard (1.1) allows only one
48 * device, and up to 8 logic units. the logic units only handle the SCSI part
49 * of the command, and the device mainly the UFS part. Yet the split between
50 * the SCSIresume function and the SCSICMDHandle might seem a bit awkward.
51 * The SCSICMDHandle function is in essence a SCSI reply generator, and it
52 * distils the essential information from the command. A disktransfer cannot
53 * be made from this position because the scatter gather list is not included
54 * in the SCSI command, but in the Transfer Request descriptor. The device
55 * needs to manage the data transfer. This file is build up as follows: first
56 * the UFSSCSIDevice functions will be presented; then the UFSHostDevice
57 * functions. The UFSHostDevice functions are split in three parts: UFS
58 * transaction flow, data write transfer and data read transfer. The
59 * functions are then ordered in the order in which a transfer takes place.
60 */
61
62 /**
63 * Reference material can be found at the JEDEC website:
64 * UFS standard
65 * http://www.jedec.org/standards-documents/results/jesd220
66 * UFS HCI specification
67 * http://www.jedec.org/standards-documents/results/jesd223
68 */
69
70 #include "dev/arm/ufs_device.hh"
71
72 /**
73 * Constructor and destructor functions of UFSHCM device
74 */
75 UFSHostDevice::UFSSCSIDevice::UFSSCSIDevice(const UFSHostDeviceParams &p,
76 uint32_t lun_id, const Callback &transfer_cb,
77 const Callback &read_cb):
78 SimObject(p),
79 flashDisk(p.image[lun_id]),
80 flashDevice(p.internalflash[lun_id]),
81 blkSize(p.img_blk_size),
82 lunAvail(p.image.size()),
83 diskSize(flashDisk->size()),
84 capacityLower((diskSize - 1) & 0xffffffff),
85 capacityUpper((diskSize - SectorSize) >> 32),
86 lunID(lun_id),
87 transferCompleted(false),
88 readCompleted(false),
89 totalRead(0),
90 totalWrite(0),
91 amountOfWriteTransfers(0),
92 amountOfReadTransfers(0)
93 {
94 /**
95 * These callbacks are used to communicate the events that are
96 * triggered upstream; e.g. from the Memory Device to the UFS SCSI Device
97 * or from the UFS SCSI device to the UFS host.
98 */
99 signalDone = transfer_cb;
100 memReadCallback = [this]() { readCallback(); };
101 deviceReadCallback = read_cb;
102 memWriteCallback = [this]() { SSDWriteDone(); };
103
104 /**
105 * make ascii out of lun_id (and add more characters)
106 * UFS allows up to 8 logic units, so the numbering should work out
107 */
108 uint32_t temp_id = ((lun_id | 0x30) << 24) | 0x3A4449;
109 lunInfo.dWord0 = 0x02060000; //data
110 lunInfo.dWord1 = 0x0200001F;
111 lunInfo.vendor0 = 0x484D5241; //ARMH (HMRA)
112 lunInfo.vendor1 = 0x424D4143; //CAMB (BMAC)
113 lunInfo.product0 = 0x356D6567; //gem5 (5meg)
114 lunInfo.product1 = 0x4D534655; //UFSM (MSFU)
115 lunInfo.product2 = 0x4C45444F; //ODEL (LEDO)
116 lunInfo.product3 = temp_id; // ID:"lun_id" ("lun_id":DI)
117 lunInfo.productRevision = 0x01000000; //0x01
118
119 DPRINTF(UFSHostDevice, "Logic unit %d assumes that %d logic units are"
120 " present in the system\n", lunID, lunAvail);
121 DPRINTF(UFSHostDevice,"The disksize of lun: %d should be %d blocks\n",
122 lunID, diskSize);
123 flashDevice->initializeMemory(diskSize, SectorSize);
124 }
125
126
127 /**
128 * These pages are SCSI specific. For more information refer to:
129 * Universal Flash Storage (UFS) JESD220 FEB 2011 (JEDEC)
130 * http://www.jedec.org/standards-documents/results/jesd220
131 */
132 const unsigned int UFSHostDevice::UFSSCSIDevice::controlPage[3] =
133 {0x01400A0A, 0x00000000,
134 0x0000FFFF};
135 const unsigned int UFSHostDevice::UFSSCSIDevice::recoveryPage[3] =
136 {0x03800A01, 0x00000000,
137 0xFFFF0003};
138 const unsigned int UFSHostDevice::UFSSCSIDevice::cachingPage[5] =
139 {0x00011208, 0x00000000,
140 0x00000000, 0x00000020,
141 0x00000000};
142
143 UFSHostDevice::UFSSCSIDevice::~UFSSCSIDevice() {}
144
145 /**
146 * UFS specific SCSI handling function.
147 * The following attributes may still be added: SCSI format unit,
148 * Send diagnostic and UNMAP;
149 * Synchronize Cache and buffer read/write could not be tested yet
150 * All parameters can be found in:
151 * Universal Flash Storage (UFS) JESD220 FEB 2011 (JEDEC)
152 * http://www.jedec.org/standards-documents/results/jesd220
153 * (a JEDEC acount may be required {free of charge})
154 */
155
156 struct UFSHostDevice::SCSIReply
157 UFSHostDevice::UFSSCSIDevice::SCSICMDHandle(uint32_t* SCSI_msg)
158 {
159 struct SCSIReply scsi_out;
160 scsi_out.reset();
161
162 /**
163 * Create the standard SCSI reponse information
164 * These values might changes over the course of a transfer
165 */
166 scsi_out.message.header.dWord0 = UPIUHeaderDataIndWord0 |
167 lunID << 16;
168 scsi_out.message.header.dWord1 = UPIUHeaderDataIndWord1;
169 scsi_out.message.header.dWord2 = UPIUHeaderDataIndWord2;
170 statusCheck(SCSIGood, scsi_out.senseCode);
171 scsi_out.senseSize = scsi_out.senseCode[0];
172 scsi_out.LUN = lunID;
173 scsi_out.status = SCSIGood;
174
175 DPRINTF(UFSHostDevice, "SCSI command:%2x\n", SCSI_msg[4]);
176 /**Determine what the message is and fill the response packet*/
177
178 switch (SCSI_msg[4] & 0xFF) {
179
180 case SCSIInquiry: {
181 /**
182 * SCSI inquiry: tell about this specific logic unit
183 */
184 scsi_out.msgSize = 36;
185 scsi_out.message.dataMsg.resize(9);
186
187 for (uint8_t count = 0; count < 9; count++)
188 scsi_out.message.dataMsg[count] =
189 (reinterpret_cast<uint32_t*> (&lunInfo))[count];
190 } break;
191
192 case SCSIRead6: {
193 /**
194 * Read command. Number indicates the length of the command.
195 */
196 scsi_out.expectMore = 0x02;
197 scsi_out.msgSize = 0;
198
199 uint8_t* tempptr = reinterpret_cast<uint8_t*>(&SCSI_msg[4]);
200
201 /**BE and not nicely aligned. Apart from that it only has
202 * information in five bits of the first byte that is relevant
203 * for this field.
204 */
205 uint32_t tmp = *reinterpret_cast<uint32_t*>(tempptr);
206 uint64_t read_offset = betoh(tmp) & 0x1FFFFF;
207
208 uint32_t read_size = tempptr[4];
209
210
211 scsi_out.msgSize = read_size * blkSize;
212 scsi_out.offset = read_offset * blkSize;
213
214 if ((read_offset + read_size) > diskSize)
215 scsi_out.status = SCSIIllegalRequest;
216
217 DPRINTF(UFSHostDevice, "Read6 offset: 0x%8x, for %d blocks\n",
218 read_offset, read_size);
219
220 /**
221 * Renew status check, for the request may have been illegal
222 */
223 statusCheck(scsi_out.status, scsi_out.senseCode);
224 scsi_out.senseSize = scsi_out.senseCode[0];
225 scsi_out.status = (scsi_out.status == SCSIGood) ? SCSIGood :
226 SCSICheckCondition;
227
228 } break;
229
230 case SCSIRead10: {
231 scsi_out.expectMore = 0x02;
232 scsi_out.msgSize = 0;
233
234 uint8_t* tempptr = reinterpret_cast<uint8_t*>(&SCSI_msg[4]);
235
236 /**BE and not nicely aligned.*/
237 uint32_t tmp = *reinterpret_cast<uint32_t*>(&tempptr[2]);
238 uint64_t read_offset = betoh(tmp);
239
240 uint16_t tmpsize = *reinterpret_cast<uint16_t*>(&tempptr[7]);
241 uint32_t read_size = betoh(tmpsize);
242
243 scsi_out.msgSize = read_size * blkSize;
244 scsi_out.offset = read_offset * blkSize;
245
246 if ((read_offset + read_size) > diskSize)
247 scsi_out.status = SCSIIllegalRequest;
248
249 DPRINTF(UFSHostDevice, "Read10 offset: 0x%8x, for %d blocks\n",
250 read_offset, read_size);
251
252 /**
253 * Renew status check, for the request may have been illegal
254 */
255 statusCheck(scsi_out.status, scsi_out.senseCode);
256 scsi_out.senseSize = scsi_out.senseCode[0];
257 scsi_out.status = (scsi_out.status == SCSIGood) ? SCSIGood :
258 SCSICheckCondition;
259
260 } break;
261
262 case SCSIRead16: {
263 scsi_out.expectMore = 0x02;
264 scsi_out.msgSize = 0;
265
266 uint8_t* tempptr = reinterpret_cast<uint8_t*>(&SCSI_msg[4]);
267
268 /**BE and not nicely aligned.*/
269 uint32_t tmp = *reinterpret_cast<uint32_t*>(&tempptr[2]);
270 uint64_t read_offset = betoh(tmp);
271
272 tmp = *reinterpret_cast<uint32_t*>(&tempptr[6]);
273 read_offset = (read_offset << 32) | betoh(tmp);
274
275 tmp = *reinterpret_cast<uint32_t*>(&tempptr[10]);
276 uint32_t read_size = betoh(tmp);
277
278 scsi_out.msgSize = read_size * blkSize;
279 scsi_out.offset = read_offset * blkSize;
280
281 if ((read_offset + read_size) > diskSize)
282 scsi_out.status = SCSIIllegalRequest;
283
284 DPRINTF(UFSHostDevice, "Read16 offset: 0x%8x, for %d blocks\n",
285 read_offset, read_size);
286
287 /**
288 * Renew status check, for the request may have been illegal
289 */
290 statusCheck(scsi_out.status, scsi_out.senseCode);
291 scsi_out.senseSize = scsi_out.senseCode[0];
292 scsi_out.status = (scsi_out.status == SCSIGood) ? SCSIGood :
293 SCSICheckCondition;
294
295 } break;
296
297 case SCSIReadCapacity10: {
298 /**
299 * read the capacity of the device
300 */
301 scsi_out.msgSize = 8;
302 scsi_out.message.dataMsg.resize(2);
303 scsi_out.message.dataMsg[0] =
304 betoh(capacityLower);//last block
305 scsi_out.message.dataMsg[1] = betoh(blkSize);//blocksize
306
307 } break;
308 case SCSIReadCapacity16: {
309 scsi_out.msgSize = 32;
310 scsi_out.message.dataMsg.resize(8);
311 scsi_out.message.dataMsg[0] =
312 betoh(capacityUpper);//last block
313 scsi_out.message.dataMsg[1] =
314 betoh(capacityLower);//last block
315 scsi_out.message.dataMsg[2] = betoh(blkSize);//blocksize
316 scsi_out.message.dataMsg[3] = 0x00;//
317 scsi_out.message.dataMsg[4] = 0x00;//reserved
318 scsi_out.message.dataMsg[5] = 0x00;//reserved
319 scsi_out.message.dataMsg[6] = 0x00;//reserved
320 scsi_out.message.dataMsg[7] = 0x00;//reserved
321
322 } break;
323
324 case SCSIReportLUNs: {
325 /**
326 * Find out how many Logic Units this device has.
327 */
328 scsi_out.msgSize = (lunAvail * 8) + 8;//list + overhead
329 scsi_out.message.dataMsg.resize(2 * lunAvail + 2);
330 scsi_out.message.dataMsg[0] = (lunAvail * 8) << 24;//LUN listlength
331 scsi_out.message.dataMsg[1] = 0x00;
332
333 for (uint8_t count = 0; count < lunAvail; count++) {
334 //LUN "count"
335 scsi_out.message.dataMsg[2 + 2 * count] = (count & 0x7F) << 8;
336 scsi_out.message.dataMsg[3 + 2 * count] = 0x00;
337 }
338
339 } break;
340
341 case SCSIStartStop: {
342 //Just acknowledge; not deemed relevant ATM
343 scsi_out.msgSize = 0;
344
345 } break;
346
347 case SCSITestUnitReady: {
348 //Just acknowledge; not deemed relevant ATM
349 scsi_out.msgSize = 0;
350
351 } break;
352
353 case SCSIVerify10: {
354 /**
355 * See if the blocks that the host plans to request are in range of
356 * the device.
357 */
358 scsi_out.msgSize = 0;
359
360 uint8_t* tempptr = reinterpret_cast<uint8_t*>(&SCSI_msg[4]);
361
362 /**BE and not nicely aligned.*/
363 uint32_t tmp = *reinterpret_cast<uint32_t*>(&tempptr[2]);
364 uint64_t read_offset = betoh(tmp);
365
366 uint16_t tmpsize = *reinterpret_cast<uint16_t*>(&tempptr[7]);
367 uint32_t read_size = betoh(tmpsize);
368
369 if ((read_offset + read_size) > diskSize)
370 scsi_out.status = SCSIIllegalRequest;
371
372 /**
373 * Renew status check, for the request may have been illegal
374 */
375 statusCheck(scsi_out.status, scsi_out.senseCode);
376 scsi_out.senseSize = scsi_out.senseCode[0];
377 scsi_out.status = (scsi_out.status == SCSIGood) ? SCSIGood :
378 SCSICheckCondition;
379
380 } break;
381
382 case SCSIWrite6: {
383 /**
384 * Write command.
385 */
386
387 uint8_t* tempptr = reinterpret_cast<uint8_t*>(&SCSI_msg[4]);
388
389 /**BE and not nicely aligned. Apart from that it only has
390 * information in five bits of the first byte that is relevant
391 * for this field.
392 */
393 uint32_t tmp = *reinterpret_cast<uint32_t*>(tempptr);
394 uint64_t write_offset = betoh(tmp) & 0x1FFFFF;
395
396 uint32_t write_size = tempptr[4];
397
398 scsi_out.msgSize = write_size * blkSize;
399 scsi_out.offset = write_offset * blkSize;
400 scsi_out.expectMore = 0x01;
401
402 if ((write_offset + write_size) > diskSize)
403 scsi_out.status = SCSIIllegalRequest;
404
405 DPRINTF(UFSHostDevice, "Write6 offset: 0x%8x, for %d blocks\n",
406 write_offset, write_size);
407
408 /**
409 * Renew status check, for the request may have been illegal
410 */
411 statusCheck(scsi_out.status, scsi_out.senseCode);
412 scsi_out.senseSize = scsi_out.senseCode[0];
413 scsi_out.status = (scsi_out.status == SCSIGood) ? SCSIGood :
414 SCSICheckCondition;
415
416 } break;
417
418 case SCSIWrite10: {
419 uint8_t* tempptr = reinterpret_cast<uint8_t*>(&SCSI_msg[4]);
420
421 /**BE and not nicely aligned.*/
422 uint32_t tmp = *reinterpret_cast<uint32_t*>(&tempptr[2]);
423 uint64_t write_offset = betoh(tmp);
424
425 uint16_t tmpsize = *reinterpret_cast<uint16_t*>(&tempptr[7]);
426 uint32_t write_size = betoh(tmpsize);
427
428 scsi_out.msgSize = write_size * blkSize;
429 scsi_out.offset = write_offset * blkSize;
430 scsi_out.expectMore = 0x01;
431
432 if ((write_offset + write_size) > diskSize)
433 scsi_out.status = SCSIIllegalRequest;
434
435 DPRINTF(UFSHostDevice, "Write10 offset: 0x%8x, for %d blocks\n",
436 write_offset, write_size);
437
438 /**
439 * Renew status check, for the request may have been illegal
440 */
441 statusCheck(scsi_out.status, scsi_out.senseCode);
442 scsi_out.senseSize = scsi_out.senseCode[0];
443 scsi_out.status = (scsi_out.status == SCSIGood) ? SCSIGood :
444 SCSICheckCondition;
445
446 } break;
447
448 case SCSIWrite16: {
449 uint8_t* tempptr = reinterpret_cast<uint8_t*>(&SCSI_msg[4]);
450
451 /**BE and not nicely aligned.*/
452 uint32_t tmp = *reinterpret_cast<uint32_t*>(&tempptr[2]);
453 uint64_t write_offset = betoh(tmp);
454
455 tmp = *reinterpret_cast<uint32_t*>(&tempptr[6]);
456 write_offset = (write_offset << 32) | betoh(tmp);
457
458 tmp = *reinterpret_cast<uint32_t*>(&tempptr[10]);
459 uint32_t write_size = betoh(tmp);
460
461 scsi_out.msgSize = write_size * blkSize;
462 scsi_out.offset = write_offset * blkSize;
463 scsi_out.expectMore = 0x01;
464
465 if ((write_offset + write_size) > diskSize)
466 scsi_out.status = SCSIIllegalRequest;
467
468 DPRINTF(UFSHostDevice, "Write16 offset: 0x%8x, for %d blocks\n",
469 write_offset, write_size);
470
471 /**
472 * Renew status check, for the request may have been illegal
473 */
474 statusCheck(scsi_out.status, scsi_out.senseCode);
475 scsi_out.senseSize = scsi_out.senseCode[0];
476 scsi_out.status = (scsi_out.status == SCSIGood) ? SCSIGood :
477 SCSICheckCondition;
478
479 } break;
480
481 case SCSIFormatUnit: {//not yet verified
482 scsi_out.msgSize = 0;
483 scsi_out.expectMore = 0x01;
484
485 } break;
486
487 case SCSISendDiagnostic: {//not yet verified
488 scsi_out.msgSize = 0;
489
490 } break;
491
492 case SCSISynchronizeCache: {
493 //do we have cache (we don't have cache at this moment)
494 //TODO: here will synchronization happen when cache is modelled
495 scsi_out.msgSize = 0;
496
497 } break;
498
499 //UFS SCSI additional command set for full functionality
500 case SCSIModeSelect10:
501 //TODO:
502 //scsi_out.expectMore = 0x01;//not supported due to modepage support
503 //code isn't dead, code suggest what is to be done when implemented
504 break;
505
506 case SCSIModeSense6: case SCSIModeSense10: {
507 /**
508 * Get more discriptive information about the SCSI functionality
509 * within this logic unit.
510 */
511 if ((SCSI_msg[4] & 0x3F0000) >> 16 == 0x0A) {//control page
512 scsi_out.message.dataMsg.resize((sizeof(controlPage) >> 2) + 2);
513 scsi_out.message.dataMsg[0] = 0x00000A00;//control page code
514 scsi_out.message.dataMsg[1] = 0x00000000;//See JEDEC220 ch8
515
516 for (uint8_t count = 0; count < 3; count++)
517 scsi_out.message.dataMsg[2 + count] = controlPage[count];
518
519 scsi_out.msgSize = 20;
520 DPRINTF(UFSHostDevice, "CONTROL page\n");
521
522 } else if ((SCSI_msg[4] & 0x3F0000) >> 16 == 0x01) {//recovery page
523 scsi_out.message.dataMsg.resize((sizeof(recoveryPage) >> 2)
524 + 2);
525
526 scsi_out.message.dataMsg[0] = 0x00000100;//recovery page code
527 scsi_out.message.dataMsg[1] = 0x00000000;//See JEDEC220 ch8
528
529 for (uint8_t count = 0; count < 3; count++)
530 scsi_out.message.dataMsg[2 + count] = recoveryPage[count];
531
532 scsi_out.msgSize = 20;
533 DPRINTF(UFSHostDevice, "RECOVERY page\n");
534
535 } else if ((SCSI_msg[4] & 0x3F0000) >> 16 == 0x08) {//caching page
536
537 scsi_out.message.dataMsg.resize((sizeof(cachingPage) >> 2) + 2);
538 scsi_out.message.dataMsg[0] = 0x00001200;//caching page code
539 scsi_out.message.dataMsg[1] = 0x00000000;//See JEDEC220 ch8
540
541 for (uint8_t count = 0; count < 5; count++)
542 scsi_out.message.dataMsg[2 + count] = cachingPage[count];
543
544 scsi_out.msgSize = 20;
545 DPRINTF(UFSHostDevice, "CACHE page\n");
546
547 } else if ((SCSI_msg[4] & 0x3F0000) >> 16 == 0x3F) {//ALL the pages!
548
549 scsi_out.message.dataMsg.resize(((sizeof(controlPage) +
550 sizeof(recoveryPage) +
551 sizeof(cachingPage)) >> 2)
552 + 2);
553 scsi_out.message.dataMsg[0] = 0x00003200;//all page code
554 scsi_out.message.dataMsg[1] = 0x00000000;//See JEDEC220 ch8
555
556 for (uint8_t count = 0; count < 3; count++)
557 scsi_out.message.dataMsg[2 + count] = recoveryPage[count];
558
559 for (uint8_t count = 0; count < 5; count++)
560 scsi_out.message.dataMsg[5 + count] = cachingPage[count];
561
562 for (uint8_t count = 0; count < 3; count++)
563 scsi_out.message.dataMsg[10 + count] = controlPage[count];
564
565 scsi_out.msgSize = 52;
566 DPRINTF(UFSHostDevice, "Return ALL the pages!!!\n");
567
568 } else inform("Wrong mode page requested\n");
569
570 scsi_out.message.dataCount = scsi_out.msgSize << 24;
571 } break;
572
573 case SCSIRequestSense: {
574 scsi_out.msgSize = 0;
575
576 } break;
577
578 case SCSIUnmap:break;//not yet verified
579
580 case SCSIWriteBuffer: {
581 scsi_out.expectMore = 0x01;
582
583 uint8_t* tempptr = reinterpret_cast<uint8_t*>(&SCSI_msg[4]);
584
585 /**BE and not nicely aligned.*/
586 uint32_t tmp = *reinterpret_cast<uint32_t*>(&tempptr[2]);
587 uint64_t write_offset = betoh(tmp) & 0xFFFFFF;
588
589 tmp = *reinterpret_cast<uint32_t*>(&tempptr[5]);
590 uint32_t write_size = betoh(tmp) & 0xFFFFFF;
591
592 scsi_out.msgSize = write_size;
593 scsi_out.offset = write_offset;
594
595 } break;
596
597 case SCSIReadBuffer: {
598 /**
599 * less trivial than normal read. Size is in bytes instead
600 * of blocks, and it is assumed (though not guaranteed) that
601 * reading is from cache.
602 */
603 scsi_out.expectMore = 0x02;
604
605 uint8_t* tempptr = reinterpret_cast<uint8_t*>(&SCSI_msg[4]);
606
607 /**BE and not nicely aligned.*/
608 uint32_t tmp = *reinterpret_cast<uint32_t*>(&tempptr[2]);
609 uint64_t read_offset = betoh(tmp) & 0xFFFFFF;
610
611 tmp = *reinterpret_cast<uint32_t*>(&tempptr[5]);
612 uint32_t read_size = betoh(tmp) & 0xFFFFFF;
613
614 scsi_out.msgSize = read_size;
615 scsi_out.offset = read_offset;
616
617 if ((read_offset + read_size) > capacityLower * blkSize)
618 scsi_out.status = SCSIIllegalRequest;
619
620 DPRINTF(UFSHostDevice, "Read buffer location: 0x%8x\n",
621 read_offset);
622 DPRINTF(UFSHostDevice, "Number of bytes: 0x%8x\n", read_size);
623
624 statusCheck(scsi_out.status, scsi_out.senseCode);
625 scsi_out.senseSize = scsi_out.senseCode[0];
626 scsi_out.status = (scsi_out.status == SCSIGood) ? SCSIGood :
627 SCSICheckCondition;
628
629 } break;
630
631 case SCSIMaintenanceIn: {
632 /**
633 * linux sends this command three times from kernel 3.9 onwards,
634 * UFS does not support it, nor does this model. Linux knows this,
635 * but tries anyway (useful for some SD card types).
636 * Lets make clear we don't want it and just ignore it.
637 */
638 DPRINTF(UFSHostDevice, "Ignoring Maintenance In command\n");
639 statusCheck(SCSIIllegalRequest, scsi_out.senseCode);
640 scsi_out.senseSize = scsi_out.senseCode[0];
641 scsi_out.status = (scsi_out.status == SCSIGood) ? SCSIGood :
642 SCSICheckCondition;
643 scsi_out.msgSize = 0;
644 } break;
645
646 default: {
647 statusCheck(SCSIIllegalRequest, scsi_out.senseCode);
648 scsi_out.senseSize = scsi_out.senseCode[0];
649 scsi_out.status = (scsi_out.status == SCSIGood) ? SCSIGood :
650 SCSICheckCondition;
651 scsi_out.msgSize = 0;
652 inform("Unsupported scsi message type: %2x\n", SCSI_msg[4] & 0xFF);
653 inform("0x%8x\n", SCSI_msg[0]);
654 inform("0x%8x\n", SCSI_msg[1]);
655 inform("0x%8x\n", SCSI_msg[2]);
656 inform("0x%8x\n", SCSI_msg[3]);
657 inform("0x%8x\n", SCSI_msg[4]);
658 } break;
659 }
660
661 return scsi_out;
662 }
663
664 /**
665 * SCSI status check function. generic device test, creates sense codes
666 * Future versions may include TODO: device checks, which is why this is
667 * in a separate function.
668 */
669
670 void
671 UFSHostDevice::UFSSCSIDevice::statusCheck(uint8_t status,
672 uint8_t* sensecodelist)
673 {
674 for (uint8_t count = 0; count < 19; count++)
675 sensecodelist[count] = 0;
676
677 sensecodelist[0] = 18; //sense length
678 sensecodelist[1] = 0x70; //we send a valid frame
679 sensecodelist[3] = status & 0xF; //mask to be sure + sensecode
680 sensecodelist[8] = 0x1F; //data length
681 }
682
683 /**
684 * read from the flashdisk
685 */
686
687 void
688 UFSHostDevice::UFSSCSIDevice::readFlash(uint8_t* readaddr, uint64_t offset,
689 uint32_t size)
690 {
691 /** read from image, and get to memory */
692 for (int count = 0; count < (size / SectorSize); count++)
693 flashDisk->read(&(readaddr[SectorSize*count]), (offset /
694 SectorSize) + count);
695 }
696
697 /**
698 * Write to the flashdisk
699 */
700
701 void
702 UFSHostDevice::UFSSCSIDevice::writeFlash(uint8_t* writeaddr, uint64_t offset,
703 uint32_t size)
704 {
705 /** Get from fifo and write to image*/
706 for (int count = 0; count < (size / SectorSize); count++)
707 flashDisk->write(&(writeaddr[SectorSize * count]),
708 (offset / SectorSize) + count);
709 }
710
711 /**
712 * Constructor for the UFS Host device
713 */
714
715 UFSHostDevice::UFSHostDevice(const UFSHostDeviceParams &p) :
716 DmaDevice(p),
717 pioAddr(p.pio_addr),
718 pioSize(0x0FFF),
719 pioDelay(p.pio_latency),
720 intNum(p.int_num),
721 gic(p.gic),
722 lunAvail(p.image.size()),
723 UFSSlots(p.ufs_slots - 1),
724 readPendingNum(0),
725 writePendingNum(0),
726 activeDoorbells(0),
727 pendingDoorbells(0),
728 countInt(0),
729 transferTrack(0),
730 taskCommandTrack(0),
731 idlePhaseStart(0),
732 stats(this),
733 SCSIResumeEvent([this]{ SCSIStart(); }, name()),
734 UTPEvent([this]{ finalUTP(); }, name())
735 {
736 DPRINTF(UFSHostDevice, "The hostcontroller hosts %d Logic units\n",
737 lunAvail);
738 UFSDevice.resize(lunAvail);
739
740 for (int count = 0; count < lunAvail; count++) {
741 UFSDevice[count] = new UFSSCSIDevice(p, count,
742 [this]() { LUNSignal(); },
743 [this]() { readCallback(); });
744 }
745
746 if (UFSSlots > 31)
747 warn("UFSSlots = %d, this will results in %d command slots",
748 UFSSlots, (UFSSlots & 0x1F));
749
750 if ((UFSSlots & 0x1F) == 0)
751 fatal("Number of UFS command slots should be between 1 and 32.");
752
753 setValues();
754 }
755
756 UFSHostDevice::
757 UFSHostDeviceStats::UFSHostDeviceStats(UFSHostDevice *parent)
758 : Stats::Group(parent, "UFSDiskHost"),
759 ADD_STAT(currentSCSIQueue,
760 "Most up to date length of the command queue"),
761 ADD_STAT(currentReadSSDQueue,
762 "Most up to date length of the read SSD queue"),
763 ADD_STAT(currentWriteSSDQueue,
764 "Most up to date length of the write SSD queue"),
765 /** Amount of data read/written */
766 ADD_STAT(totalReadSSD, "Number of bytes read from SSD"),
767 ADD_STAT(totalWrittenSSD, "Number of bytes written to SSD"),
768 ADD_STAT(totalReadDiskTransactions,"Number of transactions from disk"),
769 ADD_STAT(totalWriteDiskTransactions, "Number of transactions to disk"),
770 ADD_STAT(totalReadUFSTransactions, "Number of transactions from device"),
771 ADD_STAT(totalWriteUFSTransactions, "Number of transactions to device"),
772 /** Average bandwidth for reads and writes */
773 ADD_STAT(averageReadSSDBW, "Average read bandwidth (bytes/s)",
774 totalReadSSD / simSeconds),
775 ADD_STAT(averageWriteSSDBW, "Average write bandwidth (bytes/s)",
776 totalWrittenSSD / simSeconds),
777 ADD_STAT(averageSCSIQueue, "Average command queue length"),
778 ADD_STAT(averageReadSSDQueue, "Average read queue length"),
779 ADD_STAT(averageWriteSSDQueue, "Average write queue length"),
780 /** Number of doorbells rung*/
781 ADD_STAT(curDoorbell, "Most up to date number of doorbells used",
782 parent->activeDoorbells),
783 ADD_STAT(maxDoorbell, "Maximum number of doorbells utilized"),
784 ADD_STAT(averageDoorbell, "Average number of Doorbells used"),
785 /** Latency*/
786 ADD_STAT(transactionLatency, "Histogram of transaction times"),
787 ADD_STAT(idleTimes, "Histogram of idle times")
788 {
789 using namespace Stats;
790
791 // Register the stats
792 /** Queue lengths */
793 currentSCSIQueue
794 .flags(none);
795 currentReadSSDQueue
796 .flags(none);
797 currentWriteSSDQueue
798 .flags(none);
799
800 /** Amount of data read/written */
801 totalReadSSD
802 .flags(none);
803
804 totalWrittenSSD
805 .flags(none);
806
807 totalReadDiskTransactions
808 .flags(none);
809 totalWriteDiskTransactions
810 .flags(none);
811 totalReadUFSTransactions
812 .flags(none);
813 totalWriteUFSTransactions
814 .flags(none);
815
816 /** Average bandwidth for reads and writes */
817 averageReadSSDBW
818 .flags(nozero);
819
820 averageWriteSSDBW
821 .flags(nozero);
822
823 averageSCSIQueue
824 .flags(nozero);
825 averageReadSSDQueue
826 .flags(nozero);
827 averageWriteSSDQueue
828 .flags(nozero);
829
830 /** Number of doorbells rung*/
831 curDoorbell
832 .flags(none);
833
834 maxDoorbell
835 .flags(none);
836 averageDoorbell
837 .flags(nozero);
838
839 /** Latency*/
840 transactionLatency
841 .init(100)
842 .flags(pdf);
843
844 idleTimes
845 .init(100)
846 .flags(pdf);
847 }
848
849 /**
850 * Register init
851 */
852 void UFSHostDevice::setValues()
853 {
854 /**
855 * The capability register is built up as follows:
856 * 31-29 RES; Testmode support; O3 delivery; 64 bit addr;
857 * 23-19 RES; 18-16 #TM Req slots; 15-5 RES;4-0 # TR slots
858 */
859 UFSHCIMem.HCCAP = 0x06070000 | (UFSSlots & 0x1F);
860 UFSHCIMem.HCversion = 0x00010000; //version is 1.0
861 UFSHCIMem.HCHCDDID = 0xAA003C3C;// Arbitrary number
862 UFSHCIMem.HCHCPMID = 0x41524D48; //ARMH (not an official MIPI number)
863 UFSHCIMem.TRUTRLDBR = 0x00;
864 UFSHCIMem.TMUTMRLDBR = 0x00;
865 UFSHCIMem.CMDUICCMDR = 0x00;
866 // We can process CMD, TM, TR, device present
867 UFSHCIMem.ORHostControllerStatus = 0x08;
868 UFSHCIMem.TRUTRLBA = 0x00;
869 UFSHCIMem.TRUTRLBAU = 0x00;
870 UFSHCIMem.TMUTMRLBA = 0x00;
871 UFSHCIMem.TMUTMRLBAU = 0x00;
872 }
873
874 /**
875 * Determine address ranges
876 */
877
878 AddrRangeList
879 UFSHostDevice::getAddrRanges() const
880 {
881 AddrRangeList ranges;
882 ranges.push_back(RangeSize(pioAddr, pioSize));
883 return ranges;
884 }
885
886 /**
887 * UFSHCD read register. This function allows the system to read the
888 * register entries
889 */
890
891 Tick
892 UFSHostDevice::read(PacketPtr pkt)
893 {
894 uint32_t data = 0;
895
896 switch (pkt->getAddr() & 0xFF)
897 {
898
899 case regControllerCapabilities:
900 data = UFSHCIMem.HCCAP;
901 break;
902
903 case regUFSVersion:
904 data = UFSHCIMem.HCversion;
905 break;
906
907 case regControllerDEVID:
908 data = UFSHCIMem.HCHCDDID;
909 break;
910
911 case regControllerPRODID:
912 data = UFSHCIMem.HCHCPMID;
913 break;
914
915 case regInterruptStatus:
916 data = UFSHCIMem.ORInterruptStatus;
917 UFSHCIMem.ORInterruptStatus = 0x00;
918 //TODO: Revise and extend
919 clearInterrupt();
920 break;
921
922 case regInterruptEnable:
923 data = UFSHCIMem.ORInterruptEnable;
924 break;
925
926 case regControllerStatus:
927 data = UFSHCIMem.ORHostControllerStatus;
928 break;
929
930 case regControllerEnable:
931 data = UFSHCIMem.ORHostControllerEnable;
932 break;
933
934 case regUICErrorCodePHYAdapterLayer:
935 data = UFSHCIMem.ORUECPA;
936 break;
937
938 case regUICErrorCodeDataLinkLayer:
939 data = UFSHCIMem.ORUECDL;
940 break;
941
942 case regUICErrorCodeNetworkLayer:
943 data = UFSHCIMem.ORUECN;
944 break;
945
946 case regUICErrorCodeTransportLayer:
947 data = UFSHCIMem.ORUECT;
948 break;
949
950 case regUICErrorCodeDME:
951 data = UFSHCIMem.ORUECDME;
952 break;
953
954 case regUTPTransferREQINTAGGControl:
955 data = UFSHCIMem.ORUTRIACR;
956 break;
957
958 case regUTPTransferREQListBaseL:
959 data = UFSHCIMem.TRUTRLBA;
960 break;
961
962 case regUTPTransferREQListBaseH:
963 data = UFSHCIMem.TRUTRLBAU;
964 break;
965
966 case regUTPTransferREQDoorbell:
967 data = UFSHCIMem.TRUTRLDBR;
968 break;
969
970 case regUTPTransferREQListClear:
971 data = UFSHCIMem.TRUTRLCLR;
972 break;
973
974 case regUTPTransferREQListRunStop:
975 data = UFSHCIMem.TRUTRLRSR;
976 break;
977
978 case regUTPTaskREQListBaseL:
979 data = UFSHCIMem.TMUTMRLBA;
980 break;
981
982 case regUTPTaskREQListBaseH:
983 data = UFSHCIMem.TMUTMRLBAU;
984 break;
985
986 case regUTPTaskREQDoorbell:
987 data = UFSHCIMem.TMUTMRLDBR;
988 break;
989
990 case regUTPTaskREQListClear:
991 data = UFSHCIMem.TMUTMRLCLR;
992 break;
993
994 case regUTPTaskREQListRunStop:
995 data = UFSHCIMem.TMUTMRLRSR;
996 break;
997
998 case regUICCommand:
999 data = UFSHCIMem.CMDUICCMDR;
1000 break;
1001
1002 case regUICCommandArg1:
1003 data = UFSHCIMem.CMDUCMDARG1;
1004 break;
1005
1006 case regUICCommandArg2:
1007 data = UFSHCIMem.CMDUCMDARG2;
1008 break;
1009
1010 case regUICCommandArg3:
1011 data = UFSHCIMem.CMDUCMDARG3;
1012 break;
1013
1014 default:
1015 data = 0x00;
1016 break;
1017 }
1018
1019 pkt->setLE<uint32_t>(data);
1020 pkt->makeResponse();
1021 return pioDelay;
1022 }
1023
1024 /**
1025 * UFSHCD write function. This function allows access to the writeable
1026 * registers. If any function attempts to write value to an unwriteable
1027 * register entry, then the value will not be written.
1028 */
1029 Tick
1030 UFSHostDevice::write(PacketPtr pkt)
1031 {
1032 assert(pkt->getSize() <= 4);
1033
1034 const uint32_t data = pkt->getUintX(ByteOrder::little);
1035
1036 switch (pkt->getAddr() & 0xFF)
1037 {
1038 case regControllerCapabilities://you shall not write to this
1039 break;
1040
1041 case regUFSVersion://you shall not write to this
1042 break;
1043
1044 case regControllerDEVID://you shall not write to this
1045 break;
1046
1047 case regControllerPRODID://you shall not write to this
1048 break;
1049
1050 case regInterruptStatus://you shall not write to this
1051 break;
1052
1053 case regInterruptEnable:
1054 UFSHCIMem.ORInterruptEnable = data;
1055 break;
1056
1057 case regControllerStatus:
1058 UFSHCIMem.ORHostControllerStatus = data;
1059 break;
1060
1061 case regControllerEnable:
1062 UFSHCIMem.ORHostControllerEnable = data;
1063 break;
1064
1065 case regUICErrorCodePHYAdapterLayer:
1066 UFSHCIMem.ORUECPA = data;
1067 break;
1068
1069 case regUICErrorCodeDataLinkLayer:
1070 UFSHCIMem.ORUECDL = data;
1071 break;
1072
1073 case regUICErrorCodeNetworkLayer:
1074 UFSHCIMem.ORUECN = data;
1075 break;
1076
1077 case regUICErrorCodeTransportLayer:
1078 UFSHCIMem.ORUECT = data;
1079 break;
1080
1081 case regUICErrorCodeDME:
1082 UFSHCIMem.ORUECDME = data;
1083 break;
1084
1085 case regUTPTransferREQINTAGGControl:
1086 UFSHCIMem.ORUTRIACR = data;
1087 break;
1088
1089 case regUTPTransferREQListBaseL:
1090 UFSHCIMem.TRUTRLBA = data;
1091 if (((UFSHCIMem.TRUTRLBA | UFSHCIMem.TRUTRLBAU) != 0x00) &&
1092 ((UFSHCIMem.TMUTMRLBA | UFSHCIMem.TMUTMRLBAU)!= 0x00))
1093 UFSHCIMem.ORHostControllerStatus |= UICCommandReady;
1094 break;
1095
1096 case regUTPTransferREQListBaseH:
1097 UFSHCIMem.TRUTRLBAU = data;
1098 if (((UFSHCIMem.TRUTRLBA | UFSHCIMem.TRUTRLBAU) != 0x00) &&
1099 ((UFSHCIMem.TMUTMRLBA | UFSHCIMem.TMUTMRLBAU) != 0x00))
1100 UFSHCIMem.ORHostControllerStatus |= UICCommandReady;
1101 break;
1102
1103 case regUTPTransferREQDoorbell:
1104 if (!(UFSHCIMem.TRUTRLDBR) && data)
1105 stats.idleTimes.sample(curTick() - idlePhaseStart);
1106 UFSHCIMem.TRUTRLDBR |= data;
1107 requestHandler();
1108 break;
1109
1110 case regUTPTransferREQListClear:
1111 UFSHCIMem.TRUTRLCLR = data;
1112 break;
1113
1114 case regUTPTransferREQListRunStop:
1115 UFSHCIMem.TRUTRLRSR = data;
1116 break;
1117
1118 case regUTPTaskREQListBaseL:
1119 UFSHCIMem.TMUTMRLBA = data;
1120 if (((UFSHCIMem.TRUTRLBA | UFSHCIMem.TRUTRLBAU) != 0x00) &&
1121 ((UFSHCIMem.TMUTMRLBA | UFSHCIMem.TMUTMRLBAU) != 0x00))
1122 UFSHCIMem.ORHostControllerStatus |= UICCommandReady;
1123 break;
1124
1125 case regUTPTaskREQListBaseH:
1126 UFSHCIMem.TMUTMRLBAU = data;
1127 if (((UFSHCIMem.TRUTRLBA | UFSHCIMem.TRUTRLBAU) != 0x00) &&
1128 ((UFSHCIMem.TMUTMRLBA | UFSHCIMem.TMUTMRLBAU) != 0x00))
1129 UFSHCIMem.ORHostControllerStatus |= UICCommandReady;
1130 break;
1131
1132 case regUTPTaskREQDoorbell:
1133 UFSHCIMem.TMUTMRLDBR |= data;
1134 requestHandler();
1135 break;
1136
1137 case regUTPTaskREQListClear:
1138 UFSHCIMem.TMUTMRLCLR = data;
1139 break;
1140
1141 case regUTPTaskREQListRunStop:
1142 UFSHCIMem.TMUTMRLRSR = data;
1143 break;
1144
1145 case regUICCommand:
1146 UFSHCIMem.CMDUICCMDR = data;
1147 requestHandler();
1148 break;
1149
1150 case regUICCommandArg1:
1151 UFSHCIMem.CMDUCMDARG1 = data;
1152 break;
1153
1154 case regUICCommandArg2:
1155 UFSHCIMem.CMDUCMDARG2 = data;
1156 break;
1157
1158 case regUICCommandArg3:
1159 UFSHCIMem.CMDUCMDARG3 = data;
1160 break;
1161
1162 default:break;//nothing happens, you try to access a register that
1163 //does not exist
1164
1165 }
1166
1167 pkt->makeResponse();
1168 return pioDelay;
1169 }
1170
1171 /**
1172 * Request handler. Determines where the request comes from and initiates the
1173 * appropriate actions accordingly.
1174 */
1175
1176 void
1177 UFSHostDevice::requestHandler()
1178 {
1179 Addr address = 0x00;
1180 int mask = 0x01;
1181 int size;
1182 int count = 0;
1183 struct taskStart task_info;
1184 struct transferStart transferstart_info;
1185 transferstart_info.done = 0;
1186
1187 /**
1188 * step1 determine what called us
1189 * step2 determine where to get it
1190 * Look for any request of which we where not yet aware
1191 */
1192 while (((UFSHCIMem.CMDUICCMDR > 0x00) |
1193 ((UFSHCIMem.TMUTMRLDBR ^ taskCommandTrack) > 0x00) |
1194 ((UFSHCIMem.TRUTRLDBR ^ transferTrack) > 0x00)) ) {
1195
1196 if (UFSHCIMem.CMDUICCMDR > 0x00) {
1197 /**
1198 * Command; general control of the Host controller.
1199 * no DMA transfer needed
1200 */
1201 commandHandler();
1202 UFSHCIMem.ORInterruptStatus |= UICCommandCOMPL;
1203 generateInterrupt();
1204 UFSHCIMem.CMDUICCMDR = 0x00;
1205 return; //command, nothing more we can do
1206
1207 } else if ((UFSHCIMem.TMUTMRLDBR ^ taskCommandTrack) > 0x00) {
1208 /**
1209 * Task; flow control, meant for the device/Logic unit
1210 * DMA transfer is needed, flash will not be approached
1211 */
1212 size = sizeof(UTPUPIUTaskReq);
1213 /**Find the position that is not handled yet*/
1214 count = findLsbSet((UFSHCIMem.TMUTMRLDBR ^ taskCommandTrack));
1215 address = UFSHCIMem.TMUTMRLBAU;
1216 //<-64 bit
1217 address = (count * size) + (address << 32) +
1218 UFSHCIMem.TMUTMRLBA;
1219 taskCommandTrack |= mask << count;
1220
1221 inform("UFSmodel received a task from the system; this might"
1222 " lead to untested behaviour.\n");
1223
1224 task_info.mask = mask << count;
1225 task_info.address = address;
1226 task_info.size = size;
1227 task_info.done = UFSHCIMem.TMUTMRLDBR;
1228 taskInfo.push_back(task_info);
1229 taskEventQueue.push_back(
1230 EventFunctionWrapper([this]{ taskStart(); }, name()));
1231 writeDevice(&taskEventQueue.back(), false, address, size,
1232 reinterpret_cast<uint8_t*>
1233 (&taskInfo.back().destination), 0, 0);
1234
1235 } else if ((UFSHCIMem.TRUTRLDBR ^ transferTrack) > 0x00) {
1236 /**
1237 * Transfer; Data transfer from or to the disk. There will be DMA
1238 * transfers, and the flash might be approached. Further
1239 * commands, are needed to specify the exact command.
1240 */
1241 size = sizeof(UTPTransferReqDesc);
1242 /**Find the position that is not handled yet*/
1243 count = findLsbSet((UFSHCIMem.TRUTRLDBR ^ transferTrack));
1244 address = UFSHCIMem.TRUTRLBAU;
1245 //<-64 bit
1246 address = (count * size) + (address << 32) + UFSHCIMem.TRUTRLBA;
1247
1248 transferTrack |= mask << count;
1249 DPRINTF(UFSHostDevice, "Doorbell register: 0x%8x select #:"
1250 " 0x%8x completion info: 0x%8x\n", UFSHCIMem.TRUTRLDBR,
1251 count, transferstart_info.done);
1252
1253 transferstart_info.done = UFSHCIMem.TRUTRLDBR;
1254
1255 /**stats**/
1256 transactionStart[count] = curTick(); //note the start time
1257 ++activeDoorbells;
1258 stats.maxDoorbell = (stats.maxDoorbell.value() < activeDoorbells)
1259 ? activeDoorbells : stats.maxDoorbell.value();
1260 stats.averageDoorbell = stats.maxDoorbell.value();
1261
1262 /**
1263 * step3 start transfer
1264 * step4 register information; allowing the host to respond in
1265 * the end
1266 */
1267 transferstart_info.mask = mask << count;
1268 transferstart_info.address = address;
1269 transferstart_info.size = size;
1270 transferstart_info.done = UFSHCIMem.TRUTRLDBR;
1271 transferStartInfo.push_back(transferstart_info);
1272
1273 /**Deleted in readDone, queued in finalUTP*/
1274 transferStartInfo.back().destination = new struct
1275 UTPTransferReqDesc;
1276 DPRINTF(UFSHostDevice, "Initial transfer start: 0x%8x\n",
1277 transferstart_info.done);
1278 transferEventQueue.push_back(
1279 EventFunctionWrapper([this]{ transferStart(); }, name()));
1280
1281 if (transferEventQueue.size() < 2) {
1282 writeDevice(&transferEventQueue.front(), false,
1283 address, size, reinterpret_cast<uint8_t*>
1284 (transferStartInfo.front().destination),0, 0);
1285 DPRINTF(UFSHostDevice, "Transfer scheduled\n");
1286 }
1287 }
1288 }
1289 }
1290
1291 /**
1292 * Task start event
1293 */
1294
1295 void
1296 UFSHostDevice::taskStart()
1297 {
1298 DPRINTF(UFSHostDevice, "Task start");
1299 taskHandler(&taskInfo.front().destination, taskInfo.front().mask,
1300 taskInfo.front().address, taskInfo.front().size);
1301 taskInfo.pop_front();
1302 taskEventQueue.pop_front();
1303 }
1304
1305 /**
1306 * Transfer start event
1307 */
1308
1309 void
1310 UFSHostDevice::transferStart()
1311 {
1312 DPRINTF(UFSHostDevice, "Enter transfer event\n");
1313 transferHandler(transferStartInfo.front().destination,
1314 transferStartInfo.front().mask,
1315 transferStartInfo.front().address,
1316 transferStartInfo.front().size,
1317 transferStartInfo.front().done);
1318
1319 transferStartInfo.pop_front();
1320 DPRINTF(UFSHostDevice, "Transfer queue size at end of event: "
1321 "0x%8x\n", transferEventQueue.size());
1322 }
1323
1324 /**
1325 * Handles the commands that are given. At this point in time, not many
1326 * commands have been implemented in the driver.
1327 */
1328
1329 void
1330 UFSHostDevice::commandHandler()
1331 {
1332 if (UFSHCIMem.CMDUICCMDR == 0x16) {
1333 UFSHCIMem.ORHostControllerStatus |= 0x0F;//link startup
1334 }
1335
1336 }
1337
1338 /**
1339 * Handles the tasks that are given. At this point in time, not many tasks
1340 * have been implemented in the driver.
1341 */
1342
1343 void
1344 UFSHostDevice::taskHandler(struct UTPUPIUTaskReq* request_in,
1345 uint32_t req_pos, Addr finaladdress, uint32_t
1346 finalsize)
1347 {
1348 /**
1349 * For now, just unpack and acknowledge the task without doing anything.
1350 * TODO Implement UFS tasks.
1351 */
1352 inform("taskHandler\n");
1353 inform("%8x\n", request_in->header.dWord0);
1354 inform("%8x\n", request_in->header.dWord1);
1355 inform("%8x\n", request_in->header.dWord2);
1356
1357 request_in->header.dWord2 &= 0xffffff00;
1358
1359 UFSHCIMem.TMUTMRLDBR &= ~(req_pos);
1360 taskCommandTrack &= ~(req_pos);
1361 UFSHCIMem.ORInterruptStatus |= UTPTaskREQCOMPL;
1362
1363 readDevice(true, finaladdress, finalsize, reinterpret_cast<uint8_t*>
1364 (request_in), true, NULL);
1365
1366 }
1367
1368 /**
1369 * Obtains the SCSI command (if any)
1370 * Two possibilities: if it contains a SCSI command, then it is a usable
1371 * message; if it doesnt contain a SCSI message, then it can't be handeld
1372 * by this code.
1373 * This is the second stage of the transfer. We have the information about
1374 * where the next command can be found and what the type of command is. The
1375 * actions that are needed from the device its side are: get the information
1376 * and store the information such that we can reply.
1377 */
1378
1379 void
1380 UFSHostDevice::transferHandler(struct UTPTransferReqDesc* request_in,
1381 int req_pos, Addr finaladdress, uint32_t
1382 finalsize, uint32_t done)
1383 {
1384
1385 Addr cmd_desc_addr = 0x00;
1386
1387
1388 //acknowledge handling of the message
1389 DPRINTF(UFSHostDevice, "SCSI message detected\n");
1390 request_in->header.dWord2 &= 0xffffff00;
1391 SCSIInfo.RequestIn = request_in;
1392 SCSIInfo.reqPos = req_pos;
1393 SCSIInfo.finalAddress = finaladdress;
1394 SCSIInfo.finalSize = finalsize;
1395 SCSIInfo.destination.resize(request_in->PRDTableOffset * 4
1396 + request_in->PRDTableLength * sizeof(UFSHCDSGEntry));
1397 SCSIInfo.done = done;
1398
1399 assert(!SCSIResumeEvent.scheduled());
1400 /**
1401 *Get the UTP command that has the SCSI command
1402 */
1403 cmd_desc_addr = request_in->commandDescBaseAddrHi;
1404 cmd_desc_addr = (cmd_desc_addr << 32) |
1405 (request_in->commandDescBaseAddrLo & 0xffffffff);
1406
1407 writeDevice(&SCSIResumeEvent, false, cmd_desc_addr,
1408 SCSIInfo.destination.size(), &SCSIInfo.destination[0],0, 0);
1409
1410 DPRINTF(UFSHostDevice, "SCSI scheduled\n");
1411
1412 transferEventQueue.pop_front();
1413 }
1414
1415 /**
1416 * Obtain LUN and put it in the right LUN queue. Each LUN has its own queue
1417 * of commands that need to be executed. This is the first instance where it
1418 * can be determined which Logic unit should handle the transfer. Then check
1419 * wether it should wait and queue or if it can continue.
1420 */
1421
1422 void
1423 UFSHostDevice::SCSIStart()
1424 {
1425 DPRINTF(UFSHostDevice, "SCSI message on hold until ready\n");
1426 uint32_t LUN = SCSIInfo.destination[2];
1427 UFSDevice[LUN]->SCSIInfoQueue.push_back(SCSIInfo);
1428
1429 DPRINTF(UFSHostDevice, "SCSI queue %d has %d elements\n", LUN,
1430 UFSDevice[LUN]->SCSIInfoQueue.size());
1431
1432 /**There are 32 doorbells, so at max there can be 32 transactions*/
1433 if (UFSDevice[LUN]->SCSIInfoQueue.size() < 2) //LUN is available
1434 SCSIResume(LUN);
1435
1436 else if (UFSDevice[LUN]->SCSIInfoQueue.size() > 32)
1437 panic("SCSI queue is getting too big %d\n", UFSDevice[LUN]->
1438 SCSIInfoQueue.size());
1439
1440 /**
1441 * First transfer is done, fetch the next;
1442 * At this point, the device is busy, not the HC
1443 */
1444 if (!transferEventQueue.empty()) {
1445
1446 /**
1447 * loading next data packet in case Another LUN
1448 * is approached in the mean time
1449 */
1450 writeDevice(&transferEventQueue.front(), false,
1451 transferStartInfo.front().address,
1452 transferStartInfo.front().size, reinterpret_cast<uint8_t*>
1453 (transferStartInfo.front().destination), 0, 0);
1454
1455 DPRINTF(UFSHostDevice, "Transfer scheduled");
1456 }
1457 }
1458
1459 /**
1460 * Handles the transfer requests that are given.
1461 * There can be three types of transfer. SCSI specific, Reads and writes
1462 * apart from the data transfer, this also generates its own reply (UPIU
1463 * response). Information for this reply is stored in transferInfo and will
1464 * be used in transferDone
1465 */
1466
1467 void
1468 UFSHostDevice::SCSIResume(uint32_t lun_id)
1469 {
1470 DPRINTF(UFSHostDevice, "SCSIresume\n");
1471 if (UFSDevice[lun_id]->SCSIInfoQueue.empty())
1472 panic("No SCSI message scheduled lun:%d Doorbell: 0x%8x", lun_id,
1473 UFSHCIMem.TRUTRLDBR);
1474
1475 /**old info, lets form it such that we can understand it*/
1476 struct UTPTransferReqDesc* request_in = UFSDevice[lun_id]->
1477 SCSIInfoQueue.front().RequestIn;
1478
1479 uint32_t req_pos = UFSDevice[lun_id]->SCSIInfoQueue.front().reqPos;
1480
1481 Addr finaladdress = UFSDevice[lun_id]->SCSIInfoQueue.front().
1482 finalAddress;
1483
1484 uint32_t finalsize = UFSDevice[lun_id]->SCSIInfoQueue.front().finalSize;
1485
1486 uint32_t* transfercommand = reinterpret_cast<uint32_t*>
1487 (&(UFSDevice[lun_id]->SCSIInfoQueue.front().destination[0]));
1488
1489 DPRINTF(UFSHostDevice, "Task tag: 0x%8x\n", transfercommand[0]>>24);
1490 /**call logic unit to handle SCSI command*/
1491 request_out_datain = UFSDevice[(transfercommand[0] & 0xFF0000) >> 16]->
1492 SCSICMDHandle(transfercommand);
1493
1494 DPRINTF(UFSHostDevice, "LUN: %d\n", request_out_datain.LUN);
1495
1496 /**
1497 * build response stating that it was succesful
1498 * command completion, Logic unit number, and Task tag
1499 */
1500 request_in->header.dWord0 = ((request_in->header.dWord0 >> 24) == 0x21)
1501 ? 0x36 : 0x21;
1502 UFSDevice[lun_id]->transferInfo.requestOut.header.dWord0 =
1503 request_in->header.dWord0 | (request_out_datain.LUN << 8)
1504 | (transfercommand[0] & 0xFF000000);
1505 /**SCSI status reply*/
1506 UFSDevice[lun_id]->transferInfo.requestOut.header.dWord1 = 0x00000000 |
1507 (request_out_datain.status << 24);
1508 /**segment size + EHS length (see UFS standard ch7)*/
1509 UFSDevice[lun_id]->transferInfo.requestOut.header.dWord2 = 0x00000000 |
1510 ((request_out_datain.senseSize + 2) << 24) | 0x05;
1511 /**amount of data that will follow*/
1512 UFSDevice[lun_id]->transferInfo.requestOut.senseDataLen =
1513 request_out_datain.senseSize;
1514
1515 //data
1516 for (uint8_t count = 0; count<request_out_datain.senseSize; count++) {
1517 UFSDevice[lun_id]->transferInfo.requestOut.senseData[count] =
1518 request_out_datain.senseCode[count + 1];
1519 }
1520
1521 /*
1522 * At position defined by "request_in->PRDTableOffset" (counting 32 bit
1523 * words) in array "transfercommand" we have a scatter gather list, which
1524 * is usefull to us if we interpreted it as a UFSHCDSGEntry structure.
1525 */
1526 struct UFSHCDSGEntry* sglist = reinterpret_cast<UFSHCDSGEntry*>
1527 (&(transfercommand[(request_in->PRDTableOffset)]));
1528
1529 uint32_t length = request_in->PRDTableLength;
1530 DPRINTF(UFSHostDevice, "# PRDT entries: %d\n", length);
1531
1532 Addr response_addr = request_in->commandDescBaseAddrHi;
1533 response_addr = (response_addr << 32) |
1534 ((request_in->commandDescBaseAddrLo +
1535 (request_in->responseUPIULength << 2)) & 0xffffffff);
1536
1537 /**transferdone information packet filling*/
1538 UFSDevice[lun_id]->transferInfo.responseStartAddr = response_addr;
1539 UFSDevice[lun_id]->transferInfo.reqPos = req_pos;
1540 UFSDevice[lun_id]->transferInfo.size = finalsize;
1541 UFSDevice[lun_id]->transferInfo.address = finaladdress;
1542 UFSDevice[lun_id]->transferInfo.destination = reinterpret_cast<uint8_t*>
1543 (UFSDevice[lun_id]->SCSIInfoQueue.front().RequestIn);
1544 UFSDevice[lun_id]->transferInfo.finished = true;
1545 UFSDevice[lun_id]->transferInfo.lunID = request_out_datain.LUN;
1546
1547 /**
1548 * In this part the data that needs to be transfered will be initiated
1549 * and the chain of DMA (and potentially) disk transactions will be
1550 * started.
1551 */
1552 if (request_out_datain.expectMore == 0x01) {
1553 /**write transfer*/
1554 manageWriteTransfer(request_out_datain.LUN, request_out_datain.offset,
1555 length, sglist);
1556
1557 } else if (request_out_datain.expectMore == 0x02) {
1558 /**read transfer*/
1559 manageReadTransfer(request_out_datain.msgSize, request_out_datain.LUN,
1560 request_out_datain.offset, length, sglist);
1561
1562 } else {
1563 /**not disk related transfer, SCSI maintanance*/
1564 uint32_t count = 0;
1565 uint32_t size_accum = 0;
1566 DPRINTF(UFSHostDevice, "Data DMA size: 0x%8x\n",
1567 request_out_datain.msgSize);
1568
1569 /**Transport the SCSI reponse data according to the SG list*/
1570 while ((length > count) && size_accum
1571 < (request_out_datain.msgSize - 1) &&
1572 (request_out_datain.msgSize != 0x00)) {
1573 Addr SCSI_start = sglist[count].upperAddr;
1574 SCSI_start = (SCSI_start << 32) |
1575 (sglist[count].baseAddr & 0xFFFFFFFF);
1576 DPRINTF(UFSHostDevice, "Data DMA start: 0x%8x\n", SCSI_start);
1577 DPRINTF(UFSHostDevice, "Data DMA size: 0x%8x\n",
1578 (sglist[count].size + 1));
1579 /**
1580 * safetynet; it has been shown that sg list may be optimistic in
1581 * the amount of data allocated, which can potentially lead to
1582 * some garbage data being send over. Hence this construction
1583 * that finds the least amount of data that needs to be
1584 * transfered.
1585 */
1586 uint32_t size_to_send = sglist[count].size + 1;
1587
1588 if (request_out_datain.msgSize < (size_to_send + size_accum))
1589 size_to_send = request_out_datain.msgSize - size_accum;
1590
1591 readDevice(false, SCSI_start, size_to_send,
1592 reinterpret_cast<uint8_t*>
1593 (&(request_out_datain.message.dataMsg[size_accum])),
1594 false, NULL);
1595
1596 size_accum += size_to_send;
1597 DPRINTF(UFSHostDevice, "Total remaining: 0x%8x,accumulated so far"
1598 " : 0x%8x\n", (request_out_datain.msgSize - size_accum),
1599 size_accum);
1600
1601 ++count;
1602 DPRINTF(UFSHostDevice, "Transfer #: %d\n", count);
1603 }
1604
1605 /**Go to the next stage of the answering process*/
1606 transferDone(response_addr, req_pos, UFSDevice[lun_id]->
1607 transferInfo.requestOut, finalsize, finaladdress,
1608 reinterpret_cast<uint8_t*>(request_in), true, lun_id);
1609 }
1610
1611 DPRINTF(UFSHostDevice, "SCSI resume done\n");
1612 }
1613
1614 /**
1615 * Find finished transfer. Callback function. One of the LUNs is done with
1616 * the disk transfer and reports back to the controller. This function finds
1617 * out who it was, and calls transferDone.
1618 */
1619 void
1620 UFSHostDevice::LUNSignal()
1621 {
1622 uint8_t this_lun = 0;
1623
1624 //while we haven't found the right lun, keep searching
1625 while ((this_lun < lunAvail) && !UFSDevice[this_lun]->finishedCommand())
1626 ++this_lun;
1627
1628 if (this_lun < lunAvail) {
1629 //Clear signal.
1630 UFSDevice[this_lun]->clearSignal();
1631 //found it; call transferDone
1632 transferDone(UFSDevice[this_lun]->transferInfo.responseStartAddr,
1633 UFSDevice[this_lun]->transferInfo.reqPos,
1634 UFSDevice[this_lun]->transferInfo.requestOut,
1635 UFSDevice[this_lun]->transferInfo.size,
1636 UFSDevice[this_lun]->transferInfo.address,
1637 UFSDevice[this_lun]->transferInfo.destination,
1638 UFSDevice[this_lun]->transferInfo.finished,
1639 UFSDevice[this_lun]->transferInfo.lunID);
1640 }
1641
1642 else
1643 panic("no LUN finished in tick %d\n", curTick());
1644 }
1645
1646 /**
1647 * Transfer done. When the data transfer is done, this function ensures
1648 * that the application is notified.
1649 */
1650
1651 void
1652 UFSHostDevice::transferDone(Addr responseStartAddr, uint32_t req_pos,
1653 struct UTPUPIURSP request_out, uint32_t size,
1654 Addr address, uint8_t* destination,
1655 bool finished, uint32_t lun_id)
1656 {
1657 /**Test whether SCSI queue hasn't popped prematurely*/
1658 if (UFSDevice[lun_id]->SCSIInfoQueue.empty())
1659 panic("No SCSI message scheduled lun:%d Doorbell: 0x%8x", lun_id,
1660 UFSHCIMem.TRUTRLDBR);
1661
1662 DPRINTF(UFSHostDevice, "DMA start: 0x%8x; DMA size: 0x%8x\n",
1663 responseStartAddr, sizeof(request_out));
1664
1665 struct transferStart lastinfo;
1666 lastinfo.mask = req_pos;
1667 lastinfo.done = finished;
1668 lastinfo.address = address;
1669 lastinfo.size = size;
1670 lastinfo.destination = reinterpret_cast<UTPTransferReqDesc*>
1671 (destination);
1672 lastinfo.lun_id = lun_id;
1673
1674 transferEnd.push_back(lastinfo);
1675
1676 DPRINTF(UFSHostDevice, "Transfer done start\n");
1677
1678 readDevice(false, responseStartAddr, sizeof(request_out),
1679 reinterpret_cast<uint8_t*>
1680 (&(UFSDevice[lun_id]->transferInfo.requestOut)),
1681 true, &UTPEvent);
1682 }
1683
1684 /**
1685 * finalUTP. Second part of the transfer done event.
1686 * this sends the final response: the UTP response. After this transaction
1687 * the doorbell shall be cleared, and the interupt shall be set.
1688 */
1689
1690 void
1691 UFSHostDevice::finalUTP()
1692 {
1693 uint32_t lun_id = transferEnd.front().lun_id;
1694
1695 UFSDevice[lun_id]->SCSIInfoQueue.pop_front();
1696 DPRINTF(UFSHostDevice, "SCSIInfoQueue size: %d, lun: %d\n",
1697 UFSDevice[lun_id]->SCSIInfoQueue.size(), lun_id);
1698
1699 /**stats**/
1700 if (UFSHCIMem.TRUTRLDBR & transferEnd.front().mask) {
1701 uint8_t count = 0;
1702 while (!(transferEnd.front().mask & (0x1 << count)))
1703 ++count;
1704 stats.transactionLatency.sample(curTick() -
1705 transactionStart[count]);
1706 }
1707
1708 /**Last message that will be transfered*/
1709 readDevice(true, transferEnd.front().address,
1710 transferEnd.front().size, reinterpret_cast<uint8_t*>
1711 (transferEnd.front().destination), true, NULL);
1712
1713 /**clean and ensure that the tracker is updated*/
1714 transferTrack &= ~(transferEnd.front().mask);
1715 --activeDoorbells;
1716 ++pendingDoorbells;
1717 garbage.push_back(transferEnd.front().destination);
1718 transferEnd.pop_front();
1719 DPRINTF(UFSHostDevice, "UTP handled\n");
1720
1721 /**stats**/
1722 stats.averageDoorbell = stats.maxDoorbell.value();
1723
1724 DPRINTF(UFSHostDevice, "activeDoorbells: %d, pendingDoorbells: %d,"
1725 " garbage: %d, TransferEvent: %d\n", activeDoorbells,
1726 pendingDoorbells, garbage.size(), transferEventQueue.size());
1727
1728 /**This is the moment that the device is available again*/
1729 if (!UFSDevice[lun_id]->SCSIInfoQueue.empty())
1730 SCSIResume(lun_id);
1731 }
1732
1733 /**
1734 * Read done handling function, is only initiated at the end of a transaction
1735 */
1736 void
1737 UFSHostDevice::readDone()
1738 {
1739 DPRINTF(UFSHostDevice, "Read done start\n");
1740 --readPendingNum;
1741
1742 /**Garbage collection; sort out the allocated UTP descriptor*/
1743 if (garbage.size() > 0) {
1744 delete garbage.front();
1745 garbage.pop_front();
1746 }
1747
1748 /**done, generate interrupt if we havent got one already*/
1749 if (!(UFSHCIMem.ORInterruptStatus & 0x01)) {
1750 UFSHCIMem.ORInterruptStatus |= UTPTransferREQCOMPL;
1751 generateInterrupt();
1752 }
1753
1754
1755 if (!readDoneEvent.empty()) {
1756 readDoneEvent.pop_front();
1757 }
1758 }
1759
1760 /**
1761 * set interrupt and sort out the doorbell register.
1762 */
1763
1764 void
1765 UFSHostDevice::generateInterrupt()
1766 {
1767 /**just to keep track of the transactions*/
1768 countInt++;
1769
1770 /**step5 clear doorbell*/
1771 UFSHCIMem.TRUTRLDBR &= transferTrack;
1772 pendingDoorbells = 0;
1773 DPRINTF(UFSHostDevice, "Clear doorbell %X\n", UFSHCIMem.TRUTRLDBR);
1774
1775 checkDrain();
1776
1777 /**step6 raise interrupt*/
1778 gic->sendInt(intNum);
1779 DPRINTF(UFSHostDevice, "Send interrupt @ transaction: 0x%8x!\n",
1780 countInt);
1781 }
1782
1783 /**
1784 * Clear interrupt
1785 */
1786
1787 void
1788 UFSHostDevice::clearInterrupt()
1789 {
1790 gic->clearInt(intNum);
1791 DPRINTF(UFSHostDevice, "Clear interrupt: 0x%8x!\n", countInt);
1792
1793 checkDrain();
1794
1795 if (!(UFSHCIMem.TRUTRLDBR)) {
1796 idlePhaseStart = curTick();
1797 }
1798 /**end of a transaction*/
1799 }
1800
1801 /**
1802 * Important to understand about the transfer flow:
1803 * We have basically three stages, The "system memory" stage, the "device
1804 * buffer" stage and the "disk" stage. In this model we assume an infinite
1805 * buffer, or a buffer that is big enough to store all the data in the
1806 * biggest transaction. Between the three stages are two queues. Those queues
1807 * store the messages to simulate their transaction from one stage to the
1808 * next. The manage{Action} function fills up one of the queues and triggers
1809 * the first event, which causes a chain reaction of events executed once
1810 * they pass through their queues. For a write action the stages are ordered
1811 * "system memory", "device buffer" and "disk", whereas the read transfers
1812 * happen "disk", "device buffer" and "system memory". The dma action in the
1813 * dma device is written from a bus perspective whereas this model is written
1814 * from a device perspective. To avoid confusion, the translation between the
1815 * two has been made in the writeDevice and readDevice funtions.
1816 */
1817
1818
1819 /**
1820 * Dma transaction function: write device. Note that the dma action is
1821 * from a device perspective, while this function is from an initiator
1822 * perspective
1823 */
1824
1825 void
1826 UFSHostDevice::writeDevice(Event* additional_action, bool toDisk, Addr
1827 start, int size, uint8_t* destination, uint64_t
1828 SCSIDiskOffset, uint32_t lun_id)
1829 {
1830 DPRINTF(UFSHostDevice, "Write transaction Start: 0x%8x; Size: %d\n",
1831 start, size);
1832
1833 /**check whether transfer is all the way to the flash*/
1834 if (toDisk) {
1835 ++writePendingNum;
1836
1837 while (!writeDoneEvent.empty() && (writeDoneEvent.front().when()
1838 < curTick()))
1839 writeDoneEvent.pop_front();
1840
1841 writeDoneEvent.push_back(
1842 EventFunctionWrapper([this]{ writeDone(); },
1843 name()));
1844 assert(!writeDoneEvent.back().scheduled());
1845
1846 /**destination is an offset here since we are writing to a disk*/
1847 struct transferInfo new_transfer;
1848 new_transfer.offset = SCSIDiskOffset;
1849 new_transfer.size = size;
1850 new_transfer.lunID = lun_id;
1851 new_transfer.filePointer = 0;
1852 SSDWriteinfo.push_back(new_transfer);
1853
1854 /**allocate appropriate buffer*/
1855 SSDWriteinfo.back().buffer.resize(size);
1856
1857 /**transaction*/
1858 dmaPort.dmaAction(MemCmd::ReadReq, start, size,
1859 &writeDoneEvent.back(),
1860 &SSDWriteinfo.back().buffer[0], 0);
1861 //yes, a readreq at a write device function is correct.
1862 DPRINTF(UFSHostDevice, "Write to disk scheduled\n");
1863
1864 } else {
1865 assert(!additional_action->scheduled());
1866 dmaPort.dmaAction(MemCmd::ReadReq, start, size,
1867 additional_action, destination, 0);
1868 DPRINTF(UFSHostDevice, "Write scheduled\n");
1869 }
1870 }
1871
1872 /**
1873 * Manage write transfer. Manages correct transfer flow and makes sure that
1874 * the queues are filled on time
1875 */
1876
1877 void
1878 UFSHostDevice::manageWriteTransfer(uint8_t LUN, uint64_t offset, uint32_t
1879 sg_table_length, struct UFSHCDSGEntry*
1880 sglist)
1881 {
1882 struct writeToDiskBurst next_packet;
1883
1884 next_packet.SCSIDiskOffset = offset;
1885
1886 UFSDevice[LUN]->setTotalWrite(sg_table_length);
1887
1888 /**
1889 * Break-up the transactions into actions defined by the scatter gather
1890 * list.
1891 */
1892 for (uint32_t count = 0; count < sg_table_length; count++) {
1893 next_packet.start = sglist[count].upperAddr;
1894 next_packet.start = (next_packet.start << 32) |
1895 (sglist[count].baseAddr & 0xFFFFFFFF);
1896 next_packet.LUN = LUN;
1897 DPRINTF(UFSHostDevice, "Write data DMA start: 0x%8x\n",
1898 next_packet.start);
1899 DPRINTF(UFSHostDevice, "Write data DMA size: 0x%8x\n",
1900 (sglist[count].size + 1));
1901 assert(sglist[count].size > 0);
1902
1903 if (count != 0)
1904 next_packet.SCSIDiskOffset = next_packet.SCSIDiskOffset +
1905 (sglist[count - 1].size + 1);
1906
1907 next_packet.size = sglist[count].size + 1;
1908
1909 /**If the queue is empty, the transaction should be initiated*/
1910 if (dmaWriteInfo.empty())
1911 writeDevice(NULL, true, next_packet.start, next_packet.size,
1912 NULL, next_packet.SCSIDiskOffset, next_packet.LUN);
1913 else
1914 DPRINTF(UFSHostDevice, "Write not initiated queue: %d\n",
1915 dmaWriteInfo.size());
1916
1917 dmaWriteInfo.push_back(next_packet);
1918 DPRINTF(UFSHostDevice, "Write Location: 0x%8x\n",
1919 next_packet.SCSIDiskOffset);
1920
1921 DPRINTF(UFSHostDevice, "Write transfer #: 0x%8x\n", count + 1);
1922
1923 /** stats **/
1924 stats.totalWrittenSSD += (sglist[count].size + 1);
1925 }
1926
1927 /**stats**/
1928 ++stats.totalWriteUFSTransactions;
1929 }
1930
1931 /**
1932 * Write done handling function. Is only initiated when the flash is directly
1933 * approached
1934 */
1935
1936 void
1937 UFSHostDevice::writeDone()
1938 {
1939 /**DMA is done, information no longer needed*/
1940 assert(dmaWriteInfo.size() > 0);
1941 dmaWriteInfo.pop_front();
1942 assert(SSDWriteinfo.size() > 0);
1943 uint32_t lun = SSDWriteinfo.front().lunID;
1944
1945 /**If there is nothing on the way, we need to start the events*/
1946 DPRINTF(UFSHostDevice, "Write done entered, queue: %d\n",
1947 UFSDevice[lun]->SSDWriteDoneInfo.size());
1948 /**Write the disk*/
1949 UFSDevice[lun]->writeFlash(&SSDWriteinfo.front().buffer[0],
1950 SSDWriteinfo.front().offset,
1951 SSDWriteinfo.front().size);
1952
1953 /**
1954 * Move to the second queue, enter the logic unit
1955 * This is where the disk is approached and the flash transaction is
1956 * handled SSDWriteDone will take care of the timing
1957 */
1958 UFSDevice[lun]->SSDWriteDoneInfo.push_back(SSDWriteinfo.front());
1959 SSDWriteinfo.pop_front();
1960
1961 --writePendingNum;
1962 /**so far, only the DMA part has been handled, lets do the disk delay*/
1963 UFSDevice[lun]->SSDWriteStart();
1964
1965 /** stats **/
1966 stats.currentWriteSSDQueue = UFSDevice[lun]->SSDWriteDoneInfo.size();
1967 stats.averageWriteSSDQueue = UFSDevice[lun]->SSDWriteDoneInfo.size();
1968 ++stats.totalWriteDiskTransactions;
1969
1970 /**initiate the next dma action (if any)*/
1971 if (!dmaWriteInfo.empty())
1972 writeDevice(NULL, true, dmaWriteInfo.front().start,
1973 dmaWriteInfo.front().size, NULL,
1974 dmaWriteInfo.front().SCSIDiskOffset,
1975 dmaWriteInfo.front().LUN);
1976 DPRINTF(UFSHostDevice, "Write done end\n");
1977 }
1978
1979 /**
1980 * SSD write start. Starts the write action in the timing model
1981 */
1982 void
1983 UFSHostDevice::UFSSCSIDevice::SSDWriteStart()
1984 {
1985 assert(SSDWriteDoneInfo.size() > 0);
1986 flashDevice->writeMemory(
1987 SSDWriteDoneInfo.front().offset,
1988 SSDWriteDoneInfo.front().size, memWriteCallback);
1989
1990 SSDWriteDoneInfo.pop_front();
1991
1992 DPRINTF(UFSHostDevice, "Write is started; left in queue: %d\n",
1993 SSDWriteDoneInfo.size());
1994 }
1995
1996
1997 /**
1998 * SSDisk write done
1999 */
2000
2001 void
2002 UFSHostDevice::UFSSCSIDevice::SSDWriteDone()
2003 {
2004 DPRINTF(UFSHostDevice, "Write disk, aiming for %d messages, %d so far\n",
2005 totalWrite, amountOfWriteTransfers);
2006
2007 //we have done one extra transfer
2008 ++amountOfWriteTransfers;
2009
2010 /**test whether call was correct*/
2011 assert(totalWrite >= amountOfWriteTransfers && totalWrite != 0);
2012
2013 /**are we there yet? (did we do everything)*/
2014 if (totalWrite == amountOfWriteTransfers) {
2015 DPRINTF(UFSHostDevice, "Write transactions finished\n");
2016 totalWrite = 0;
2017 amountOfWriteTransfers = 0;
2018
2019 //Callback UFS Host
2020 setSignal();
2021 signalDone();
2022 }
2023
2024 }
2025
2026 /**
2027 * Dma transaction function: read device. Notice that the dma action is from
2028 * a device perspective, while this function is from an initiator perspective
2029 */
2030
2031 void
2032 UFSHostDevice::readDevice(bool lastTransfer, Addr start, uint32_t size,
2033 uint8_t* destination, bool no_cache, Event*
2034 additional_action)
2035 {
2036 DPRINTF(UFSHostDevice, "Read start: 0x%8x; Size: %d, data[0]: 0x%8x\n",
2037 start, size, (reinterpret_cast<uint32_t *>(destination))[0]);
2038
2039 /** check wether interrupt is needed */
2040 if (lastTransfer) {
2041 ++readPendingNum;
2042 readDoneEvent.push_back(
2043 EventFunctionWrapper([this]{ readDone(); },
2044 name()));
2045 assert(!readDoneEvent.back().scheduled());
2046 dmaPort.dmaAction(MemCmd::WriteReq, start, size,
2047 &readDoneEvent.back(), destination, 0);
2048 //yes, a writereq at a read device function is correct.
2049
2050 } else {
2051 if (additional_action != NULL)
2052 assert(!additional_action->scheduled());
2053
2054 dmaPort.dmaAction(MemCmd::WriteReq, start, size,
2055 additional_action, destination, 0);
2056
2057 }
2058
2059 }
2060
2061 /**
2062 * Manage read transfer. Manages correct transfer flow and makes sure that
2063 * the queues are filled on time
2064 */
2065
2066 void
2067 UFSHostDevice::manageReadTransfer(uint32_t size, uint32_t LUN, uint64_t
2068 offset, uint32_t sg_table_length,
2069 struct UFSHCDSGEntry* sglist)
2070 {
2071 uint32_t size_accum = 0;
2072
2073 DPRINTF(UFSHostDevice, "Data READ size: %d\n", size);
2074
2075 /**
2076 * Break-up the transactions into actions defined by the scatter gather
2077 * list.
2078 */
2079 for (uint32_t count = 0; count < sg_table_length; count++) {
2080 struct transferInfo new_transfer;
2081 new_transfer.offset = sglist[count].upperAddr;
2082 new_transfer.offset = (new_transfer.offset << 32) |
2083 (sglist[count].baseAddr & 0xFFFFFFFF);
2084 new_transfer.filePointer = offset + size_accum;
2085 new_transfer.size = (sglist[count].size + 1);
2086 new_transfer.lunID = LUN;
2087
2088 DPRINTF(UFSHostDevice, "Data READ start: 0x%8x; size: %d\n",
2089 new_transfer.offset, new_transfer.size);
2090
2091 UFSDevice[LUN]->SSDReadInfo.push_back(new_transfer);
2092 UFSDevice[LUN]->SSDReadInfo.back().buffer.resize(sglist[count].size
2093 + 1);
2094
2095 /**
2096 * The disk image is read here; but the action is simultated later
2097 * You can see this as the preparation stage, whereas later is the
2098 * simulation phase.
2099 */
2100 UFSDevice[LUN]->readFlash(&UFSDevice[LUN]->
2101 SSDReadInfo.back().buffer[0],
2102 offset + size_accum,
2103 sglist[count].size + 1);
2104
2105 size_accum += (sglist[count].size + 1);
2106
2107 DPRINTF(UFSHostDevice, "Transfer %d; Remaining: 0x%8x, Accumulated:"
2108 " 0x%8x\n", (count + 1), (size-size_accum), size_accum);
2109
2110 /** stats **/
2111 stats.totalReadSSD += (sglist[count].size + 1);
2112 stats.currentReadSSDQueue = UFSDevice[LUN]->SSDReadInfo.size();
2113 stats.averageReadSSDQueue = UFSDevice[LUN]->SSDReadInfo.size();
2114 }
2115
2116 UFSDevice[LUN]->SSDReadStart(sg_table_length);
2117
2118 /** stats **/
2119 ++stats.totalReadUFSTransactions;
2120
2121 }
2122
2123
2124
2125 /**
2126 * SSDisk start read; this function was created to keep the interfaces
2127 * between the layers simpler. Without this function UFSHost would need to
2128 * know about the flashdevice.
2129 */
2130
2131 void
2132 UFSHostDevice::UFSSCSIDevice::SSDReadStart(uint32_t total_read)
2133 {
2134 totalRead = total_read;
2135 for (uint32_t number_handled = 0; number_handled < SSDReadInfo.size();
2136 number_handled++) {
2137 /**
2138 * Load all the read request to the Memory device.
2139 * It will call back when done.
2140 */
2141 flashDevice->readMemory(SSDReadInfo.front().filePointer,
2142 SSDReadInfo.front().size, memReadCallback);
2143 }
2144
2145 }
2146
2147
2148 /**
2149 * SSDisk read done
2150 */
2151
2152 void
2153 UFSHostDevice::UFSSCSIDevice::SSDReadDone()
2154 {
2155 DPRINTF(UFSHostDevice, "SSD read done at lun %d, Aiming for %d messages,"
2156 " %d so far\n", lunID, totalRead, amountOfReadTransfers);
2157
2158 if (totalRead == amountOfReadTransfers) {
2159 totalRead = 0;
2160 amountOfReadTransfers = 0;
2161
2162 /**Callback: transferdone*/
2163 setSignal();
2164 signalDone();
2165 }
2166
2167 }
2168
2169 /**
2170 * Read callback, on the way from the disk to the DMA. Called by the flash
2171 * layer. Intermediate step to the host layer
2172 */
2173 void
2174 UFSHostDevice::UFSSCSIDevice::readCallback()
2175 {
2176 ++amountOfReadTransfers;
2177
2178 /**Callback; make sure data is transfered upstream:
2179 * UFSHostDevice::readCallback
2180 */
2181 setReadSignal();
2182 deviceReadCallback();
2183
2184 //Are we done yet?
2185 SSDReadDone();
2186 }
2187
2188 /**
2189 * Read callback, on the way from the disk to the DMA. Called by the UFSSCSI
2190 * layer.
2191 */
2192
2193 void
2194 UFSHostDevice::readCallback()
2195 {
2196 DPRINTF(UFSHostDevice, "Read Callback\n");
2197 uint8_t this_lun = 0;
2198
2199 //while we haven't found the right lun, keep searching
2200 while ((this_lun < lunAvail) && !UFSDevice[this_lun]->finishedRead())
2201 ++this_lun;
2202
2203 DPRINTF(UFSHostDevice, "Found LUN %d messages pending for clean: %d\n",
2204 this_lun, SSDReadPending.size());
2205
2206 if (this_lun < lunAvail) {
2207 //Clear signal.
2208 UFSDevice[this_lun]->clearReadSignal();
2209 SSDReadPending.push_back(UFSDevice[this_lun]->SSDReadInfo.front());
2210 UFSDevice[this_lun]->SSDReadInfo.pop_front();
2211 readGarbageEventQueue.push_back(
2212 EventFunctionWrapper([this]{ readGarbage(); }, name()));
2213
2214 //make sure the queue is popped a the end of the dma transaction
2215 readDevice(false, SSDReadPending.front().offset,
2216 SSDReadPending.front().size,
2217 &SSDReadPending.front().buffer[0], false,
2218 &readGarbageEventQueue.back());
2219
2220 /**stats*/
2221 ++stats.totalReadDiskTransactions;
2222 }
2223 else
2224 panic("no read finished in tick %d\n", curTick());
2225 }
2226
2227 /**
2228 * After a disk read DMA transfer, the structure needs to be freed. This is
2229 * done in this function.
2230 */
2231 void
2232 UFSHostDevice::readGarbage()
2233 {
2234 DPRINTF(UFSHostDevice, "Clean read data, %d\n", SSDReadPending.size());
2235 SSDReadPending.pop_front();
2236 readGarbageEventQueue.pop_front();
2237 }
2238
2239 /**
2240 * Serialize; needed to make checkpoints
2241 */
2242
2243 void
2244 UFSHostDevice::serialize(CheckpointOut &cp) const
2245 {
2246 DmaDevice::serialize(cp);
2247
2248 const uint8_t* temp_HCI_mem = reinterpret_cast<const uint8_t*>(&UFSHCIMem);
2249 SERIALIZE_ARRAY(temp_HCI_mem, sizeof(HCIMem));
2250
2251 uint32_t lun_avail = lunAvail;
2252 SERIALIZE_SCALAR(lun_avail);
2253 }
2254
2255
2256 /**
2257 * Unserialize; needed to restore from checkpoints
2258 */
2259
2260 void
2261 UFSHostDevice::unserialize(CheckpointIn &cp)
2262 {
2263 DmaDevice::unserialize(cp);
2264 uint8_t* temp_HCI_mem = reinterpret_cast<uint8_t*>(&UFSHCIMem);
2265 UNSERIALIZE_ARRAY(temp_HCI_mem, sizeof(HCIMem));
2266
2267 uint32_t lun_avail;
2268 UNSERIALIZE_SCALAR(lun_avail);
2269 assert(lunAvail == lun_avail);
2270 }
2271
2272
2273 /**
2274 * Drain; needed to enable checkpoints
2275 */
2276
2277 DrainState
2278 UFSHostDevice::drain()
2279 {
2280 if (UFSHCIMem.TRUTRLDBR) {
2281 DPRINTF(UFSHostDevice, "UFSDevice is draining...\n");
2282 return DrainState::Draining;
2283 } else {
2284 DPRINTF(UFSHostDevice, "UFSDevice drained\n");
2285 return DrainState::Drained;
2286 }
2287 }
2288
2289 /**
2290 * Checkdrain; needed to enable checkpoints
2291 */
2292
2293 void
2294 UFSHostDevice::checkDrain()
2295 {
2296 if (drainState() != DrainState::Draining)
2297 return;
2298
2299 if (UFSHCIMem.TRUTRLDBR) {
2300 DPRINTF(UFSHostDevice, "UFSDevice is still draining; with %d active"
2301 " doorbells\n", activeDoorbells);
2302 } else {
2303 DPRINTF(UFSHostDevice, "UFSDevice is done draining\n");
2304 signalDrainDone();
2305 }
2306 }